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Abstract. For a large class of generalized iV-body-Schrόdinger operators, H,
we show that if E < Σ = infσess(H) and ψ is an eigenfunction of H with
eigenvalue E, then

limJR-Mnff \ψ(Rω)\2dω)i/2=-oco,
R-00 \Sn-l )

with oίφ + E a threshold. Similar results are given for E ^

I. Introduction

In this paper we will be concerned with operators of the form

H=-Δ + V(x) (1.1)

in L2(RM), where

M

V(x)=ΣΦi*)' ί1-2)

In (1.2) π is the orthogonal projection onto a subspace X. of IRn and vt is a real
valued function on X. satisfying

Vii — Δi + l)'1 is compact, (1.3)

(-Δi+iyίyVvi(y)(-Δί+iyί extends to a compact operator. (1.4)

Here Δt is the Laplacian in L2{X^ By (1.4) we mean the following: Let SfQCt) be the
Schwartz space of test functions on X. and Tt the tempered distribution given by

). Define the sesquilinear form
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on «9*(X\) x 5 φ Q . Then by definition (1.4) is satisfied if q(f g) extends to the form
of a compact operator on L2(Xf).

The set « "̂(/ί) of thresholds of the self-adjoint operator H is defined as follows:
λe£~(H) if and only if either λ = 0 or λ is an eigenvalue of some subsystem
operator, Hx, where

Hx=-Δx+ Σ K)

HereX is a proper subspace of W and zlz is the usual Laplace operator in L2(X).
In [6] the following result was proved:

Theorem 1.1. Suppose H is given by (1.1) with vi satisfying (1.3) and (1.4). Suppose
Hψ = Eψ. Define

αo = sup{α:exp(φ|)φeL 2(R' J)}.

Γften either α 0 = + oo or α2 + Ee F{H\

Under certain regularity assumptions on the potential, the possibility that
α 0 = -f oo can be eliminated. This was shown in [6, 8 ] :

Theorem 1.2. Suppose H is as in Theorem ίJ. Let v.^dimX^ and
pt = Max(Vj—1,2). Suppose either

(a) for some fc1 and b2 with bt <2

or

(b) each υteLp^ + L™(X^ and υt = v\1) + υ\2\ with (1 + \y\)v\1} eLp*QCt) + L°°pQ
and for each ε > 0,

y - Vυ^ ^ — εΔ + bε for some bε.

Suppose Hψ = Eψ with ipφO, and let a 0 be as m Theorem ί.ί. Then a 0 <oo.
addition ^(/Ouσ p # p > (JΪ)c(- oo,0].

These theorems contain upper L 2 exponential bounds of the form
||exp(α|x|)ip|| < o c ; α < α 0 . As is well known [1,2], in the presence of some
additional regularity of V this information can be converted into a pointwise
bound for the eigenfunction:

For more information about upper bounds we refer the reader to [1]. Our main
concern in this paper is the conversion of the crude L2 exponential lower bound
given by Theorem 1.1, ||exp(α|x|)φ|| = o o ; α > α 0 , into something closer to a
pointwise lower bound.

For the ground state of —Δ + V, which can be taken everywhere positive,
pointwise lower bounds of the form ψ(x)^cyQxp( — γρE(x)); γ>ί are known [4].
Here cy > 0 and ρE{x) is the distance to the origin given by the "Agmon metric" [1]
(which depends on the eigenvalue E). For other eigenfunctions, the nodal surface,
{x :ψ(x) = 0}, is in general unbounded and quite complicated so that a pointwise
lower bound for \ψ(x)\ of any consequence could not be simple.
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Let B(x;r) be the ball of radius r > 0 , centered at x, and ||V>|IB = $\ψ\2dnx. One
B

might expect lower bounds of the form \\ψ\\B(x;r)^:CyQxp( — yρE(x)); y > l , where
again ρE(x) is the distance to the origin given by the Agmon metric appropriate to
the eigenvalue E. However, this is not the case in general [8]. In particular it is well
known that even if each υt is in CJpQ, eigenvalues of H can be embedded in the
continuous spectrum of H with corresponding eigenfunctions decaying exponen-
tially in all directions. In this case ρE(x) is not even defined. The general situation is
complicated as can be seen by an analysis of examples similar to Example 4.3 in
[8]. One approach to the problem is to solve the Schrodinger equation explicitly
for large \x\. This line of attack was used by Mercuriev [11] in the three-body
problem. To illustrate the nature of the problem as we see it, we introduce some
notation and formulate a conjecture:

Let J2? be the family of subspaces of IR" which contains {0} and all subspaces of
the form Xh+...+Xh; l ^ i ^ M . For each ω e S " " 1 let X(ω) be the largest
subspace in if which is perpendicular to ω. For each X in if define

HQQ=-A+ Σ Φtx)>
{i:XiCX}

and

Sn~1 :X(ω)=X}.

It is not difficult to see that S(X) is a non-empty relatively open subset of Sn~ ιnX1.
It is thus a union of connected components, S(X,β), /? = 1,2, ...9n(X) where as is
easily seen n(X) is finite. Clearly if XΦ Y9 S(X)nS(Y) = β, and in addition (J S(X)

= Sn~K Given EelR, a function t \Sn~1-+$'{H) is said to be E-admissable if

(1) t(ω) is a threshold of H(X) for each ωeS(X),
(2) t is constant on S(X, β), and,
(3) t

Conjecture. Suppose H is as in Theorem 1.2 and Hψ = Eψ with ψφO. Then there
exists an E-admissable function, tψ with the following property. Let ρψ(x) be the
distance from x to the origin computed in the metric (ds)2 = (tψ(x/\x\) —E)\dx\2. Then
for each r>0

uniformly for ωeS"'1.

Unfortunately we are far from proving such a result. We will instead forget
about trying to prove direction dependent estimates and concentrate on obtaining
lower bounds for the average of \ψ\2 on a sphere. As was remarked in [8], if
Eφσess(H\ the average of \ψ\2 over a sphere of large enough radius cannot vanish
and thus the quantity is a reasonable one to investigate in proving lower bounds. If
Eeσess(H\ we cannot eliminate the possibility that ψ can vanish on a sphere of
arbitrarily large radius. Thus in Sect. II we prove lower bounds on the integral of
|ψ| 2 over a spherical shell, which hold for arbitrary eigenvalues E. The lower
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bounds for the integral of \ψ\2 over a sphere are then a corollary of the latter
estimates in conjunction with estimates proved in Sect. Ill concerning the
Dirichlet problem for - A + V in the region Ω(R) = {x : \χ\ >R}.

Lower bounds for the average of \ψ\2 over a sphere of radius R were proved by
Bardos and Merigot [3] for Ve C°°(O(JR0)) with lim (| V(x)\ + |x W(x)\) = 0. Their

|x|-*oo

work motivated ours. In addition our method of analyzing the Dirichlet problem
in Ω(R) (see Sect. Ill) borrows heavily from their work. However the techniques of
Sect. II come directly from [6].

The problems analyzed here are treated in greater depth in the dissertation of
Froese. In particular, it turns out that the potential vio associated with the
projection π o = / deserves special treatment. Some of the results given in Sect. II
are also true under the assumption that (1 + \x\)1/2vio(— A -\-1)~λ is compact [5]
(see also [8, 9]).

II. Lower Bounds

Our first main result involves lower bounds for the L2 norm of ψ over a spherical
shell Ω(RV R2) = {x:R1< \x\ <R2}. We use the notation

WΦ\\Ω(Rί,R2)= ( J \Φ(x)\2dnxY12

\Ω(RίtR2) I

for this norm.
M

Theorem 2.1. Suppose H=-A + Vίn L2(R") with V(x) = £ vfπpc), and that the v}

satisfy (1.3) and (1.4). Suppose Hψ = Eψ. Let

α o = sup{α:exp(α|Λ;|)φGL2(lR")}. (2.1)

(Note that α0 may be + oo.) Suppose that the positive function δ(R) does not
decrease too rapidly in the sense that

(2.2)

Then

lim R~1hi\\ψ\\Ω(R,R+δ(K))=-0ίo (2 3)

Let dω be Lebesgue measure on Sn~1. Suppose ψ and H are as in Theorem 2.1.
It then follows (see Sect. Ill) that

\ψ\R=( J \ψ(Rω)\2dω2dω)112

sn-i

is equal almost everywhere to a continuous function. It is this continuous function
to which we refer in our second main result:

Theorem 2.2. Suppose that in addition to the hypotheses of Theorem 2.1 we also
have E<mϊσeJH). Then

l i m R - 1 l n M Λ = - α 0 . (2.4)
#-•00
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Theorem 2.2 is an easy corollary of Theorem 2.1 and the following result
proved in Sect. III.

M

Theorem 2.3. Suppose H=—A + V, where V(x)= ]£ v^πpc) and the vj satisfy (1.3).

Suppose Hψ = Eψ. Then for some constant cγ and R>1,

Ivl^c^-^llvll^-i,. (2.5)

// in addition £ < inf σess(H) then for some constants c2 and Ro>0 and all R^R0,

\\ψ\\ΩiR)^c2R
n/2\ψ\R. (2.6)

We do not give the proof of Theorem 2.2 nor do we prove the simple upper
bound inherent in (2.3). Rather, the rest of this section is devoted to showing that if
α 0 <oo, then

lim MR'1 In \\ψ\\Ω{RtR + δ m ^ -oc 0 . (2.7)
R-+O0

We begin with a computation analogous to Lemma 2.2 of [6].

Lemma 2.4. Let H and ψ be as in Theorem 2.1 and suppose χ is a real function in
C^(IRn\{0}). Let A = x V + n/2 and ψα = exp(αr)ψ, r = \x\. Then χψaeD(H) and

(H-E-(x2)χψa=-2ar~1Aχψa + f(χ)i (2.8)

(χψJH-E-a2)χΨa) = Q1(χ), (2.9)

(χφa9 [H, AlχψΆ) = - 4α | |r" 1/2Aχψa\\2 + Q2(χ), (2.10)

where

(2.11)

(2.12)

(2.13)

Note that we do not assume tpαeL2(IR"). However, since χeC^(lR"\{0}), all
terms above make sense when properly interpreted. We leave the computation to
the reader (see also [5,6,8]).

Now suppose (2.7) is false. Clearly we can assume δ(R)^l. There is thus a
β >α0 and a sequence jR.f oo with R. + χ > 1 + JRf such that with Ωt = Q(Rt, Rt

Now choose α such that α o < α < β and <x2 + EφέΓ(H). [This is possible because
is countable.] Then

i « - * ) R * . (2.14)

Let ηe C°°(1R) be such that Og>η£ 1 and η(t) = O if ίgO, and η(t) = l if t^ 1. Define
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Note that since by definition of α0, \\ψa\\ = oo, we have for each

lim ||^.7.φJ| = oo.
j->co

Thus we can find j(i)>i so that with χ. = ηij{i)i

= oo. (2.15)
ΐ->oo

We now prove some simple estimates:

Lemma 2.5. Let χf = dλχi9 where λ is a multi-index with \λ\ ^ 1. Then for any y^O,

lim||r?tfy>J=O, (2.16)
i-*oo

lim||r^PψJ=0. (2.17)
i->,oo

In addition we have

K-A + VfaxpJW^constWxwJ. (2.18)

Proof. We have

so that (2.16) follows from (2.2) and (2.14). Let us now use (2.9) with χ = ryχf.
Clearly from (2.16), Qiiy

ιχf)-+O as i->oo. Since -Δfίc1H + c2, we thus have

lim || V(r->χfψJ\\ ^(const) l i m | | r ^ > J | = 0 .

Thus another application of (2.16) gives (2.17).
From (2.12) and (2.16) we have Q^/hiψJ-^O, so that from (2.9)

(2.19)

Finally note that U / ^ H / l l z ^ H O , so that from (2.8)

J|=0. (2.20)

Since ||r~Mχ,.φα | | ^ const ||χ,.ψj| by (2.19), (2.18) follows from (2.20).
Now let Ψi = χiψJ\\χiψa\\. From (2.20) we have

= 0. (2.21)

Now consider (2.10). Using Lemma 2.5 and the Schwarz inequality in (2.13), we
find

so that from (2.10)

lim {(f ί,[/ί,^]y ;) + 4α||r-1 / 2/l tf ί | |
2}=0. (2.22)
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Since (2.18) implies sup \\(-A + 1)^11 <oo, and since (-A
i

•( —zl + 1)" 1 is bounded by hypothesis, it follows from (2.22) that

sup\\r~1/2AΨi\\<(X).

Hence because suppχ ;c{x :|x|^/?,.}, we have

lim \\r-ιAΨ^ g lim KΓ 1 / 2 | | r- 1 / 2Λf i | | = 0 .
i-+oo i-*oo

Thus the important relation

E-a2)Ψί\\=0 (2.23)

follows from (2.21).
If J is any open interval containing E + α2, it easily follows from (2.23) that with

EH( ) the spectral projection for H,

l im| |(l-£H(J))*F | | = 0 . (2.24)
t"->oo

It thus follows from (2.22) that

lim sup(Ψt, EH(J) [H, A]EH(J)Ψ^O. (2.25)

We now make use of the Mourre estimate [7,12,13] which states that given
λeΈ\^{H) there is a c o >0, an open interval J containing λ, and a compact
operator Ko such that

EH(J) [H, A]£H(J) ̂  CoE^ίJ) + X o . (2.26)

Taking λ = oc2 + E and noting that *F -^U 0, (2.26) gives

l i m m f ( ^ , £ H ( J ) [ t f , ^ ] ^ ^ (2.27)

We obtain a contradiction by comparing (2.25) and (2.27). This completes the
proof of (2.7).

III. The Dirichlet Problem for -A + V in Ω(R)

For fe C%(Rn) and R > 0, consider the trace, TΛ/(ω) = f(Rω\ of / on the sphere of
radius R.

Lemma 3.1. TR extends from CQ(W) to a bounded operator from D(A) = H2(W) to
L2(Sn~\dω). If feH2(Rn), TRf (considered as an element of L2{Sn~\dω)) is
continuously differ entiable in the variable R. The following estimate holds

HTΛψlL ϊ ( S B- l i l ί ω ) = | ψ | J ι ^ R - ( - 1 ) / 2 ( | | F ψ | | έ ( J 0 + | |ψ||έ ( J l ))
1/2. (3.1)

We remark that the conclusions of Lemma 3.1 are far from optimal but we will
not need optimal results. We prove only (3.1), and refer the reader to [15] from
which a proof of the rest is easily constructed.
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Suppose φeC%(W). Then for r^R,

d
- -\φ(rω)\2=-2RQφ(rω)-φ(rω)

Integrating from R to infinity and then over S""1, (3.1) follows.

Corollary 3.2. Suppose H is as in Theorem 2.3 and Hψ = Eψ. Then for some
constant cι and R>1,

MK^R-^-^WψW^^y (3.2)

Proof. Choose ήeC^QR!1), O^f/gl, with η(t) = O if ί^ 1/2, and η(t) = 1 if ί ̂  3/4. Let
ί/Λ(x) = f/(|x| - (£ - 1)). Then since TΛφ = TRηRψ, from (3.1) and the fact that - A +1

ĉ , we have

We now use the identity ηRHηR = (l/2)(Hηl + ηlH) + {VηR)2 to conclude that

which leads to (3.2).
The remainder of this section is devoted to proving (2.6) under the hypotheses

given in Theorem 2.3. Again, these hypotheses are far from optimal (some
improvements are given in [5]). In order to avoid complications in intermediate
stages of the proof we prove (2.6) under the additional hypothesis that Vjβ C^{Xj).
Inequality (2.6) follows for general Vj by an approximation argument: First
approximate [7,10,16] vj by D^eCJpΓj) so that the corresponding F ^ satisfies
| |(0m ) - V) (- Δ +1)~11| -•0. It is easy to prove that there is an eigenfunction φ(m) of
H(m)= -A + F<m) with eigenvalue Eim)-±E such that

lim ||(-zl + l)(ψ ( w ) -φ) | |=0. (3.3)
m->oo

From the result for v^C^QC), it follows that

llin(m)ll <r Rn/2\υ^mM Π 4λ
WΨ lίΩ(K) = C 2 i ^ \Ψ IR W ^J

for R^R0. From (3.1)

so that from (3.3), \ψ{m)\R-+\ψ\R. Thus (2.6) follows from (3.4) as long as c2 and Ro

can be taken independent of m. This will be evident in what follows.
We will follow a strategy similar to that of Bardos and Merigot [3].

Presumably a Brownian-motion argument like that of [2] would also work.
00

Given a C00 function φ on Sn~ \ φ has an expansion φ(ω) = Σ \(ω)> where Yk
fc=0

is a spherical harmonic satisfying AsYk= -k(k + n-2)Yk, and where Δs is the
spherical Laplacian [17]. [For n = ί take Sn~1 = {ί, -1}, dω = δ(ω +1) + δ(ω- 1),
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Y0(ω) = (φ(l) + φ(-l))/2, Yί(ω) = (φ(l)-φ(-l)ω/2, and Yk = 0 if k>ί.~\ The oper-
ator $ given by

Sφ{rω)= Σ Yk(ω)(r/R)2-n~k; r^R (3.5)

defines a function on Ω(R) where it is harmonic. Clearly iφ(Rω) = φ(ω).

Lemma 3.3.

Proof.
3R oo 3R / γ\4-2n-2

f (J|^0(rω)|2dω)rπ"1dr= £ J i\\Yk\
2dω) - r"" 1 ^

R fc=O R
00

We are now ready to deal with H = - A + V9 Ve C^IR"). Suppose Hip = Exp with
= inΐσess(H). It follows from [1] and [14] for example, that there exists an

Ro>0 so that if R^R0, (φ,(H-E)φ)^(Σ-E)(φ,φ) for all φeC%(Ω(R)). The
closure of this quadratic form is associated with a positive self-adjoint operator
HR — E with form domain HQ(Ω(R)). (HR is just — ΔD+ V with ΔD the Laplacian
with Dirichlet boundary conditions on δΩ(R). Hl(Ω) is the closure of CQ (Ω) in the
norm (||F</>||2+ ||0| |2)1 / 2.) We have

| | ( H Λ - £ ) " 1 | l ^ c = [ i ( 2 ; - £ ) ] - 1 . (3.7)

Furthermore the operator (HR — E)~XV extends from CQ(ΩR) to a bounded
operator on L2(Ω(R)) and

(3.8)

(3.9)

where X7 is independent of R^R0. {Kj can also be chosen independent of m in iί ( m )

= - A + F<m).)
Now suppose R>R0 and let u = STRxp. From Lemma 3.3

(3.10)

Note that since FeC°°(lR"), the elliptic regularity theorem tells us that

\\Ω(R,3R) "This means that T ^ e C 0 0 ^ " " 1 ) , and thus looking at (3.5), \\d"u\\Ω{R 3R)<oo for

any α.
Define fΛ(χ) = ξ(\x\/R), where ξeC°°(R) satisfies O^ξ^U ξ(r) = O for r ^ 3 , and

ξ(r) = l for r^2 . Define

t; = ( H i , - £ ) - 1 ( - ( F - £ ; ) ^ + 2 P ^ . ^ + ( z l ξ » . (3.11)

From (3.7) through (3.9) and the uniform boundedness of || \VξR\ + \AξR\ ||Loo(βR), for
R > Ro, we see that
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Thus

We now show that ψ = ξRu + v on Ω(R). This will complete the proof. Let
f = xp — ξRu — v, and note that as a distribution ( — A + V— E)f = 0 in Ω(R). (This
computation is straightforward.) From (3.11), veD(HR)CHQ(Ω(R)). Since u(Rω)
= ψ(Rω\ we have that the function ψ — ξRu vanishes on dΩ(R). In addition
d\ψ-ξRu)eL\Ω{R)) for all a. It easily follows that ψ-ξRueHl(Ω{R))9 and thus
that feH1

0(Ω(R)) = D({HR-E)1/2). This fact and the fact that {-A + V-E)f = 0 in
Ω(R) as a distribution imply feD(HR) and (HR-E)f = 0. Since HR-E>0, / = 0.
This completes the proof of (2.6).

Acknowledgement. One of us (I. H.) would like to acknowledge a useful conversation with Richard
Lavine.
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