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Abstract. We investigate the state on the Fermion algebra which gives rise to
the thermodynamic limit of the Gibbs ensemble in the two-dimensional Ising
model on a half lattice with nearest neighbour interaction. It is shown that the
operator P_ in the GNS space, which performs the essential functions of the
renormalized transfer matrix, has a quasi-particle structure.

1. Introduction

In lattice models with an interaction potential of finite range, the free energy in a
finite volume is determined by the largest eigenvalue of a matrix, known as the
transfer matrix. One question which naturally arises is how to normalize the
transfer matrix so that it becomes a well-defined operator in the thermodynamic
limit. Such a renormalization is easy to make in the domain of Gibbs-state
uniqueness (Minlos and Sinai [197). The limit in this case is a stochastic operator
which has a property of asymptotic multiplicativeness which suggests the conjec-
ture that the spectrum of the operator has a quasi-particle structure: there is a
grading of the Hilbert space on which the stochastic operator acts into subspaces
corresponding to different sets of quasi-particle occupation numbers; these
subspaces are invariant under the action of the stochastic operator; on these
subspaces the stochastic operator has a simple structure and acts by multipli-
cation. A general analysis of the spectral properties of a stochastic operator arising
from a transfer matrix was undertaken by Minlos and Sinai [19] who contructed
the single-particle subspace assuming a cluster-property of the transfer-matrix.
The first proof of this cluster-property for the two-dimensional Ising model with
nearest neighbour interactions was provided by Abdulla-Zade et al. [1]. Malyshev
[14, 15] used cluster expansions to make improved estimates of matrix elements
and which enabled him to work in arbitrary dimensions, Malyshev and Minlos
[17, 18] used these estimates to prove that, for sufficiently small values of 8, an
operator with the cluster-property has invariant subspaces which are reminiscent
of the n-particle subspaces of Fock space; the restriction of the operator to the
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n-particle subspace has its spectrum in an interval [¢, ", ¢,f"]; these intervals do
not overlap.

The analogy of the quasi-particle structure described above to the grading of
Fock space suggests that another approach might be used in the case of the two-
dimensional Ising model. It is well-known that the Onsager-Kaufmann treatment
[20, 7, 8] can be re-formulated in terms of the Fermion algebra (Schultz et al.
[22]). In the thermodynamic limit the Gibbs state corresponding to periodic
boundary conditions in the finite lattice induces a Fock state w, on the CAR
algebra A(1%(Z)) for 0 < < o0, as was shown by Pirogov [21] and Lewis and Sisson
[11, 12]. Because of the translation invariance of this state, all n-point functions
are determined by its restriction @, to the algebra A(IX(Z*)) [regarded as a
subalgebra of A(I*(Z))]; the restricted state @, is a non-Fock quasi-free state. It is
primary for f<p, and nonprimary for f>f. (Lewis and Winnink [13]). The
primary decomposition in the > f§, regime has been determined and the primary
components w, and w_ identified with the Gibbs states corresponding to
+-boundary conditions (Kuik [9] and Kuik and Winnink [10]). It is conjectured
that (at least in the f < f, regime) there is a grading of the GNS-space of the state
@, which corresponds to the quasi-particle structure discovered by Minlos and
Sinai [19]. In this paper we begin the investigation of this conjecture by
investigating the spectrum of the GNS-representation of the renormalized
transfer-matrix. In order to do this we develop the theory of Wick-ordering
relative to an arbitrary quasi-free state on the CAR algebra, analogous to to the
well-known theory for the CCR algebra (see [6, 23] for example). This is described
in Sect. 2. In Sect. 3 we give details of the C*-algebra formulation of the two-
dimensional Ising model (following Sisson [24] and Kuik [9]) and define the
operator P on the GNS-space which performs the essential functions of the
renormalized transfer matrix. Our main result is proved in Sect. 4: for f<f, the
spectrum of the restriction of P to F} is contained in the interval [e™ 2KI+K2)
e~ 2"Ki=K2]; thys given N >0, there exists a §,, such that for all < the spectra
of P | Ep n=0,1,..,N,and P ( (_% Fﬂn)* are disjoint. This used the detailed results

of Onsager [20] for the two-dimensional Ising model and may be regarded as a
sharpening of the results of Malyshev and Minlos [17, 18] for this special case. The
results of Sect. 2 on Wick-ordering may be of independent interest.

2. Quasi-Free States on the Clifford Algebra and the Associated Grading

Let H be a real Hilbert space and s(-, -) denoting the real inner product on H. Let
C(H) denote the C*-Clifford algebra [2] generated by self adjoint operators
{I'(f): fe H} which satisfy the relations

I(lg)+I(@I'(f)=2s(f9)1, fgeH.

We often identify f with I'(f), and let C,(H) denote the dense *-subalgebra
generated by H.
Given a state w on C(H), there exists an unique covariance operator C,, on H

such that
o(fg)=s(f,9)+is(C, f.9), figeH
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and |C,| £1, C¥=—C,. Conversely, given such an operator, one can construct a
so-called quasi-free state on C(H), which is completely determined by its two point
functions [2]. Here we give an alternative, constructive proof of this, adapted to
our need for a grading of the GNS Hilbert space into n-particle spaces, for
n=0,1,2,...,.

Let A be a skew-adjoint contraction on H, and define a hermitian inner
product {-,->, on H by

Lapa=sf9)+is(Af.9), fgeH.

If A is a complex structure, we let (H4 {-,->,) denote the complexification of
(H,s(-, ")) via (¢ +if)p =ag,+ A, ¢ H, o, feR.

For the skew contraction A4, we define a grading Co(H)= Y CP(H) as

n=0
follows: If I={i, <...<i,} is a finite ordered set with cardinality |I|=r, we let &,
denote the set of all subsets of I with the induced ordering. If J,KeZ,,
J={j;--s}, K=1{ky,....,k}, with I=TUK, JnK=0, let &J,K) denote the
signature of the permutation L llf ol k)' If a;;€C, for i, je I, with |I|=2n
s M.

oeonds Kpee
and even, let

Pfla;, =) e(J, K)aj 1,00, 4, »
where the summation is over all disjoint J, K in &, with
J={j, - iut, K={k;,...,k,} and j,<k,, m=1,...n.
with Pf[a;]=1if I=0. If {f;:ieI}CH, we let f,=f, ...f,, (r=[I|), f=1, and
w4(f;)=0, if |I] odd,
w(f)=PfI{f fpa:ijeI], if [I] even,
so that w,(fg)={f,¢9> 4 Then define the Wick ordered product by

ri= = D= DML K) o). 2.1

where the summation is over all disjoint J, K in 9, with JUK =T (cf. [3, 6, 23]).
Then define C4{ to be the complex subspace of C,(H) generated by

{:f,...f,: 4t fi€H}.

Lemma 2.1. With the above notation:

fi= Z eJ,K): f;10,4(f0), 2.2)
InEZs
fifii=ff i+ ;1(—1)S+1:ﬁ1...ﬁs...ﬁr:wA(ffis), (2.3)

where " over an element means that element is omitted.

: fiye-- £, tis an anti-symmetric function of (i, ..., 1,). (2.4)
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If B is also a skew contraction then

frig= , ;ﬂa(J,K):fJ:APf[<ﬁ,fj>A—<fi,fj>B:i,jeK]. (2.3)
JnK=1¢

Proof. We first show (2.3). By the definition of Wick ordering we have

= X . (= D2, K) ffy0,4(fi)

JuK=
JnK=9

+ X (=)= )V, K) froa(f fr)
iy

=f:f;:
+ X (= )R 1)Wle(], K) fiw,(f fx)

JUK=1

JnK=10
A Pfaffian expansion of w ,(ffy) now gives the result. Suppose (2.2) holds for [I| =n.
Then inductively consider

M= Z e, K) f: fy o (fx)

JuK=1
JnK=10

= Y LK) 0,y

JuK=1I
JnK=10

+ Z ; Y e K= f S () 4(fi)
t=1 JuK=1I
JnK=9¢

[by (2.3), if J={j, ..., js}]
= Y K ffyio4fy)

JuK=1
JnK=10

+ Z &(J s Ko) : fr0 1 0 4(ffx)(— pyVol

JouKo=1I
JonKo=0
again by elementary Pfaffian considerations, which shows that (2.2) holds for
[I|=n+1.
Assume inductively that : f; ... f; :is an anti-symmetric function of (i,, ..., 1,) if
r<n. Then by (2.2), if I={i,,i,,....5,}, Io={is,i4,...,i,}, Wwe have
fi= Y LK) fyio,(f)
JuK=1 \
JnK=1¢6
= ) LK fi fy o)
JuK=1Io
JnK=1¢
H(= DV, fr o (fiy fi)
+(—pW*n; Jo Sy ro4(fi, )

+: frro(f, £, 0} -



Transfer Matrix Spectrum 313

Hence by adding a similar expression for f;, f; f;....f;,, and using the inductive
hypothesis we get:

25(],1:1’ ft:z)flo=:f;1fl:zf}o ot :flzzfl"lflo :
+25(fi, i) X LK) fyro,(fe)-

JuK=1Ip
JNnK=9

Hence :f; f fi,:=—:f, /i, J1,:» using (2.2) for I,,. In this manner, : f; ...f; @ is
seen to be antisymmetric. Finally (2.5) follows from the definition of : :5 and (2.2)
for : :,, and Pfaffian expansions.

Lemma 2.2. If nz1, then (f)=,, (9)i=,)—>det[{f,g;> 4] is positive definite on
H"x H".

Proof. We first show that (f,g)—<f,g) 4 is positive definite on Hx H. If A is a
complex structure, then {-,->, is the complex inner product on the com-
plexification H* and is clearly positive definite. In general let A= U|A| be the polar
decomposition of 4 on H. Then on H,=Range(|4), U*=—1, U*=-1, ie.
Uy=Uly, is a complex structure. Then

L@ a=s(1—14Df 9)+ [s(AI' £ 1A 2g) +is(U|AI' %S, |41 2g)].

The first term is a positive definite function of (f,g) because |4] =1, and the
second is positive definite by considering the complex structure U, on
(Ho, Si1o o) 1t merely remains to show that if 4;,e M,(C) for i,j=1,...,m and
[4;;] is positive in M,,(M,(C)), then [det(4;)] is positive in M,,(C), (for then
consider (f)j_,eH", i=1,...,m and A;=[{f,fDd -1 Lj=1,...m). Let
[4;] =[Cij]2, where [C,;] is self adjoint in M, (M,(C)). Then

det(4;)=A4;;A...AA4;; (n-factors); but

m

[Aij®"'®Aij] = Z [Cir1Cr1j®Cir2Crzj®‘"®Cir,.crnj]

rl,...,rn=1

=2, ®..9C, )(C,;®...9C, )]
=2[(C,;®...9C, )*(C,,;®...QC, )1=20;
and so by cutting down to C"A ... AC":
[det4;]1=0.

Let (C,, F) denote the minimal Kolmogorov decomposition [4] of the positive
definite kernel ((f),(g))—>det[<f,g;> ] on H"x H". Then C,(f;, ..., f,) is an anti-

symmetric function (f,, ..., f,). Define F,= €D F",, where FS is a one-dimensional

n=0
Hilbert space spanned by a unit vector Q=Q, If feH, then elementary
computations with determinants show that

o(NClf1s -5 ) =Cois(fs 1 1)
+ ;(_l)i+1<ﬁﬁ>,1cn_l(f1, coor S e S
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defines a bounded operator 7m,(f) on F,. It is easy to check that my(f) is self-
adjoint, and 7,(f)7,(g) + 7o(9)7o (/) =25(f, 9), f, g€ H. Hence there exists an unique
representation n=7, of C(H) on F, such that n(I'(f))=nr,(f). Moreover

(i fio e J)R=C\(f1,--. 1), fieH. (2.6)
Assume, inductively, that this is so for n— 1. Then
1 fron SAQ=AUIA fy-o- 90— 8 (= D<o SR Sy ooy D0
by (2.3)

=1(f)Cp—(frs s £)2— _;2(—1)i<fl,ﬁ>,1cn_2(f2, oS £)

=C,(f} --- f,) by definition of n(f}).

Thus (74, F,,2,) is a cyclic representation of the Clifford algebra C(H). Define a
state w, on C(H) by w ,(x)={n,(x)2,, 2>, for xe C(H). Claim that

4(f; f5---S) =0, nodd,
= PfI{fu fp], neven, 2.7)
@ oo f11:91 -0, =det[{ £, 9,0 410, - (2.8)

(2.7) follows from (22), and (2.8) is a consequence of (2.6), and
Y S PR SR S

We summarise this by

Proposition 2.3. If A is a skew contraction on H, there exists an unique state w , on
C(H) such that

04 (fy--- [)=PIIfis [P 4] if n is even,
o 4(f; - f)=0 if nisodd,
O 4(: fops s f12091 - g ) =det [ S, 179 410, -

There is a grading F ;= PDF " of the GNS Hilbert space of w4 such that the GNS
n=0

vector Q, spans FS, and if m, is the GNS representation then (fi,...,f,)
-, (:f; ... f,)8, is the minimal Kolmogorov decomposition of the positive definite

kernel ((f)), (g;)—[det{f,, g:> 41

Remark 2.4. Note that the theory of quasi-free completely positive maps de-
veloped in [3, 5] can be transformed into the real setting, e.g. if T is a contraction
between real Hilbert spaces H and K intertwining with skew contractions A4
and B, then there exists an unique unital completely positive map
C,(T): C(H)— C(K) such that

CADVfy oo fy: )=(TF,) ... (Tf):5,  fieH.
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Moreover there exists an unique contraction F, x(T)= o, F’y g(T) from F,
n=0
into Fy, where F)y y(T): Fy— Fy is given by

Fly g(Tmy (G fy oo St Q=7 (Tfy) - (TS,) 1 p)25,  fi€H.

Remark 2.5. If A is a complex structure on H, let a,(f)=3[I'(f)+il'(Af)], a’(f)
=a,(f)*, feH, denote the associated annihilation and creation operators. Then

T fy o )R =1 4@(f}) - ai(f )2,

so that F”, is the usual n-particle space. Moreover if T is a contraction commuting
with A, then Fy(T)=F ,(T)is the usual n-particle operator, and F (T)=F , ,(T)
the usual second quantization.

3. The C*-Algebra of the Ising Model

In order to establish our notation, we summarise here the C*-formulation of the
two dimensional Ising model with periodic boundary conditions. Full details may
be found in [24, 11-13, 9, 10].

The two dimensional classical Ising model with nearest neighbour interactions
can be reduced to a non-commutative one-dimensional system by means of the
transfer matrix method. For a finite lattice

A=A y={(,j)eZ?:1<i<L, —N<j<N},

P(A) denotes the space {—1, +1}* of all configurations and the algebra of
observables is C(P(A)), the space of all complex valued functions on P(A4). We will
always impose periodic boundary conditions on our nearest neighbour
Hamiltonians. The transfer matrix method takes us from observables in the
commutative C(P(A)) and Gibbs states {-);y on C(P(A4)) to observables and
certain states associated with a (non-commutative) Paulion algebra .o, of 2* x 2-
complex matrices, or equivalently, a Clifford algebra C(H;) on a L-dimensional
complex Hilbert space H,. Thus if f is a local observable in C(P(4y,)), say, there
exists an element a, in C(H,;) and a state ¢,y on C(H) such that {f);y=g;x(a,)
for all N> N, In fact, [identifying C(H,) with M ,.(C)], ¢, is given by an operator
(VL)ZN +1 :

oy =tr(- V2N T HAr(VEN ).

This reduction leads us to study the states ¢,y on C(H;), and the thermody-
namic limit ¢ on C(H), if H= lim H;. The transfer matrix is the (normalised) limit
L

of ¥}, as L—oo. Our aim is to show the existence of this normalised limit in a
suitable C*-setting, and obtain some information on its spectrum for high
temperatures. We now describe this set up in a little more detail.

First, in order to describe the Clifford algebra setting, let J be a fixed complex
structure on a real infinite dimensional Hilbert space H, with inner product s(-, -),
Let {e,:n=1,2,...} be a complete orthonormal basis for (H’, -, ->,) so that {e,,
Je,:n=1,...} is a complete orthonormal basis for (H,s), and let E be the closed
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subspace of (H,s) spanned by {e,:n=1,2,...}. Then H=E®JE, and A the
conjugation determined by J defined by A¢ = ¢, AJp= —J P, peE, satisfies A%=1,
AJ=—JA and P=(1+A)/2, Q=(1—A)/2 are the orthogonal projections on E,
JE, respectively.

Let H;, CH be the subspace spanned by {e,Je,:n=1,2,...,L}, and s,(-, )
(respectively, J,, 4;, etc.) denote the restriction of s(-, -) (respectively, J, 4, etc.) to
H,.
The transformation of the classical theory to the Clifford algebras is done via
Pauli algebras. Let «/; be the Paulion algebra generated by {oj-’ j=1,..., L,
«=X, y,z} which obey mixed commutation relations [¢%, o} ]_ =0, j*k, 070} =id”
and cyc., (o-jf)2= 1. Let # be a two-dimensional Hilbert space with orthonormal

1 0 L

basis e(+)= ( O)’ e(—)= ( 1), and #;, =) A Let n; be the representation of <7, as
1

bounded operators on #; by 7,(69)=1®...00¢*°®...® 1, a=x,y,z where ¢*

ith position
(01 o 0 —i)
oo i o

The Jordan-Wigner transformation is a s-isomorphism #; : .o/; = C(H,) and is
defined by

’7(021)=F(e1)a
n(ey))=—Ie,),

16D = T] [—iTe ) Ue)Il(e), k>1,
k—1
ne)=— [] [—il(e)(Je)I(Je,), k>1.
n=1

For each finite subset @ CZ?2, let U(@) denote the C*-algebra generated by
{05 :0€ 0, a=x,y,z} which obey [0}, 0% ]_ =0, 0+ ¢, a50} =id}; and cyc., (d5)* =1.
Thus if ©;={(, j): 1Si< L}, U(@;)~4, for each j.

Taking ® = A= A, , the finite lattice described previously, the classical algebra
C(P(A)) is isomorphic to the C*-algebra generated by the third component Pauli
matrices {o}:0€A4}C U(A). Moreover, imposing nearest neighbour interactions,
with periodic boundary conditions, the Hamiltonian of the finite system is the
observable

L N
pa— VA4 z
Hyy== % Y [20430+1,5 7196 96,5+ ]
i=1j=-N
[where with abuse of notation, (6{, + 1 ), 07;, y + 1)) are identified with (6{; ), 67, — ))]-
Here J,, J, are constants greater than zero.
Now any configuration X ={x;;}, can be broken up as

yr(X)
x=|
v VX)
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if yi(x)="{x ..., x; Je{—1, +1}*, —N<i<N. We then have a decomposition

HX)= Z S+ Z (I ARN"))

j=-N j=-—-N

in terms of the internal energies of the rows and the interaction energies between
neighbouring rows if

J xljxl+1 J?

e

S(j)=—

i=1

M=

Iy == ), J1XimX

in>

I

i=1

identifying x, ., ; with x, ; and y) ™" with y. ¥ as usual.

The expectation value of any observable f is given by the Gibbs formula

in=Zy Y, {(fX)exp[—BH X1},
XeP(4)

where the partition function

Zin= Z exp[—BH y(X)],

XeP(A)

and f=0 is the inverse temperature.
We now express this using the transfer matrix formalism. First, the partition
function or free energy is given by

Z= ) exp[—BHy(X)]

XeP(A)

“ZTL(J’L »YLNH)TL( —NH,J’ZIHZ) 'TL(YZ_I’,VL) (J’L,}’L )
TRV

if T, the transfer matrix is defined as the array

T(y, y)=exp—B{EISK) + SO +1(, ¥},

which is a 2L x 2L matrix, if y, y'e { — 1, + 1}~ Then T} defines an element V; in the
Paulion algebra &/, by

L
<7t(VL) ,® e(x;), ® e(x] )> Ty,

where
Oli=i if x,-’m-——i‘l yzz{XI,ma"-5xL,m}
1

H
o
=
Il
H+

o= Vi=AX1 oo Xy )
Then Z=tr Ay m (VAN TY).
Similarly ) f(X)exp[ —BH(X)] can be computed for a local observable as

follows. It will be enough to consider f= ]_[ fu€C(P(ALy,)), where each f, isa

m=—No
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function of the m™ row alone. Thus using the canonical basis
L
{@e(oci) roe{t}i=1, ...,L}
i=1

for J@ each f,, determines a multiplication operator on J#;, and hence an element
f in the Pauli algebra &/;. Then for N>N,:

Y f&X)exp[—BHX)]

XeP(ALN))

_ZTL(.VL Ny V.. TL(y_N0+13yL NO)f—No(yL °)
L) g 0T O T ) o 00)
A A B M AR ) ¥ 7 Vo)

=troty[n (V] NOf—NOVLJ}—No+1~--fN0V£v—N°+ ]

=tropym (V2N lay),

if a, =V, Nof y Vi fy Vi Yoe st
Define states g,y on &/, by
orn(a)=tr [, (a) (VL)2N+ 1]/tréfLﬂ:L(VL)2N+ L

By linearity if f is a local observable, in C(P(A,y,)) say, then there exists
a €5/ such that

{fPv=0rnla;) for all large enough N.

Now
V. =[2sinh 2K )J72(V,, )2V, (V5. )2,
where
L
pumesn{i § o)
i=1
L
VzL—eXP<K2 Zafofﬂ), 01+1=07%,
i=1
and

e Y =tanhK} K;=pJ,. (3.1

Let U, = n [—il(e)I'(J e)]e C(H,), which is a self adjoint unitary such that

U, I'(p)= —F (p)U,, ¢ H,;, with spectral projections P, =(1+U,)/2, 0,

=(1—U,)/2. Define operators W;* on H, by
VVLi'ej=ej+1, WLiJLeJ.=JLej+1, 1§]§L—1, (32)
Wiep=te,, WiJe=%Je,. '

Define
L
n(V;-1)=exp { —iK, Y I eI (W ek)} . (3.3)
k=1
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Then y(V,)=(2sinh 2K )*2[n(V; )P, +n(V; )01, where
VE =) 2V (V). (34)
Define operators 77, 85, AF, 0F, S§ on H, by
coshyf =cosh2K* cosh2K,1—sinh2K* sinh 2K, (W= + (W)~ 1)/2, (3.5)
sinhy; cosd¥* =cosh2K*sinh2K ,1 —sinh 2K} cosh2K,(W; + (W)~ 1)/2, (3.6)

sinhp sind¥* =sinh2K*[(W; — (W)™ )21 (= J,), (3.7)
Af = —J,exp[J, A0 I[(WE) P+ WiEQ,]

=J exp[2J, 4,075 1=S;J(Sp) ™", (3.8)

SE=exp[—J,4,0%]. (3.9)

Then
n(VHCom(VE) 1 =T(coshyfx)+il(sinhyf4fx); xeH,.  (3.10)
On the complexification HJ*, the spectra of W, are:
oW )={exp(io, JeC: v,  =2kn/L k=1,...,L},
o(W, )= {expiw, ;€C:w, ; =(2k+n/Lk=1,....L},

and
Wit g, =e gt | (3.11)
if
L +
GeL=L"1? Y e rokrrg (3.12)

n=1

so that {g;/;, J g . }i-, are orthonormal bases for H;.
If we let af (-) denote the creation operators of the complex structure J,, as in

L
Remark 2.5, and Q; = (X) e, where e=[e(+)+e(—)]/]/§, then 7y~ 'a, ()2, =0,
k=1

feH,,and so (nn ™', #7, Q) can be identified with the GNS decomposition of w; .
Moreover

nrl—l(}-)L)'QL=‘QL’ ”ﬂ_l(QL)QL=0- (3.13)
The Bogoliubov automorphisms a(S}) : a,,(f)—a M,;(S,fr f) are implemented by

S Li =CXp {i Z H(w,f L) [a;: L(g;_: L)a,;k L(A Lgij_: L) —ay L(g;_: L)aJ L(ALQI:_: L)] } 5

0swisn

where
coshy(w)=2cosh2K¥ cosh2K, —sinh2K* sinh 2K, cosw, (3.14)
sinhy(w) cos 0*(w) =cosh2K¥ sinh 2K, —sinh2K¥ cosh2K, cosw, (3.15)
sinhy(w) siné*(w) =sinh2K¥sinw, (3.16)

20(w)=6*(w)+ o —7. (3.17)
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For f<p, (ie. K,<Kj7), the principal eigenvalue of n,(V}) is asymptotically
non-degenerate and its eigenvector is y; =7~ (S, )Q,. Thus

Igim ()=, wr D
-1

=a)JLo(xSZ on
=Wy on" 1 by (3.7), [12, Theorem 1].

Then for a local observable f;
o= Lhm Allim o= I}im w, (" Yay).

The weak lim A] exists and can be described as follows. Let L, be the real
L-
Hilbert space of complex-valued square integrable functions on [0, 2x] with inner
2n

product $(f, g)=re§17; | fg, and complexification (if)(x)=if(x). Then L} is the
0

complexification with inner product <-,-> say. If y,(p)=¢€™, pe[0,2r], then
{x, :n€Z} (respectively {x,, ix,:n€Z}) is a complete orthonormal basis for L},
(respectively L,). Define L} , (respectively L, .) to be the closed linear span of
{x,:n=1,2,...} (respectively {,, ix,:n=1,2,...}) in L} (respectively L,). Then
F(e,)=1x, defmes a unitary operator F of (H, S) onto (L2 +»3) and (H, s) onto
(L2 +» (+, ). If A is a bounded linear operator on H or H’ let A=FAF~

If ¢ LE[0, 27], let M(¢) denote the corresponding multiplication operator on
L, (or L}). If E denotes the orthogonal projection of L, on L, , (or L, on L} ,),
and ¢eLg[0,2n] let T,=T(p) denote the Toeplitz operator which is the
restriction of EM(¢) to L, , (or L2 +» respectively). Let t(p)=exp(2i6(p)), p€ [0, 27].
Then A=wklimA}, where

v % v X

A=JT_p+JTQ. (3.18)

The phase transition manifests itself by a jump in the mod-2 index of 4 [24, 12,
13, 9]. For <, (i.e. K, <K¥), index A=0 and w, is primary, and for > f, (ie.
K,>K?¥), index A=1 and w, is non-primary.

4. The Spectrum of the Transfer Matrix
in the Thermodynamic Limit at High Temperature

Let C,o(H) denote the *-sub-algebra of C(H) generated by U H,, so that C,(H)
L
= U C(H ;). Suppressing the representation of C(H;) on #,, we can write
L

a)AI__ = <()QL3 QL> >
and similarly we let C(H) act on F,, the GNS Hilbert space of w,, and write
w,=<(-)2,2>, where Q=Q,.
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Proposition 4.1. There exists self adjoint contractions P, P_ on F , such that

V,
Jim <¥x% yQL> — (P Xy, “.1)
m (3
lim <"(;’L ) o, yQL> = (P2xQ,y2) 42)
-0 L

for all x,ye Cyo(H), and where A, denotes the maximum eigenvalue of V.

Proof. @2, is the eigenvector of #(V,) with eigenvalue 4; (Sect. 3) so that
V)X, yQ2 /A, = n(V)xn(V) ™1 Q, v,
We claim that I}ljn (V)xn(Vy Ry, v, > exists for all x, y in Cyo(H). Now
n(V,)=2sinh 2K )"[n(V;" )0, +n(V;))P,] (3.4)

and P,I'(¢)=TI(¢)Q, for all ¢ in H,.
Let x=I'(¢,)...I'(¢,), y=T'(p,)...I'(w,), where ¢,, ;e H; , and L,<co. Then

nVxn(Vy Ry, yQ2.)
= <(”I(VL+)QL+’7(VL_ )FL)X’?(VL_)_ 1QL7 yQ.> by (3.13)
_ {<71(VL_)PLX’7(VL_)_1-QL, yQ,> if meven
= K0V ) 1@, v,y if modd
Vi )x(Vy ) 'Q,, yQ,> if m and n even
= {w(vg)x( V) '@, yQ,> if mand nodd
0 otherwise .

Case (i). m and n even.
Then

<VL_¢1'--¢n(VL_)_1QL’1Ps-'-1P1QL>

= < [ [coshy; ¢;+iA, sinhy; ¢,10;, wn--~w19L>
j=1

by (3.10). Expanding this as a Pfaffian (2.7), one has a finite sum of products where
each factor is one of the following three kinds:

w Ai(lpjlpk), which converges to w4(p;p,) as L— o0, (4.2a)
G)Ai(lpj coshy, ¢,)=s(p;, coshy, ¢,)+is(4, w;,coshy, ¢,). (4.2b)
1

Proceeding as in [9], take y;=e,, ¢, =e,, where e,=

L
Y =g, and
using A, =J,{cos20; +J, A, sin260; }, we have: =1

1/2
LYV?,
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s(A4f e,,coshyy e)
1

=7 Y s((J, cos20; —sin207)e’ " =g, , cosh(yy )e’ ™ *g, )
It

1 . _ _
=7 Y. s(cosh(y) [J, cos260; —sin20; ]’ @i @ersdgr g-))
It

1
=7 Y. s(coshyp [J; cos20; —sin26; ] [cos(w; Lr—w, ;s)
Lt

—Jsin (o, r— w;LS)] 91,091, 1)
1 .
=-7 IZ coshy(w;, 1) [sin20(w; 1) cos(w, Lr—w, ps)
t
~c0s20(w; ;) sin(w; r—o, 5)]0,

1 .
= — 7 Yeoshy(@; 1) [sin0(@; 1) +w; (=]

2n

Lt | coshy(w) sin[20(w) + w(r—s)]dw,
2n 0

a Riemann integral as L— co.
In this way one sees as in [9] for the computation of wk limit A that

s(A; ¢,coshy; p)—>s(Bo,p) as L->oo, for ¢,peH, ,

where B=JT(cosh ()t~ NP+ JT(cosh()$)0. Similarly s(y, coshy; ¢)—s(Cy, ¢),
where C= T(coshy)
wA,;(U’jAZ sinhy; ¢,). (4.2¢)

This is similar to the previous case.
[wA,:(F(COShVI: ¢j)iF(AZ sinhy; ¢,)) +0)A,:(ir(AZ sinhy, d)j)F(COShV; #))1=0,
(4.2d)
[w4z I'(coshyy ¢l (coshyy d,)+w (i (A sinhy; ¢ )il (A, sinhy; ¢,))]
=w, (0, (4.2¢)

and so is the same as case (4.2a).
Hence case (i) is established.
Case (ii) m and n odd.
We compute

Ve x (V) 1y, yQ) =V (V)M IV (V)™ 1190, y21)

where
VI =) Y, V) 20 )™ Y )

Now L
n(Vs )= 11 exp—iK,[I'(J e )T (Wi e)],
k=1

”[(VZ-’,—L)I/Z(VZ_,L)— 1/2] =eXp— iKz[F(JLeL)F(el)] >
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and (V)= H exp—iK¥[I'(e)I'(J e,)]. Now if ¢, p are orthogonal unit vectors,
e, then Ad(e)ipcxf (D)L (f)=TI(g), if
g=f+sin2a[ sy, /)¢ —s(¢, /)yl —(1—cos2a) [s(p, Ny +s(, ). (4.3)

Hence
Ad[exp —iK¥I'(e,)['(J e,)](I'(e,))=cosh(2K¥)I'(e,) +isinh(QKT)I'(J e,),

and
Ad[exp—iK*I'(e )['(J ;)] (I'(J ;) =cosh2KFI'(J e, )—isinh 2K T (e;).

Thus
n(Vy, (Vo ) (Vo )™ 2V 1)
=exp—iK,{[I'(cosh2K¥J e, —isinh2K%e;)] [I'(cosh2KTe,
+isinh2K*J,e,)]}.
Similarly,

Ad [exp (—“% F(JLel)F(ez)) exp (%KZ I'(Je,_ 1)r(eL))}

LV V5 ) (V)™ V2V 1Y =exp—iK,T(TO,) for L>2,
if fo=cosh2K¥J, e, —isinh2K¥(coshK ,e; —isinhK,Je; _,),
0, =cosh2K¥e, +isinh2K¥(coshK,J e, +isinhK,e,).

Hence _ iK
’7(VL+(V_) H=exp— —2 F(JLeL)F(WL+ e,

Ad {Llill (exp— E—F (J e )T (W ek)>}

k=1

_ - iK
’ [’7(V1,L(V2TL)1/2(V2,L) 1z V1 )] eXp+ —— =2 F(JLeL)F(VVL er)

—exp| 1152 U exol ~ KT U,)I6,)]

'exp[— Ky F(JLeL)F(ei)} .

Now | f,I>=10, > =a? say, which is independent of L, and if f, g are orthogonal
unit vectors in H, then expal'(f)I'(g)=cosa+sinal’(f)I'(g). Thus
n(V (Vg )™ ) =(cosh(K,/2—isinh(K,/2)[ (J e ) (e,)
-(cosh(K,a?)+sinh(K,a?*)a ™ *I'(f,)'(6,))
“(cosh(K,/2)—isinh(K,/2)['(J e ) (e,))
=[coshK,—isinhK,I'(J e, ) (e;)]
-[cosh(K ,a*)—isinh(K ,a*)a™ *I'(g ) ()], (4.4)
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where
g, =cosh2K*(coshK,J,e; —isinhK,e,)
—isinh2K¥(coshK,e; —isinhK,Je; _,),
o, =cosh2K*(coshK,e, +isinhK,J,e;)
+isinh2K¥(coshK,J e, +isinh K ,e,).
Hence

VEx(VE ) 1@y, 2, ) ={(coshK, —isinh K,I'(J e;)[(e,))(cosh(K ,a?)
—isinh(K,a*a"*I'(g ) ()],
T (coshy ¢;)+il'(A sinhy; ¢ )2y, [TT(w)QL> -

Using the Pfaffian expansion, we see that we must consider the limits in the
previous expressions (4.2a)-(4.2e), where ¢ and or y are replaced by one of
e, Jie, Jiep_ :eg

1 . _ _
s(Aj e,,coshy, e;)= 7 Y coshy(w; ) [sin(20(w; 1) — o (r—L)]
1

-1 . .
= Y. coshy(y 1) [sin(20(w;, )~y r]  using (3.11)
1
1 2n
—— — [ coshy(w)sin[20(w) — wr]ldw.
21 o
The details are left to the reader.
. . W .
We have thus established that lim <’7(/1 ) xQ, yQ L> exists for all x, ye C,o(H).

L—oo L

But ||V, £4,, hence

lim <’7(VL) xQ,, yQL>

L— o )'L

< lim 12, 152, |

1/2 1/2

= lim o, (x*)" 0, (%))
= ,(x*x)?w ,(y*y)*/? as A=wk-limA}
=[xl | y<2ll -

Since Q is cyclic Cyo(H), it follows from the Riesz representation theorem that

there exists a self adjoint contraction P, on F, such that (4.1) holds. The

remainder is now clear.
With the grading of Sect. 2 we can now show:

Theorem 4.2.
P_F.CF, forall nz1, 4.5)
P_F,CF), for n even, (4.6)
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and
P F\CF*@F ?QF\®F *®F"**, for n odd, 4.7
with F", =0 if n<0.
Proof. Now
n(Vo)ai (fm(Vy) ' =aj (e7f) [by(3.10)]. (4.8)
Let ¢y, oy o s W, €Hp, Ly <o0.
Then

(P a8,y 1,2
33130<W(VL_)3¢1 o P a0y 2D A

Llljlglo Y&, K)e(J's K, (I (V) (K)o 4 (w(K))/2,

im 3607, Kol K)o (00 WOV DB 0 (KN 1y (0K 2,

Im V)i oo Bt Qo i W1 2 R0/

lim <n(V)ai e (6,).- ai(0,)R, alz (w)...aiz ()2, >/4, by Remark 2.5
= Llljlgo aj (e gy)...ai (e7 )R a) (,)...a} (p)2 > by(48)

=0 if m=+n.

Thus P__F" € F',. Then by similarly considering
Tim 0 (V)07 by by Qs W 01 @0
and using (4.4) and (2.3), one gets (4.7). The theorem then follows.
We now concentrate on P_, noting that P_|.n=P|.» if n is even.
Theorem 4.3. For f<f,,
o(Plp) SLexp—2n(K} +K,), exp—2n(K* — K,)].

Then given N >0, there exists By such that for all B<Py, o(P_lgn), n=0,...,N, and
o'(PO‘0 (é}; F;;)l) are disjoint.

Proof. From (3.5) we have on Hj*:

cosh2K¥ cosh2K, —sinh2K¥sinh2K, <cosh(y; ) <cosh2K* cosh2K,
+sinh2K¥sinh 2K, ,
ie.
cosh2(K¥— K,)<coshy, Scosh2(K}+K,).

Hence for f<p, 2AK¥—K,) <y, <2K¥+K,) on Hj* S :(H'*{,-);)
—(HAZ () 4;) 18 isometric and commutes with 7, hence

2AK¥—K,)<y, <2K¥+K,) on H}E.
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Thus

— * . _ *
e 2n(K1+K2)§FZ;:(e ”)ée 2n(K1+K2)
Let x=) 1,:f:,, be a finite linear combination of Wick ordered products where

7
A €C, f=f...f,and fieH, , Ly<co. Let x, =) A, :f1,,.
Then

IxQll= lim [lx, 2]

From the proof of Theorem 4.2:
(P x8, x> = Llim CFy (7 75)x 2, x,. Q>

Hence exp[ —2n(K§ + K,)]<P_ |pn Sexp[—2n(KT - K,)].
For a(P_|¢n) to be disjoint from o(P_ |z, ) it is sufficient that (2n+ 1)K, <KT,
ie. f<p. The theorem follows.

Remark 4.4.

1 - 2K,
KT:tanh_1(8_2K1)=%10g<1_—i_z—_21<1),

so that

_ 5, 2K,
e—Z(KTiKz):(l ¢

m——m)ei”‘lw(m as f—0.

Thus Theorem 4.3 could be regarded as a strengthening of [ 14—-18] where spectra
in disjoint intervals of the type [¢,f", c,f"] were obtained.
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