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Abstract. The Markov partition of the Sinai billiard allows the following
heuristic interpretation for the Lorentz process with a ^-periodic con-
figuration of scatterers: while executing a (non-Markovian) random walk
on 2£2, the particle changes its internal state according to the symbolic
dynamics defined by the Markov partition. This picture can be formalized and
then the Lorentz process appears as the limit of a sequence of (Markovian!)
random walks with a finite but increasing number of internal states and the
central limit theorem can be proved for it by perturbational expansions with
uniformly bounded - in a sence related to the Perron-Frobenius theorem -
coefficients and uniform remainder terms.

1. Introduction

In [K-Sz (1983)] the authors of the present paper proved a local central limit
theorem for random walks with internal degrees of freedom (RWwIDF). These
generalizations of the classical random walks had been introduced and studied by
Sinai [S (1981)] in the hope they would help in understanding the Lorentz process.
As a matter of fact, Gyires [Gy (I960)], in his studies on Toeplitz type
hypermatrices, proved a local central limit theorem closely related to the theorem
of [S (1981)]. His paper refers to a remark of Renyi, who also found a probabilistic
interpretation of Gyires' result, namely just in terms of random walks with internal
states (cf. also Gyires [Gy (1962)]). Our aim here is to justify Sinai's approach.

In fact, we give a new proof for the central limit theorem (CLT) obtained by
Bunimovich and Sinai [B-S (1980)] for the Lorentz process with a periodic
configuration of scatterers. At the price of having worked out a sort of uniform - for
a family of matrices - perturbation theory, our arguments are simpler and they
require less calculations. Moreover, we could immediately obtain more exact
results, namely Chebyshev-Edgeworth-Cramer type asymptotic expansions in the
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spirit of [B-R (1976)] but, for brevity, we do not discuss this automatic
generalization of our result. Since our proof, too, relies upon the properties of the
Markov partition of the Sinai billiard constructed by Bunimovich and Sinai [B-S
(1981)] we should also suppose the finiteness of the horizon.

We obtain the CLT for the Lorentz process by approximating it with a
sequence of RWwIDF, which have an increasing number of internal states - this is
the main technical difficulty!, and by showing that the CLT is valid for them, in a
sense, uniformly. We adapt the tools of [K-Sz (1981)]: perturbation theory
combined with the Perron-Frobenius theorem, to this situation. Namely, in Sect. 2
we introduce the notion of majorization of a matrix by a matrix with non-negative
elements. In Sect. 3 we show that, if the coefficients of the Taylor expansions of a
family of matrices are majorized by a family of non-negative matrices, then, under
some additional conditions, this remains true for the corresponding families of
resolvents and, consequently, for other important characteristics, too. This enables
us to uniformly bound the remainder terms in the perturbation series and, in
Sect. 4, to prove our main theorem, a CLT for a family of RWwIDF. The
application to the Lorentz process is described in Sect. 5. Finally, Sect. 6 gives
some comments.

2. Some Facts about Matrices

The set of all eigenvalues of a matrix T will be denoted by spec(T).

Definition 1. The radius ρ(Γ) of the set spec(T) is called the spectral radius of the
operator T, i.e.

) = max|Λ,|,

Statement 2. ρ(Γ) = limsup ||T"||1/n, moreover, if A1A2=A2Aί, then
-

Definition 3. Let Q = {qjk} be a matrix with non-negative elements. The complex
matrix A = {ajk} is Q-majorized iff \ajk\^qjk for every j and fe.

The following lemma is a substatement of Wielandt's lemma, often used in the
theory of matrices with non-negative elements.

Lemma 4. // A is Q-majorized then ρ(A)^ρ(Q).

Corollary 5. // A is majorized by a positive multiple Q of a stochastic matrix (i.e. Q
has the vector i = (l, ...,1) as an eigenvector) then
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Remarks, a) If a matrix Q is a positive multiple of a stochastic matrix, then any
matrix with non-negative elements, interchangeable with Q has this property.

b) M + B| | r o gMI| β u +||ΰ | | s u p ,so || | | . u p isanorm.

Lemma 6. // Ai is Q±- and A2 is Q2-majorized, respectively, then AVA2 is Q1Q2-
majorized.

3. Uniform Perturbations of Families of Matrices

First we recall some facts on the perturbation theory of matrices, which can be
found in standard textbooks (cf. e.g. [K (1966), Chap. II, Sect. 1]). Since the proof
of the CLT for the Lorentz process is based on the local behaviour of families of
matrix functions described below, we have to study perturbation theory uniformly,
when the size of the matrices increases.

Let us assume that T(κ) is an ft-times differentiable matrix-function depending
on a complex vector-valued parameter κ = (κ19 ...,κd) - this means that

where ||B(ιc)|| = 4\\ κ\\n\
If \\B(κ)\\=(9(\\κ\\n+1\ we shall say that T(κ) is n times differentiable in the

strong sense.
The main object of perturbation theory is the investigation of the dependence

of spec(T(κ:)) and of the eigen-projections on K. For our purposes, the most
convenient way is to use the Sz.-Nagy-Kato integral formula

Statement ί. If /lCspec(T), then the projection PA onto the maximal invariant
subspace of T belonging to A (i.e. PΛPΛ = PΛ, PΛT=TPΛ, spec(PΛT) = A and
dim(P^R")^dim(P]Rn), if P satisfies the preceding three conditions) can be
represented in the following integral form

-ζIΓldζ, (3.1)

where / is the identity operator, Γ is a closed contour surrounding A and
containing no eigenvalues from spec(T)\Λ

Rτ(ζ) = (T—ζI)~1 is called the resolvent operator of T. Rτ(ζ) exists for every

Lemma 2. Rτ(κ)(ζ) is holomorphic in ζ if
(i) ζίspec(T),

(ii) ρ(Rτ(ζ)A(κ))<L

Proof.

(TM-Q-^α + ̂ CMW)-^^). (3.2)

The inverse operator on the right hand side exists due to (ii).
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Definition 3. Suppose Q(v} is a family of v x v matrices with non-negative elements.
The family {Ί*v\κ)} of v x v matrix functions has uniform Taylor expansion up to
the nih order with respect to the family {β(v)} iff there exists a 9>0 and a function
εn(κ) ίεn(κ)>0, limεn(κ) = 0] such that, for every \\κ\\ <«9

k = l
Jί + ...+jd = k

where the matrices A(£ jd ana B(v\κ) re <2(v)-majorized.
If the remainder term is εn(κ)\\κ\\n+iB(v\κ), where εn(κ) is bounded, then we say

that the family {T^fc)} has α uniform Taylor expansion up to the nth order in the
strong sense. The forthcoming statements can be extended to hold in the strong
sense, too, but, for brevity, these extensions will not be formulated.

Lemma 4. Let us assume that the family {T*v)} possesses the following properties
(i) T(v) are operators with non-negative elements;

(ii) C0 is a simple eigenvalue of every 7Xv)

(iii) there exists a neighbourhood |C0 — ζ\<δ of C0 such tnat tne operators Γ(v)

have no other eigenvalues in it.
If the family {T(v)(?c)} = {7Xv) + A(v\κ)} has a uniform Taylor expansion up to the

0th order at the point κ = § with respect to the family {T*v)}, then the family

{Rτ(v)(κ)(Q}, for δ>\ζ — C0 |> -, has a uniform Taylor expansion, too, up to the 0th

order at K — 0 with respect to a universal in ζ family {Q(v)}, where Q(v) and 7^v) are
interchangeable, and there exists a constant D depending only on δ, such that

))^e(^v)) Moreover, the radius 9' of the Taylor expansion of <Rτ(v)(κ)(ζ),

— ζ0\<δ> depends on that of {T(v}(κ)} (i.e. on 9) and δ, only.

Proof. The statement of the lemma is a straightforward consequence of formula
(3.2) and the fact that rational functions of a given operator are interchangeable.

Lemma 5. // the family (T(v)(κ;)} satisfies the conditions of Lemma 4 with the
modification that it has a uniform Taylor expansion up to the nth order, then the
family {jRΓ(v)(κ)(C)} possesses a uniform Taylor expansion, too, up to nth order with the
same properties as in Lemma 4.

Proof. The proof can be carried out by induction using the resolvent formula

Using formula (3.1) one can obtain the following consequence of the preceding two
lemmas :
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Corollary 6. // the family {T(v\κ)} satisfies the conditions of Lemma 5, then there
exist two positive numbers δ1 and $' depending only on δ and 3 such that for \\κ\\ <&',

(i) in the neighbourhood |£0 —ζ|<<5 1 ? 7π(v)(κ) has only one simple eigenvalue

(ii) ζ(v)(κ) has a Taylor expansion of the form

Co+ Σ α;I....jX
I-'eίd+ll'

II JW) - *W> II sup ̂  const 1| Q<" I! Supε0(κ) .

Remark. Property (ii) comes from the following inequality

k=ί

(33)

4. An Infinite Family of Random Walks with Internal Degrees of Freedom

The objects which we intend to apply the results of the preceding paragraph to
were introduced in [K-Sz (1981)]. Here we briefly repeat their definitions.

Definition 1. Let ξ(v\t) = (//%), ε(v)(ί)) fo(v)(f)eZd, e ( v )(ί)e{l,...,v}) be a Markov
chain with the following transition probabilities

ξ(v\t) is a random walk with v internal degrees of freedom.

Set

ί/7 ( v )fτϊ) =O(V}(X]
Wj/c W / ( j , f c = l , . . . , v ) V£ V Λ /

For our purposes it will be convenient to work with the nv

th power of Q(v)(x),
where n^is a sequence of natural numbers; rcv-»oo.

Set Q(v\x) = (Q(v\x})nv. The elements of Q(v\x) will be denoted by q. k(x).
Set

M{v)= Σ xβ(v\x)>

where xt is the /th co-ordinate of xeΊLd.

Condition 2 (Finite Horizon). There exists a constant ^(^1) such that
for all ||



524 A. Kramli and D. Szasz

Condition 3 (Ergodicity and Doeblin Condition). The stochastic matrix

6(v) = Σ 6(V)M is irreducible and aperiodic, so there exists a unique stationary
xe1d

vector μ(v) :(g(v))*μ(v) = μ(v). Moreover, there exists a positive number δ, such that,
for every v, Q(v} = (β(v))"v has the only eigenvalue 1 outside the region \ζ\<l — δ.

Condition 4 (Centralization)

where l(v) = (l,...,l)eR v

Set α(v)(/c)= Σ Q(v\x)ei(x'*\ the Fourier-transform matrix of Q(v\x). Then
xeZd

α(v)(τc) = (α(v)(κ;))"v is the Fourier transform of Q(v\x).

Proposition 5. The family {α(v)(/c)} satisfies the conditions of Lemma 3.5^ and
Corollary 3.6 (in the strong sense, too) with the majorizing sequence {{nfflnQ(v}}.

Proof. The proposition follows from Conditions 2 and 3 taking the Taylor
expansion for the nv

th power of the Fourier-transform matrix α(v)(/c). Moreover,
Corollary 2.5 provides that the coefficient of εn(κ) in Statements (ii) and (iii) of
Corollary 3.6 has the order Θ(n*).

Proposition 6. Set λ(v}(κ) the largest eigenvalue of α(v)(κ;). The Taylor expansion of
λ(v\κ)for \\κ\\ <$' looks like

||3), (4.1)

where σ(v) is a d x d matrix and Θ(\\κ\\3) is uniform in v.

Proof. By using Proposition 5, formula (4.1) can be deduced from the centrali-
zation condition by Schrodinger's implicit method (cf. e.g. [F (1965)]). Here we do
not repeat the detailed considerations of [K-Sz (1981)]. The matrix σ(v) takes the
form

which has the probabilistic meaning :

v
ί-^oo t nv

where rf\t) is the /th co-ordinate in TLά of η(v}(t) and the expectation is taken with
respect to the measure <50 x®μ(v),
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The uniformness of 0(||κ:||3) is a consequence of Proposition 5.
Now we are in the position to formulate the main result of this paper.

Main Theorem. // besides Conditions 2-4 lim σ(v) = σ and n* = #(i) hold, too, and
v —*• oo

Prob(£(v)(0) = (0,j)) = μy° (μf is the fh co-ordinate of the stationary distribution
vector μ(v)Λ then the distribution of t~ll2η(v\t) tends weakly to the d-dimensional
Gaussian distribution ]V(0, σ).

Proof. The modification to our case of the standard proof of the CLT (cf. proof of
Pre-Theorem 2.1 in [K-Sz (1981)]) says that we only need the convergence

lim
f->00 v yt

for any ω > 0.
In view of (P(O)ί, μ) = 1 the decomposition

=ι+ιι+m+ιv
will be suitable to prove this convergence.

Since |(v4i(v), μ(v)| ̂  Ml|sup, Taylor expansions with remainder terms of the type
(3.3) can be used.

The equation
~~ ί

κ\ —
nί K \V

α(v) M _#(v)

(yd) -a

ί ( κ \\makes it possible to apply Proposition 6. Thus the largest eigenvalue of α(v) —=11
has the expansion ^ ^ Vtl

The assumption n* = #(t) ensures that the remainder term tends to 0 as ί-»oo
uniformly in v and in \\κ\\<ω (ω is arbitrary), thus showing that the integral

corresponding to III tends to 0. Moreover, α(v) — is g'-majorized for every K
\ \ ytll

and by Lemma 3.5 (see also Corollary 3.6) P(κ) — P(0) is (const ε0(κ;) 0-majorized,

if || fc | | <θ'. Thus, by Lemma 2.6, KV -
\ytll \

-
yt

is (const ε0(κ) βί+1)-
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majorized. Now Corollary 2.5 implies that

Wconst e0

uniformly for < θ'. Consequently, the integral corresponding to II tends to 0
V*

as ί-»oo. Finally, I vanishes by the definition of P(0) and the bound (iii) of
Corollary 3.6 applies to IV.

5. Application to the Lorentz Process

First we summarize the necessary information on the Lorentz process. There is
given a periodic set of disjoint, strictly convex, closed scatterers on the Euclidean
plane. We assume that the congruent finite sets (£f) of the scatterers are labelled by

A point particle moves uniformly among the scatterers with elastic collisions at
the scatterers. We suppose that the free path length is bounded. It is convenient to
discretize the time and to study the Poincare map of the original continuous time
process. This map 2Γ is defined on the two-dimensional phase space Ω= \J &x

xeZ2

= \J boundary (^)(x) angle (in the moments of reflections).

This map βΓ has an invariant measure, periodic with respect to TL2. It has the
form μL = δ® μ, where δ is a uniform measure on TL2 and μ is a normed measure on
&Q. We suppose that the particle starts from ^0 with the initial measure μ. The
motion of this particle is called (the discretized) Lorentz-process.

Let 9Jl0 = {5olJ...,βofc,...} be a countable, measurable partition of ά?0. Wlx

= {Bxl, ...,Bχ f c,...} denotes the congruent image of 9J10 on ά?x. We can associate a
symbolic dynamics ξL(t) to 2Γ acting on (J SOt̂ . /the union of partitions $RX on

IJ e^Λ as follows: for μL almost every ωeΩ ξL(t) = (xJ) <=> ^ωeBxj. /We
X6Z2 / \

suppose that (J 9Jlx is a generating partition for ̂ , i.e. the above correspondence

is μL-a.e. uniquely defined^

Roughly speaking the symbolic dynamics ξL(t) — (nL(t\ cL(t)) can be regarded as
a (non-Markovian) random walk with countably many internal degrees of
freedom.

Let us introduce some further notations:
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(\f denotes the refinement of partitions.) Analogously to ζL(t) the partition

(J 2R" defines a symbolic dynamics ξn

L(t) as follows :

where Bn

x j eSOl". (The reader should be cautious : though ηn

L will approximate ηL in
some sense, εn

L has only auxiliary character.)
Let {Bn

01,...,B
n

0v} be a finite family of sets belonging to ΪR£ and let
{5"1? ...,#"v} be its congruent image on &x (v will depend on n which will
correspond to the notation nv of Sect. 4).

The transition probabilities

VMI® = (y> k))n(ξ»L(t - 1) = (x, j)))

* J Σ Σ
(yeZ2 k=yeZ2 k = l

define a random walk ξ(v)(ί) with v internal degrees of freedom.
Let P(v)( ) denote the stationary measure for ξ(v}(t) whose unicity follows from

the nice properties of the Markov partition W10. In fact in B-S (1981)] it is proved
that

(i) For every n we can choose an appropriate family {Bn

01, ...,B
n

0v}cWln

0 in
such a way that

£ \pM(ξV(τ) = ( - Jt), 0 ̂  τ g f ) - μL(ξn

L(τ) = ( ,;τ), Q^τ^t)\£tλn, (5.1)

where 0<λ<l.
(ii) The sequence of random walks ξ(v\t) satisfies Conditions 4.2-4.4 with nv

= 4n, v = nn.
(iii) For some 0<α<l,

t)\^ const e~tX-

Corollary of the Main Theorem. For the Lorentz process introduced in the beginning
of this section the distribution of t" 1/2ηL(t) tends to a non-degenerate Gaussian one.

Proof. Choose n = t1/5 and v = n". Then, by Statement (i), ηL(t) can be approximated
by a family of random walks with v internal degrees of freedom satisfying
Conditions 2-4 and the error is less than tλtl/5. To apply the main theorem we
should only check the condition lim σ(v) = σ. But it is a consequence of (iii), the

v-> oo

Doeblin Condition formulated for ζ(v\t) and the inequality (5.1).
The non-degeneracy of the limit distribution can be proved by standard

methods of ergodic theory (cf. [B-S (1981)]).

Remark. Property (iii) itself can be derived simply from (5.1) and the Doeblin
condition formulated for ξ(v\t).
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