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Abstract. Cauchy problems for Einstein's conformal vacuum field equations are
reduced to Cauchy problems for first order quasilinear symmetric hyperbolic
systems. The "hyperboloidal initial value" problem, where Cauchy data are
given on a spacelike hypersurface which intersects past null infinity at a spacelike
two-surface, is discussed and translated into the conformally related picture. It is
shown that for conformal hyperboloidal initial data of class Hs, s ̂  4, there is a
unique (up to questions of extensibility) development which is a solution of the
conformal vacuum field equations of class Hs. It provides a solution of Einstein's
vacuum field equations which has a smooth structure at past null infinity.

1. Introduction

In contrast with the field equations of other gauge theories Einstein's field equations
are not conformally invariant: rescalings of the metric create Ricci curvature.
However, important substructures of the field and the field equations, the conformal
Weyl tensor and the vacuum Bianchi identity, written as an equation for the
rescaled Weyl tensor, are conformally invariant. It is this very particular behaviour
of the field equations under conformal rescalings which allows one to impose
conditions on the global conformal structure of the field without restricting the
freedom to prescribe asymptotic initial data for the field. Global conditions of this
type are inherent in Penrose's concept of an "asymptotically empty and simple
space-time" [1]. The essential idea is to stipulate for a given space-time (M,gμv)
the existence of a surface ,/ such that M = Mu</ forms a manifold with
three-dimensional boundary J> and on M the existence of a function Ω such that
Ω > 0 on M; Ω = 0, dΩ ± 0 on J> and such that gμv = Ω2gμv extends to a smooth ("non-
physical") Lorentz metric on M. Further global requirements imply that J consists
of two components J~ respectively ,/+ ("past respectively future null infinity")
each being diffeomorphic to R x S2. The appropriateness of the fall-off conditions
implicit in these assumptions was suggested in particular by preceding in-
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vestigations of the field equations and the radiative behaviour of gravitational fields
by Bondi et al. [2], Sachs [3], Newman and Penrose [4] and others. These authors
studied formal ("Bondi-type") expansions of the field to analyse what in retrospect
may be called the "asymptotic characteristic initial value problem" [5]. Their results
implied in particular that the conditions of "asymptotic flatness at null infinity" as
introduced by Penrose fix a metrical structure at null infinity similar to that of
Minkowski space while retaining essentially the same degree of freedom to prescribe
data on past null infinity and on an incoming null hypersurface as one may dispose
of in the case of the regular characteristic initial value problem, where data are given
on two intersecting null hypersurfaces (which are thought of being embedded in
space-time). As a further outcome of their investigations the authors above were able
to formulate various notions of physical significance like "radiation field," "Bondi-
mass," etc. which found their natural place in the concept of asymptotically empty
and flat space-times. For these reasons and because of its technical simplicity and
elegance, Penrose's idea was taken as a starting point for further investigations of the
asymptotic behaviour of various fields. It entered the discussion of diverse global
issues, and provided a basis for a variety of considerations concerned with the
relation between quantum field theory and general relativity.

While the differential geometric properties of asymptotically flat spaces are
well understood, basic questions concerned with the interplay of the global
conditions imposed by asymptotic emptiness and flatness and the requirements
of the field equations are still open:
—What is the structure of the sources which are compatible with the existence of
a smooth structure at null infinity?
—Given a field with a smooth past null infinity, under which conditions will it
evolve such as to develop a smooth future null infinity?
—What is the relation between past and future null infinity?

Problems of this type cannot be investigated by analysing Bondi-type ex-
pansions, and considerations concerning these and related problems which involve
approximation methods are plagued by conceptual difficulties and lead to
conflicting results [6-8]. On the other hand the rigorous methods developed in
the study of the standard Cauchy problem for Einstein's equations seem at present
not capable of dealing with any questions concerned with the existence or the
detailed structure of null infinity.

A recent analysis of the formal structure of Einstein's vacuum field equations
showed, however, that these equations retain just sufficient conformal invariance
as to imply well posed initial value problems on initial surfaces which comprise
part of null infinity. This result is due to the concurrence of two distinct properties
of the field equations [5,9,10]:
—There exists a technique to reduce initial value problems for the field equations
of gauge theories on a given spacetime to initial value problems for "symmetric
hyperbolic systems" [11]. By writing Einstein's vacuum field equations as a first
order system for a frame field, the connection coefficients, and the Weyl tensor
such that they look similar to other gauge field equations, this technique applies
in particular to Einstein's equations. Here geometrical gauge conditions for the
coordinates and the frame are used instead of the "harmonic gauge" which so far
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was basic for all rigorous existence proofs for initial value problems in relativity
[12].
— Instead of studying pairs (M,gμv) with gμv satisfying Einstein's equations, one
may work completely in terms of the nonphysical quantities (M,gμv,Ω) such that Ώ,
gμv satisfy the "conformal vacuum field equations"

considered as differential equations for Ω and gμv. The equation for Ω thus obtained
as well as the equation for gμv, however, degenerate where Ω vanishes. But if this
system is written in a fashion similar to that indicated for the vacuum field equations
before, it turns out that by some identity it can be represented by a new system which
is formally regular everywhere, even at points where Ω vanishes.

These two facts work together such that initial value problems for the new
system can be reduced to initial value problems for symmetric hyperbolic systems.
The freedom to prescribe Cauchy data for the conformal factor on the initial surface
is sufficient to take care of Penrose's conditions at past or future null infinity.

This result shows that Penrose's requirements on the asymptotic behaviour of
the field near past or future null infinity are in perfect agreement with the properties
of Einstein's vacuum field equations. Furthermore it follows that not only
differential geometric investigations of the asymptotic behaviour of the field may
be carried out in terms of local differential geometry if asymptotic conditions are
formulated as requirements on the conformal structure, but also some global
questions concerning the propagation of the field may be studied in terms of local
initial value problems.

The regular representation of the conformal vacuum field equations has been
used to reduce the asymptotic characteristic initial value problem, where data are
given on part of past null infinity and on an incoming null hypersurface which
intersects null infinity at a spacelike two-surface, to a characteristic initial value
problem for a symmetric hyperbolic system [9]. Thus the properties of past null
infinity are built into the problem from the outset. Applying a modified
Cauchy-Kovalevskaja technique to the system obtained, one finds that all
Bondi-type expansions for arbitrary analytic data are in fact convergent and define
analytic solutions of Einstein's vacuum field equations which are asymptotically
flat at null infinity [13]. The formulation of the problem, however, is designed to
serve also as a basis for an existence proof for initial data of low differentiability.

One may try to find some answer to the first of the problems mentioned before
by extending the data surface which propagates from past null infinity into space
time as far as possible to connect it to an inner solution. However, now a difficult
problem arises. The null hypersurface will inevitably start to develop caustics and
selfmtersections. The location of these depends on the data, which, however, must
not be given in the future of caustics or selfintersections. The analysis of this
problem leads to a complicated system of singular partial differential equations
[14] which makes it difficult to decide whether the solution constructed near null
infinity connects at all to some inner solution.
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To circumvent the difficulties posed by the occurrence of caustics, one may
consider Cauchy problems for the conformal vacuum field equations. There are
essentially two distinct types of Cauchy problems which can be posed in an
asymptotically empty and flat spacetime.

One of these is the "hyperboloidal initial value problem" which will be
investigated in this paper. To control what comes in from the infinite timelike past
one may prescribe Cauchy data on a spacelike hypersurface S which intersects
past null infinity at a spacelike two-dimensional surface Z. Since in Minkowski-
space hypersurfaces of this type are provided by the spacelike hyperboloids, these
surfaces and the Cauchy data implied on them will be called "hyperboloidal." The
corresponding Cauchy problem for Einstein's field equation will be called the
hyperboloidal initial value problem. As a solution of this problem one will obtain
part of the domain of dependence of the initial surface S. The past Cauchy horizon
will coincide with a part of past null infinity near Z and the future Cauchy horizon
N will be given near Z by the null hypersurface extending from Z orthogonally
to Z into space-time. A more detailed description of this situation will be given
in Chap. 2 and its complete translation into "non-physical" terms will be obtained
in Chap. 4. In Chap. 6 it will be shown that for sufficiently smooth hyperboloidal
initial data there exists a unique (up to questions of extensibility) solution of the
hyperboloidal initial value problem (Theorem (6.5)). The solution is obtained by
working entirely in terms of the non-physical quantities. The corresponding initial
value problem for the conformal vacuum field equations is formulated in
Chap. 3,4,5 as a Cauchy problem for a symmetric hyperbolic system. The solution
of the hyperboloidal initial value problem provides the "correct" data on N for
the asymptotic characteristic initial value problem.

In the second type of Cauchy problem, which will not be considered in detail
in this paper, data are prescribed on a space-time Cauchy surface. The interest in
this problem here arises not so much from the possibility to derive, with the
methods introduced in this paper, existence theorems similar to those already
available [12,15-17], but from the prospect that an analysis of this problem in
terms of the conformal field equations may help to eludidate the relationship
between past and future null and spatial infinity. The structure of spatial infinity
consistent with the requirements of the field equations has been investigated in
the context of the standard Cauchy problem, in particular in the study of the
constraint equations [18,19], see also the literature given in [15]. Christodoulou
and O'Murchandha [17] extended the domain of validity of preceding con-
siderations on spatial infinity by proving the existence of developments of
asymptotically flat (at spatial infinity) initial data which include complete spacelike
surfaces boosted relative to the initial surface. In spite of this result it still seems
difficult to obtain any statements on the existence of (a smooth structure at) "null
infinity" in this treatment of the Cauchy problem. Beig and Schmidt therefore
studied Einstein's equations near spatial infinity by techniques reminiscent of
Bondi's approach to null infinity [20]. Ashtekar and Hansen [21], see also [22],
arguing mainly from a geometric point of view, suggested a unifying picture by
introducing the notion of an "AEFANSI" spacetime. This allows discussion of the
relationship of the different asymptotic regimes. It imposes, in terms of the
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conformal structure, conditions on the asymptotic behaviour of the field on
spacelike surfaces as well as global conditions on the propagation of the field. It
appears natural to study the propagation near spatial infinity in this context by
analysing further the conformal field equations as formulated in Chaps. 3,4, 5.

2. The Hyperboloidal Initial Value Problem

If a solution (M,gμv) of Einstein's field equations possesses a "smooth structure at
null infinity." this is essentially uniquely determined by the conformal geometry
of (M,#μv) [23-25]. Nevertheless it may be quite difficult to decide for a given
spacetime whether it has this property and to describe it explicitly in terms of
(M,gμv). On the other hand, in the formulation given by Penrose [1] theoretical
questions concerning properties of null infinity are easily analysed in terms of the
"non-physical quantities" (M,#,Ω), which are available by definition. In the initial
value problem which will be discussed here, part of the desired structure of null
infinity will be built in from the outset. This can be done most conveniently by
formulating the problem immediately in no n- physical terms.

The type of spaces which are to be constructed are characterized by

Definition (2.1). A triple (M,gμv,Ω) is called an "asymptote of a solution of Einstein's
vacuum field equation which is asymptotically flat at past null infiniy" if

i) M is a four-dimensional manifold with boundary </", J~ is diίfeomorphic
to U x §2.

ii) gμv is a Lorentz metric on M, (M,#μv) is time- and space-oriented and strongly
causal.

iii) Ω is a function ("the conformal factor") on M with:

Ω>0 onM = M\j?~ι Ω = 0, dΩ^Qonj?-.

iv) J ~ is a null hypersurface with respect to gμv in the past of M .
v) The metric gμv = Ω~2gμv, defined on M, satisfies Einstein's vacuum field

equations

*,v[0;J=0. (2.1)

Here, as in the first five chapters, all structures are required to be "sufficiently
smooth"; only in Chap. 6 more detailed smoothness conditions will be formulated.
In the preceding definition only those consequences of Penrose's definition of
"asymptotic empty and simple space-times" have been required, which will be
needed in the following. The surface J~ represents "past null infinity" of the
space- time (M,gμv). Questions concerning the existence of a smooth structure at
future null infinity will not be considered. Condition (iv) in fact follows from (v)
and smoothness requirements. However, (iv) has been added to the list, since later
(M,gμv,Ω) will be constructed by solving (2.1), while initial data on some surface
which carry information on (iv) will be given. It can be shown that the conformal
Weyl tensor Cμ

λpδ of gμv, which is on M identical with the Weyl tensor of gμv,
must vanish on J>~ [1]. Hence it may be assumed that the rescaled Weyl tensor
dμλδP

 ==Ω~1Cμ

λδp is smooth everywhere on M. This is important for the regularity
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of the solution of the conformal vacuum field equations in their representation
discussed in Chap. 3.

To provide the type of initial surface we will be interested in, in addition to
(i-v) the space (M,g v) is required to satisfy:

There is a spacelike hypersurface S oϊ(M9gμv)
with two-dimensional boundary Z, which inter-
sects J>~ at Z. The hypersurface S is diffeomorphic
to the closed unit ball in [R3, whence Z is diffeo-
morphic to the sphere §2.

(2.3)

By (v) Eq. (2.1) is required to hold everywhere on S. Though this situation is of
interest in itself, in many applications one will rather have sources present with
compact support in S\Z, and (2.1) will only be required to hold in a certain
neighbourhood of «/". Besides the difficulty of providing suitable initial data, the
crucial problem will be to solve the propagation equations implied by (2.1) near
J~ . Away from J~ the field equations can be solved by the standard method of
employing a harmonic gauge condition. On S = S\Z the metric gμv implies the first
fundamental form KΛβ and the second fundamental form χΛβ, i.e. an "initial data
set" [15] (8,KΛβ9χΛβ) for Eq. (2.1) (here and in the following indices μ,v,λ,...,
referring to some coordinate system on M, take values 0,1,2,3, while indices
α,β,y,..., referring to some coordinate system on S, take values 1,2,3; the
summation convention is assumed for both sets of indices). These initial data will
determine a solution of (2.1) uniquely only in the domain of dependence D(S) of
S in M with respect to gμv (see [26] for this and related causal notions). In fact,
any spacelike hypersurface obtained by a continuous deformation of S, which
intersects «/" at Z will determine the same domain of dependence as S. Replacing
M if necessary by a suitable neighbourhood of S in M, the future Cauchy horizon
N of S will be a smooth null hypersurface diffeomorphic to Z x [R+ starting at Z
orthogonally to Z into the spacetime M, while the past Cauchy horizon / of S
will be the past of Z in «/" and again be diffeomorphic to Z x IR + . The surfaces
intersect each other at their common edge Z. The manifold with boundary and
edge D(S) thus looks like two truncated cones D+(S\ D~(S} (the future respectively
past domain of dependence of S) glued together at their common base S. The
situation may be illustrated by the following example.

Written with respect to polar coordinates the Minkowskian line element takes
the form

where dω2 denotes the standard line element on the two-dimensional unit sphere.
Denote by H the spacelike hyperboloid { — ί2 + r2 = — 1, ί < 0}. For the first
respectively second fundamental form Kaβ respectively χΛβ on H one has χaβ = — KΛβ.
The domain of dependence of H in Minkowski space is given by the interior of the
past light cone at the origin. By performing the coordinate transformation

t'-r'
= tan — - — , t - r = tan
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and rescaling the line element with the conformal factor

/ ff I γ' \ / +' γ1

Ω(t',r') = — shu' 2cosί jcosl —

one obtains the "non-physical" metric

ds2 = (sinί')2( - dt'2 + dr'2 + sinVdω2), (2.5)

which is regular on

- π' < t' < 0, 0 ̂  r', |ί' + r'| ̂  π, \t' - r'\ ̂  π. (2.6)

The metric (2.5) satisfies ds2 = Ω2ds2 on the interior of (2.6), which corresponds to

the part (ί < 0} of Minkowski space. The boundary «/" = { — t' -f r' = π, —π<t'
< 0} of (2.6) represents past null infinity of Minkowski space. The somewhat
peculiar conformal factor (2.4) has been chosen (exploiting (3.4)) such that the Ricci
scalar of the resulting metric (2.5) vanishes on the domain given by (2.6) (condition

(3.5)). In the new coordinate system the conformal closure oϊβ is given by H = {f =
- π/2, 0 ̂  r' <Ξ π/2}. It intersects $~ at Z = {t1 = - π/2, r' = π/2}, and thus is an
example of the type of surface the existence of which is stipulated in (2.3). The
domain of dependence of H on the domain (2.6) is

D(H) =
π

+ (2.7)

The future Cauchy horizon of H is the past null cone of the origin of Minkowski
space extended to ,/~ with the origin removed, while the past Cauchy horizon is
given by { — t' -f r' = π, — π < t' rg — π/2} c J>~. The Cauchy horizons intersect
each other and H at Z.

The properties of the surfaces required in (2.3) and the preceding example give
rise to

Definition (2.2) A triple (5, ̂ α/?,χα/?) is called a hyperboloidal initial data set if S is
a manifold diffeomorphic to the open until ball in [R3, Kaβ is a Riemannian metric,
χaβ is a symmetric covariant tensorfield on S, such that

i) the vacuum constraints hold on S:

α\/C β β/ί γ/ \ ' /

Here Da denotes the covariant derivative operator and 3f the Ricci scalar defined

ii) There exists a smooth conformal closure of this initial data set, i.e. S may

be diffeomorphically identified with the interior of a manifold S with boundary
Z, where S is diffeomorphic to the closed unit ball in [R3 (whence Z is diffeomorphic
to the sphere §2), and on 5 there exist functions Ω, Σ such that:

Ω > 0 on S Ω ~ 0, Σ > 0 on Z, (2.10)

hΛβ = Ω2naβ extends to a smooth Riemannian metric on S, (2.11)

h*<Ώ,aΩ9β = Σ2onZ (h^hβy = δ«y on S), (2.12)
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χaβ = Ω(χaβ + ΣKΛβ) extends to a smooth tensor-field on S. (2.13)

iii) χaβ9 KΛβ satisfy further "fall-off requirements near Z which are formulated
in (4.10).
The fields Ω, Σ, hΆβ respectively χaβ correspond to the conformal factor, the derivative
of the conformal factor in the direction of the future-directed unit normal (with
respect to g ) on S, the first respectively the second fundamental form implied by
gμv on S. Note that the conditions of Def. (2.2) are still satisfied after the rescalings

h*β^β\β> XΛβ->θ(x*β + M*β)> (2 14)

with functions Θ,Λ on S such that Θ > 0 on S. However, the conformal closure is
uniquely determined by 5,Kaβ,χΛβ [23].

Since space-time will be constructed by solving the conformal vacuum field
equations, the notion of a hyperboloidal initial data set has to be reformulated in
terms of the conformally related structures. The analysis of the conformal vacuum
field equations in Chaps. 3, 4 will give rise to the following definition, which is
equivalent to Definition (2.2):

Definition (2.3). A pair (S,M0) is called a conformal hyperboloidal initial data set if
S is a manifold diffeomorphic to the closed unit ball in [R3 with boundary Z, and
if MO is a collection of smooth fields on S

^o = (#*<» e*» yl> Ka» Ω, Σ, Σ» 5, σa, σab, dab, dabc), (2. 1 5)
such that

i) β>0 on 3 = S\Z;Ω==0, - (Σ)2 + ΣaΣ
a = 0, £>0 on Z,

ii) u0 satisfies the conformal vacuum constraints (4.3) on S.
The notation used here and the meaning of the various quantities collected in «0

will be explained in Chaps. 3, 4. The properties of asymptotically flat solutions
listed in Definition (2.1) and the discussion of the domain of dependence motivate

Definition (2.4). A triple {D(S),Ω,gμv} is called a past asymptotically flat Cauchy

development of the hyperboloidal initial data set {S, K^χ^} if

i) D(S) is a four-dimensional manifold which may be mapped by a homeo-
morphism which together with its inverse is "sufficiently smooth" onto some
neighbourhood of H in D(H) (2.7). Under this homeomorphism H corresponds to
some hypersurface S of D(S) with boundary, which will again be denoted by Z.
The two hypersurfaces with common edge Z, which form the boundary of D(S)
will again be denoted by N and /.

ii) Ω is a function, gμv a Lorentz metric on D(S) such that (D(S),#μv) is an
oriented, time-oriented causal spacetime, S is spacelike, N respectively / a null
hypersurface in the future respectively past of S. It holds

Ω>OonD(S)\I Ω = Q, dΩ^Oonl.

iii) The interior S\Z of S may be identified with S by a homeomorphism, which
together with its inverse is "sufficiently smooth", under which Kaβ respectively χaβ
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is mapped onto the first respectively second fundamental form implied on S\Z by
the metric gμv = Ω~2gμv on D(S)\L By translating this into the conformally related
situation one will obtain the equivalent

Definition (2.5). The pair {D(S),u} is called a past asymptotically flat Cauchy
development of the conformal hyperboloidal initial data set {S0,w0} if condition
(i) of Definition (2.4) holds and if u denotes a collection of fields as described in
(3.13) such that the function Ω and the Lorentz metric gμv provided by u satisfy
condition (ii) of Definition (2.4). Furthermore S0 may be identified by a homeo-
morphism, which is smooth in both directions, with S such that u0 is mapped on
the quantity induced by u on S.

Now a solution of the hyperboloidal initial data problem in relativity for a given
hyperboloidal initial data set {S, Kaβ, χ^} may be described as a past asymptotically
flat Cauchy development {D(S),Ω,gΛ^ of this initial data set, such that the metric
gμv solves Einstein's field equations (2.1) on D(S)\L Equivalently a solution of the
conformal hyperboloidal initial value problem for a given conformal hyperboloidal
initial data set {S0,u0} is a past asymptotically flat Cauchy development {D(S\u}
of {S0,u0} such that u satisfies the conformal vacuum field Eqs. (3.17) on D(S).

The hyperboloidal initial value problem differs from the standard Cauchy
problem essentially in two ways. The fall-off requirements for hyperboloidal initial
data are quite different from the fall-off conditions for initial data which are
euclidean at infinity. Furthermore the solution of the hyperboloidal initial value
problem is required to contain past complete null geodesies.

3. The Conformal Vacuum Field Equations

Let gμv,gμv be Lorentz metrics on a four-dimensional manifold which are related
by a conformal rescaling with a conformal factor Ω

9»v=Ω2$^ (3-1)

Expressing the vacuum field Eqs. (2.1) for gμv in terms of gμv and Ω and splitting
them into the trace-free part and the trace, one arrives at the equivalent equations

Ω2R = - 6(ΩVλV
λΩ - 2VλΩVλΩ), (3.3)

where R is the Ricci scalar, 2σμv the trace-free part of the Ricci tensor, and V
denotes the Levi-Civita covariant derivative with respect to gμv. Considering these
equations as differential equations for gμv9 with Ω thought of as being given, the
principal part, i.e. the terms involving second order derivatives of gμv, is contained
in the left members. Consequently, assuming that gμv and therefore R and σμv

remain regular, the differential system (3.2), (3.3) becomes singular where Ω vanishes.
The conditions given in Definition (2.1) are compatible with rescalings

(g,Ω)^(Θ2g,ΘΩ) (3.4)

with functions Θ which are positive everywhere. The Ricci scalars with respect to
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gμv and with respect to Θ2gμv are related by

ΘR[βμ^\ - Θ3R[Θ29μJ = 6Vλ¥
λΘ.

Thus, given Cauchy data for Θ on an initial surface S with Θ positive on S, one
may determine Θ in a neighbourhood of S such that the Ricci scalar of the rescaled
metric Θ2gμv vanishes. Whence the conformal factor Ω may be assumed to be such
that

K = 0, (3.5)

and by (3.3)

ΩVλV
λΩ = 2VλΩVλΩ. (3.6)

These conditions are preserved under (3.4), if the function Θ is chosen such that
the wave equation

is satisfied. There remains the freedom to prescribe Cauchy data with Θ positive
on S. The differential equation (3.6) for Ω obtained by the condition (3.5) still
degenerates where Ω vanishes. To avoid this diffιculty,Eqs. (3.2), (3.5), (3.6) will be
incorporated into a larger system, which is in fact implied by (3.2), (3.5), (3.6), and
be given a slightly different interpretation such that the new system remains regular
even where Ω vanishes.

Let gμv be again a Lorentz metric on a four-dimensional manifold M, (xμ)μ=0 x 2$
some coordinate system, and let now V denote a covariant derivative operator on
M which will for the time being only be assumed to be metric with respect to gμv

V0μ v=0. (3.8)

The following unknowns will appear in the system we want to consider:

i) The components of a frame field ek = ek

μ(d/dxμ), k = 0,1,2,3, with respect to xμ.
All tensorfields will be expressed with respect to this frame field. In particular

g . = g eμ ev , (3.9)

and as usual one has

(frame indices ίj,k,l will take values 0,1,2,3 everywhere and the summation
convention is assumed).

ii) The connection coefficients yl

jk of V with respect to ek

Equation (3.8) is then expressed equivalently by

μ ί ΐ C\ /"3 1 0 \

iii) The "conformal factor" Ω and a 1-form Σt and a function s, the meaning of
which will be explained later.

iv) A symmetric traceless (with respect to gik) tensorfield σίr
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v) A traceless tensorfield dl

jkl possessing all symmetries of the conformal Weyl
tensor of the Lorentz metric gik.

The unknowns will be collected in the quantity

u = (e\,yi

jk,Ω,Σi,s,σipd
i

jkl), (3.13)

g.j being omitted here, because it will be given a fixed known value later by
specifying a gauge of the framefϊeld. In the later discussion the symmetries of the
various objects will play a decisive role.
Given u and gik, one can define the "zero-quantity"

z = (Oj, Pp Qfl, T^K'j^Hjv), (3.14a)

where the various tensorίields constituting z are given by

jk
(3.14b)

with Tjl

k being the torsion tensor of V while

Λ « Ξ ek(fu) - Φ% ) + ΛmΛ ~ ylimymkj - y «/ywH - ?~* - τm^ (3 15)
is the curvature tensor of V and

tfju = Ωdl

jkl + g\σij - g\σkj + g.p\ - gjkσ\. (3.16)

The purpose of introducing the quantities collected by z is to give labels to the
conformal vacuum field equations which will allow a convenient discussion of those
equations. One has

Theorem (3.1). Suppose gίk and u as defined by (3.13) are such that (3.12) holds and the
conformal vacuum field equations

z(M) = 0 (3.17)

are satisfied on M. Then, if Eq. (3.6) holds at one point of M, this equation in fact is
satisfied everywhere on M. Furthermore the metric gμv = Ω~2gμv, defined where Ω does
not vanish, is a solution of Einstein's vacuum field equations (2.1).

Since this has been shown in previous papers [5,9] only a short discussion of
the meaning of Eq. (3.17) will be given here. The equation Tl

jk = 0 together with
(3.12) implies that V is in fact the Levi-Civita covariant derivative operator with
respect to the metric gik and consequently rl

jkl as defined by (3.15) is the curvature
tensor of gik. Because of Kl

jkl = 0, the representation of the curvature tensor by
its irreducible parts is given by jR^.w. Thus Ωdl

j/d represents the Weyl tensor, 2σik

the Ricci tensor oϊgik. Since σik is traceless the Ricci scalar of g^ vanishes, i.e. (3.5)
is satisfied. From Oj = 0 it follows that Σj is the differential of Ω and Q.j = 0 implies
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s = ̂ VkV
kΩ. The equation βjk = 0 is now seen to be just (3.2). Furthermore one

concludes now from (3.17)

f - VjΩQ t .) = 0. (3.18)

Hence (3.6) must hold everywhere on M if it is satisfied at one point. In fact the
surprising identity (3.18) is the motivation for the introduction of the equation
p. = 0, which itself is a consequence of the other equations implied by (3.17). The
equation Hjkl =0 is the vacuum Bianchi identity VμC

μ

vλp = 0 for the Weyl tensor
of gμv expressed in terms of the rescaled Weyl tensor dμ

vλp = Ω~ίCμ

vλp and the
connection V with respect to gμv. Using this equation and (3.5) one can derive
Ljkl = 0 from the Bianchi identities for r' jkl .

Equation (3.17) together with (3.12) forms an overdetermined quasilinear first
order differential system for gik and u. As a special case one may have

ΩΞl,2; . = 0,s = 0,σίfc = 0, (3.19)

which will be referred to in the following as the "vacuum field equations." In this
case (3.17) simplifies to

^ = 0,^=0,^ = 0. (3.20)

Gauge Conditions. To integrate the conformal field equations (3.17) one has to
specify an appropriate coordinate system (xμ) and a frame field (eμ). Both will
depend on the choice of the conformal factor. While the conformal factor is fixed
off the initial surface by (3.6) respectively (3.7), there is still the freedom to prescribe
Cauchy data for (3.6) respectively (3.7) on an initial surface. Here the choice of
Cauchy data for the conformal factor will be left open and will be dealt with in
the same way as the Cauchy data for the other quantities figuring in (3.13).

The following coordinate system and frame field can be constructed for any
choice of the conformal factor. Their choice is suggested by the resulting form of
the "reduced conformal vacuum field equations" (5.1). For other purposes a different
choice of coordinates and frame fields may be more convenient. Then one would
use (3.12) to extract propagation equations for gίk.

Let (xα)α=1 2 3 be a coordinate system and (ea)a=ί 2 3 an orthonormal frame
field on S (here as in the following indices α, /?,.. ., α,έ,... will take values 1,2,3
and the summation convention will be assumed for these indices). A (Gauss)
coordinate system (xμ)μ= 0,1,2,3 and a frame field (ek)k=0 1 2 3, which extend the
coordinates and frame field already given on S, will be fixed on a neighbourhood
of S in D(S) by the conditions

e0 is the future-directed unit normal of 5, the frame ek is propagated
parallel in the direction of e0 on D(S) (3.21)

x° is the parameter of the integral curves of e0 which vanishes at
S, x" = const on the integral curves of eQ. (3.22)

In the rest of the paper— unless stated otherwise — this choice of coordinates
and frame fields will be assumed. With respect to (xμ), (ek), one then finds

(3.23)
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e 0= A> *„ = <£—, (3.24)
dx ϋxa

and the ea are tangent to the surfaces St = {x° = t}. Furthermore

y0't = 0. (3.25)

Because of (3.23), Eq. (3.12) reduces to the algebraic condition

0<Λ+ΛΛ=° (3 26)
Let D denote the covariant Levi-Civita derivative-operator implied on the surface
S = S0 (respectively on St) by the interior metric induced by gik. Then one has

Daeb = Deaeb = γab

cec. (3.27)

For the remaining connection coefficients which do not necessarily vanish because
of (3.25), (3.26) one has

χab = yab° = ya

b

0 is the second fundamental form on
S (respectively on St), expressed with respect to ea. (3.28)

There is still the freedom to choose the coordinates xα, the frame field (ea), the
conformal factor Ω and its normal derivative Σ = Σ0 on S. In the following only near
Z a more detailed discussion of a possible gauge will be given to illustrate the
specific properties of the intersection of S with null infinity. For computational
reasons, for giving geometrical interpretations and for the comparison of the general
case with the standard situation in Minkowski space it is convenient to choose
near Z the field ea on S such that

e1 is the outward pointing unit normal of Z in
S(hence e1 is tangent to S) and Dlea = 0 near Z. (3.29)

(In the following indices A,B,... will take the values 3,4, will be lowered or raised
by gAB = gAB = diag(l.l), and the summation convention is assumed.) Then yAB

l is
the second fundamental form on Z with respect to S.
It holds

β= 0,2^ = 0 onZ, (3.30)

ΣA=^Σ = - Z ! > O o n Z . (3.31)

Equation QAB = 0 implies on Z

-(lAB-yABl} = S9AB (3 32)

from which follows in particular

Z23 = y 23^X22 - #33 = Ίϊ2 ~ Ίtt (3 33)

These relations show that the shear of null infinity vanishes [1]. The equation
K°1AB = 0 together with (3.33) gives on Z an integrability condition by which one
concludes that

χAί=eA(χ)onZ (3.34)

with some function χ on Z. From this it follows that by a boost in the plane
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orthogonal to Z, i.e. by tilting the tangent plane of S at Z appropriately, one can
obtain

χAί=QonZ. (3.35)

The freedom in (3.4), (3.7) to prescribe Θ9e1(Θ)9eQ(Θ),eί(eί(Θ))9eί(eQ(Θ)) on Z can
be used to obtain (using (3.33) and the equations Qjk =Q,KA

BCD = 0) on Z:

gμv implies the standard unit metric of the
two-sphere on Z,χ22 + χ33 =0,y22

1 + 733' =0, 3 3g)

where ΔA denotes the covariant derivative operator on Z in the direction of eA.
The surface S may furthermore be chosen such that

X ι ι = X α * = O o n Z . (3.37)

The two unknown functions in χab = y*b contain the information on the shear of
the null hypersurface N, while the two unknown functions in σab contain the
information on the Bondi-Sachs news function [2, 3, 27]. These functions constitute
free initial data in the asymptotic characteristic initial value problem.

With the choice (3.30-37) one has

(3.38)

4. The Conformal Constraint Equations

With the choice of frame above the conformal vacuum field Eqs. (3.17) can easily
be split into the propagation equations and into the constraint equations implied
on the surfaces St, in particular on S. The quantity u defines various tensorfields
on S which will be expressed with respect to (ea). To obtain convenient expressions
for the constraint equations the following notation is used:

^ ~ ̂  0' σa ~ σαO' "-ab = ^αOW)' ^abc = ^aQbc'

These tensors on S have the algebraic properties
v\ = tf oo, dab = d6α, d\ = 0, dacb = - dacb, d[abc] = 0, d\c = 0, (4. 1)

deabc = 9ebdac ~ 9ec
dab + 9<u4be ~ QaAe' (4 2)

The fields dab, dabc contain all the information on the rescaled Weyl tensor (essentially
the "electric" and "magnetic" part).

The constraint equations implied by (3.17) on S are

0 = Qab =
 D

aΣb - χabΣ + σabΩ - gabs,

0 = Keabc = 3reabc + fbloc ~ fclat, ~ Ω

(Gauss' equation) I (4.3)
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0 = Kabc = K°abc = DbXca ~ Dclba ~ &dabc ~ 9 ab<* c + 9ac<>b>

(Codacci's equation)

0 = Lcab = Daσbc - Dbσac - χacσb + χbcσa - dcabΣ ~ decabΣ
e,

Q = Lab = L0ab = Daσb - Dbσa - χa

cσbc + χb

cσac - dcabΣ
c,

0 = Hbc = Hobc = Dad\c - χe

cdeb + χ Ve*

By taking linear combinations of some of those equations (3.17) which do contain
the operator e0, interior equations are obtained on S which, however, are also
implied by (4.3). Contracting indices in Gauss' and in Codacci's equations gives
in particular:

0 = Kac = 3rac + xb

bXac - χb

cχab - Ωdac - σac - gacσ
b

b, (4.4)

(4.5)

(4.6)

In the equations above 3rfl

bcd denotes the curvature of the metric implied on S,
3rαc its Ricci Tensor, 3r its Ricci scalar. The constraint equations (4.3) are
considerably more complicated than the vacuum constraints (2.8), (2.9). However,
the equations (4.3) are not independent, since integrability conditions have been
used to build up the system (3.17). The following relations are obtained by
straightforward calculations if Ta

b

c = Q is assumed to hold:

ΩLab + ΣdKdba + Oaσb - Obσa + Qbdχ
d

a

ΩLcba + ΣdKdabc + ΣKabc + Ocσba - Obσca + Qbχca - Qcχba

+ dacPb - 9abPc

ΩHb + Lab" + Leabf

ca ~ DcQba = 0,

b + O- Kfχ' (4.7)

ΩHbc + Lcb + Kfcχ\ - K f h χ f c + Oeά\c + DaK\c

+ DcKb-DbKc = 0,

ΣLab + Σ"Labd + Qaσb - Qbσa + Qbdσa

d - Qadσb"

Da(2Ωs + (Σ)2 - ΣbΣ") = 2(sOa + ΩPa + ΣQa - ΣCQJ.

From (4.8) follows immediately

(4.8)

Lemma (4.1). // the quantity u is such that (330) holds and if u satisfies the
constraints (43} on S then

2Ωs = (4.9)

holds on S.
If a hyperboloidal initial data set (Definition (2.2)) is given, then by (2.10)-(2.13)

one may assume that the conformal closure S and on it the fields Ω, Σ, Σa = ea(Ω),
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ea, χab are known. Then s can be calculated from (4.9) and consequently σa and
σab follow from Qa = 0, Qab = 0. Since the vacuum constraints are satisfied by the
physical quantities, one concludes from the transformation behaviour of the various
fields under conformal rescalings that in fact Eq. (4.5), (4.6) are satisfied by the
fields known so far. Because of this the fields dab, dabc, obtained by requiring Kac = 0
(or, equivalently, Ke

abc = 0) and Kabc = 0 are in fact tracefree. Now all the fields
constituting the unknown u are given and it follows from the identities (4.7) that
in fact all the constraint equations (4.3) are satisfied. The fall-off conditions
mentioned in Definition (2.2) can now be formulated in terms of smoothness
conditions on (5, u).

The fields 5, σa, σab, dab, dabc obtained by
solving (4.9), Qa = 0, Qab =^Kac= 0,

Kabc = 0 for these quantities are required to
be "sufficiently smooth."

More precise smoothness conditions will be formulated in Chap. 6.
If hyperboloidal initial data sets are to be obtained by means of York's approach

[18, 19, 15] one has to express (4.10) in terms of the physical quantities Kaβ, χΛβ.
To avoid this problem and to make it easier to formulate the appropriate
smoothness conditions near Z, it is desirable to have an analogue of York's
procedure which applies immediately to Eqs. (4.3). For this it is of interest that by
the identities (4.7) it suffices to solve only part of Eq. (4.3) while the rest follows
automatically.

To illustrate the problems which occur by working in terms of the nonphysical
quantities and at the same time to give examples of the type of surfaces one will
have to deal with, one may consider the case where the second fundamental form
χab vanishes everywhere on S. By (4.3) one must have Σ = const, σa = 0, dabc = 0 and
from β/ = 0, (4.5), (4.9)

4ΩDaD
aΩ + 3rΩ2 - 6DaΩDaΩ = - 6(Σ)2. (4.11)

This equation is the analogue of Lichnerowicz's equation (which is in fact the
formally regular equation obtained from (4.11) by expressing it in terms of the
singular quantity φ = Ω ~1/2) if the nonphysical ("test") metric is thought as being
given. The equation is singular on Z. To escape the problems posed by this
degeneracy one may try to solve (4.3) which represents a regular system. However,
then Qa

a = 0 couples via 5 in a complicated way to the other equations and it is
not easy to see whether (4.3) can be broken up into a hierarchy of "manageable"
equations.

Considering (4.11) for a moment not as a differential equation for Ω, one may
assume Ω = 1. Then (4.11) reduces to the vacuum constraint 3r — — 6(Σ)2, which
shows that the initial surface has a constant negative Ricci scalar. From (2.13)
follows in fact that χμv = — Σfϊμv on S. Surfaces of this type are provided by the
hyperboloids in Minkowski space.

Just to see whether the set of initial data with the appropriate behaviour near
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Z is sufficiently rich, one may take refuge in the analytic case. For analytic data
for the asymptotic characteristic initial problem, which are essentially given by 4
analytic functions of three variables, there exists a unique solution of the conformal
vacuum field equations [13]. This, of course, provides solutions of (4.3) on spacelike
surfaces intersecting null infinity. However, it is not clear how many of these local
solutions near Z extend to a solution on a simply connected surface.

5. The Reduced Conformal Vacuum Field Equations

The complete information about the propagation equations contained in the
conformal vacuum field equations (3.17) is reflected by the following system (5.1)
of "reduced conformal vacuum field equations." It is obtained by taking linear
combinations of Eqs. (3.17). Here the gauge (3.21), (3.22) is assumed by which V0 is
reduced to d/dx°.

0 - β0/c - Σkf0 + ΩσQk - sgok,

0 =

0 = - 1JkLjka = Voσoa ~ Vι<τ l α - V 2σ 2 α - V3σ3α,

0 = LαOα = V0σαα ~ VασQ f l - Γ

0 = Laob ~ LbQa = 2V0σαb - Vaσob - Vbσ0α,
(a, b) = (1,2), (1,3), (2,3),

-#313 +#202 ~ #303 =

0 =#313 -#212 + #202- #303 =V ί(d<3i3 -

(5-lb)

0 = - #103 + #131 = V;(~ d\03 + dl

131),

0=-#1 2 3 = V ί(-d ί

103λ

0=-H 1 0 3-H 1 3 1 = 7^-^03-^31),

0 = ̂ 213 + ̂ 312 ~ -^203 ~ ^302 = ̂ ("'213 + "312 ~ "203 ~~ " 302)-

This is a first order quasilinear system of the form

(5.2)
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where the unknown dl

jkl is understood as being represented by the ten unknowns

J _ Λθ Λθ i x/O Λθ
Ul — a 212 ~a 313 + " 202 ~a 303'

6 = d°2 1 3+ ^312 + ̂ 203+^302, (5 3)

— _ /7° 4- //° Λ — _ Λ° Λ — _ //O ,70
? — α 103-|-α 1 3 1,α 8— " i23 ' α 9~ α io3~ a i 3 i >

— - — —α10 ~~ α 213 Γ M 312 α 203 u 302'

With this proviso, the system (5.1) written in the order as given above, constitutes
a quasilinear "symmetric hyperbolic system" [11,28].

The square matrices Aμ, B are of the form

A» = Ake1l
ί,B = Bl + B2(u)

with constant matrices Ak,B1 and B2 being a
linear function of u. Here ek

μ is the frame [ (5.4)
provided by u.

The matrices Aμ are symmetric and A°, being a
constant matrix with only Γs and 2's on the
diagonal and zeros in all the other entries, is f (5.5)
positive definite for any frame ek satisfying (2.34).

The subsystem (5.1c) and the combinations (5.3) look somewhat complicated here,
however, they come out quite naturally in the spin frame formalism where it is
much easier to keep track of the symmetries of the Weyl tensor and of the Bianchi
identities [5].

If u is a solution of (5.1) respectively (5.2) the quantity z(u) determined by (3.14)
from M need not vanish necessarily since not all equations contained in (3.17) are
given by (5.1). However, one has

Theorem (5.1). If u is a solution of (5.1\ the quantity z defined from u by (3.14)
satisfies a "subsidary system" of the form

F»z,μ + Gz = 0 (5.6)

(constituted by the subsystems (5.7), (5.8), (5.10), (5.72), (5.14)). Here the Fμ are
symmetric matrices depending on the frame eμ

k supplied by u, F° is a constant matrix
with Γs and 2's on the diagonal and zeros in the other entries, hence positive definite,
and G is a square matrix which is a function of u and its first order derivatives.

The properties of Fμ, G ensure in fact that (5.6) is a linear symmetric hyperbolic
system of differential equations for z.

An analogue of Theorem (5.1) has been shown in the case of the characteristic
and asymptotic characteristic initial value problems [9] where, however, somewhat
different reduced equations have been used. The basic argument, which has been
explained there in detail, is essentially the same: The Bianchi identities for the
(metric) connection V which is defined by the connection coefficients (satisfying
(3.25), (3.26)) supplied by the solution of (5.1), the symmetries of the various fields
which constitute u, and the fact that by (5.1) some components of z vanish are
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exploited to derive (5.6). To display clearly the principal part of this system it is
convenient to introduce the notation

Then e.g. for a tensor L, with L0 = 0, one has

and no derivative operator is involved.
The equations

, Σl-σ0

lQjl, (5.7)

βy,o = ΓιQvj ~ °ισθj + 2/V

are obtained by using the definition of z to express

vloj - vfll9 vkFj - VjFk9 vkρί7. - vβkj

in terms of the components of z and of the commutator of V / 5 V, which is given
by the curvature tensor Kl

jkl + R^.^ of V and the torsion Tl

jk, and by evaluating
the expressions so obtained for k = 0, taking into account (5.1).

Σ y 7^ h _ Y ίγh i rp mrp h
Vj1kl — L V Ijk ^ λjl 1mk

(jkl) (jkl)\Jnί> u1";

(where £ denotes the sum over the cyclic permutation of the indices j,k,l)
(jkl)

evaluated for 7 = 0 gives in view of (5.1) and the symmetries of the tensor fields
involved:

T h r> rph p ηr h \ Ίfh /c o\
k/,0 ~ ~ 1 k1 10 ~ 1 I A0 k ~*~ Λ OW P δ/

The identity

2 V V d .. = — ε Ύ rf' ε pq

which follows from the behaviour of tensors with the algebraic properties of
conformal Weyl tensors under duality operations, allows one to derive

Σ VjR" ί H=
(Jkl) (jkl)

-4- -Op rH P mpq

^ 2*££jkl nrpqSi

Evaluating this and the Bianchi identity

Σ V?mm = Σ ΓV
(jkl) (jkl)

for 7 = 0 gives

jfm p jsm p Ίfm _ι_ 1 r\~ r TT _ mpq
K ίkl,0 - ~ 1 kK U0~ 1 1K iOk + 2 WεOH Hrpq£ί

rfc0]x + d« [W00] + Li[fcoft]

w + L™[0kgni). (5.10)
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Taking into account the definition (3.14b) of Likl, expressing again commutators

of covariant derivatives by the curvature and torsion tensors of V, one finds for
the quantity

Lijxι=Σ VA* (5.11)
(jkl)

the following expression, which is linear in the components of z,

Lίjkl = Σ foΛy + σltK'ίkj - Qjtd'ikl) + ̂ Hrpq^Σ'. (5.12a)
(jkl)

Here again (5.9) has been used. Interpreting now the right member of (5.11) as the
result of the action of a differential operator on Lίkl, the following three subsystems
(for (α, b) = (1, 2), (1, 3), (2, 3)) of differential equations for those components of Lijh,
which do not vanish necessarily because of (5.1), are obtained

2V0Lcab — VcL0ab = Γa(Lb0c + Lc0b) — Γb(LCOa + Lfl0c) -f 2Lc0ab — L0cab, c = 1, 2, 3,

^bOOa ~ <f ^cdab- (5.125)

Here on the right hand side Lijkl is understood as being given by (5.12a).
Similarly, for

Hpq=VrH
r

pq (5.13)

one derives on the one hand, using the definition of Hrpq and (5.9), the identity

Hpq = - ^'(ST.'.VAjy + 6K'kmsdtlij + 2K'mjsdkltί

+ 2K'imsdkltj + 2K>jisdkltm)εpq« (5.14a)

Here again the right member is linear in the components of z. While on the other
hand, interpreting the right member of (5.13) again as the result of the action of
a differential operator on Hrpq, one derives for those components of Hrpq which
do not vanish necessarily because of (5.1) the differential system:

2^o#oi3 - V3ίί010 = -2H13 - Γ3(H212- H313)

~ Γ1H1 31 -f Γ2H213 — Γ3Hlίl9

2^0^012 ~ ̂ 2^010 = ~~ 2#i2 + Γ2(H212 - H3ί3)

- Γ2Hlίί - Γ±H121 - Γ3#321,

2V0#030 + V2#023 = ~ 2#30 - Γ2(H3Q2 + #203)

-2Γ1H103-2Γ3H303, (5.14b)
2V0H020 - V3#023 = - H20 - Γ3(#302 -h H203)

— 2Γ1H102 —2Γ2H202,

V0#010 -^2^012 -^3^013 = ~ #10 ~^1#101 + ̂ 2#120 + ̂ 3#130'

where on the right hand side Hpq is regarded as being given by (5.14a). The system
of equations (5.7), (5.8), (5.10), (5.12), (5.14) (supplemented by equations of the type
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x,0 = 0 for those components of x of z which vanish already because of (5.1), to
obtain a system of the form (5.6)) constitute the symmetric hyperbolic system of
subsidiary equations.

Although the zero-quantity z defined by (3.14) from a solution u of (5.1) need
not vanish everywhere, one has

Lemma (3.2). // u, given by (3.13), is defined near S and satisfies the conformal
constraint Eqs. (4.3) and the reduced conformal vacuum field Eqs. (5.1) on S, the zero
quantity z(u) defined by (3.14) from u vanishes on S. Furthermore

s^V VΏ (5.15)

holds on S. If u is such that Ω = 0, Σf1 = 0 on Z, then Eq. (3.6)

ΩVkV
kΩ = 2VkΩVkΩ

is satisfied on S.
The vanishing of T°ab is equivalent to the symmetry of the second fundamental

form χab on S. The vanishing of all the other components of z follows by taking
linear combinations of the constraint equations (4.3) and the propagation equations
(5.1) on S. The relation (5.15) then follows from Qa

a = 0 and (3.6) is obtained from
(5.15) and Lemma (4.1).

It may be noted that the torsion has been introduced here only as a technical
device.

6. On the Solution of the Hyperboloidal Initial Value Problem

There exists an extensive literature on linear symmetric hyperbolic systems (see
the lists in [29,16]), which were introduced and studied first by K. O. Friedrichs
[11]. Existence and uniqueness proofs for quasilinear symmetric hyperbolic systems
have been sketched in [28] and worked out in detail by Fischer & Marsden [16].
These authors applied their results to the standard Cauchy problem in relativity
by expressing the field equations with respect to harmonic coordinates and writing
them as a first order quasilinear symmetric hyperbolic system. Their treatment of
quasilinear systems was generalized by Kato. Taylor [30] used a different approach
and obtained weaker results. In the following Kato's results as described in [31]
will be employed.

Kato proved for a very general class of symmetric hyperbolic systems existence
and uniqueness theorems, local in time, for Cauchy data given on U". These apply
in particular to the system (5.1). By (3.13) the unknown u takes its values in UN

for some N. For any positive integer 5. let HS(Ω, UN) (sometimes denoted simply by
HS(Ω) or Hs if the meaning is clear from the context) denote the iΛtype
Sobolev-space of [Revalued functions defined on a domain Ω of Uk with respect
to the measure implied by the standard euclidean metric on [R/c.

Theorem (6.1). Suppose s ^> 3 and initial data VQ of the form (3.13) are given such
that £>% = (5%, v0 = (<5μ

0,w0) and w0 = (e^a9fjk9Q9Ii9s9aij9ifikl)eHs(U3

9R
N).

Then there exists a unique solution v(t) of (5.ϊ\ defined on [— T,T] with some T > 0,
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which takes the value v0 for t = 0 and is of the form v(t) = (δμ

Q, w(ί)) with (w defined
similarly as above] weC[- T, T;#S(R3, [R^JnC^- T, T;//5"1^3, IRN)].
77ίβ number T can be chosen common to all initial conditions v0

f = (δμ

0, w'0) such
that WQ is sufficiently close to w0.

This follows by straightforward application of Theorem 2 in [31], observing
(5.4), (5.5).

Remarks, (i) In his paper Kato formulates a stability property for solutions of
systems of the type (5.1). This will not be reproduced here.

(ii) By inspecting the particular structure of (5.la) one finds that the smoothness
result for some components of v can be improved:

Γ T T Rsί[R>3 P^'ΊΊ\_—ι,ι,n(u,u j j ,

- T, T;#S([R3, R*'")]. (6.1)

(iii) Using the multiplicative properties of Sobolev functions one concludes
from (5.1) that the function v, considered as a function of the space and time
variables, is such that

we#s(] - T, Γ[ x R3, UNf). (6.2)

(iv) Theorem (6.1) has been stated such as to give sufficient results for the
following local considerations. If one is interested in existence theorems for the
standard Cauchy problem for the vacuum field Eqs. (3.19), (3.20), a somewhat
different result has to be extracted from Kato's theorem. One has to keep open
the possibility for the frame ek to approach a standard Minkowskian frame at
infinity. If the initial value VQ is required to be such that eμ

k is the sum of a constant
and a function of class HS([R3), Kato's theorem will ensure the existence of a solution
of (5.1) with the same structure.

(v) Notice that v0 was not assumed to satisfy the constraint equations.
Let now (S0,M0) be a conformal hyperboloidal initial data set. The surface S0

will be assumed to be diffeomorphically identified with the closed unit ball in [R3.
Furthermore the coordinaes xa on S0 will be those implied on S0 by the standard
euclidean coordinates on [R3. Suppose u0 is of class HS(S0, RN) with s ̂  4. It will
be assumed that the frame ea supplied by u0 exists on the whole of S0. This
assumption is only made for convenience, otherwise one would have to repeat the
following argument for sufficiently small subsets of S0 and patch together the
resulting developments. The function u0 on S0 can be extended to a function υ0

on R3 with the properties stated in Theorem (6.1) (with s ̂  4) [32]. Let v denote
the solution of (5.1) for initial data υ0, the existence of which is asserted in Theorem
(6.1) (again with 5 ̂  4). There is a neighbourhood U of S0 in [R3 on which det (eμ

k =£• 0.
Possibly after shrinking U and T one has det(e\) ^ 0 on U x ] - T, Γ[. By (3.10),
(6.2) and the Sobolev embedding theorems the frame defines a metric gμv of class
HS(U x ]- T, Γ[)nCs~2((7 x ] - T, T[). Let Duo(S0) denote the domain of
dependence oϊS0,N respectively / the future respectively past Cauchy horizon of S0

in U x ] — T, T[ with respect to gμv (the vector field e0 being future directed by
definition), and let u denote the restriction of υ to Duo(S0). At this stage it is not
known, whether the yl

jk supplied by u are in fact the coefficients with respect to ek of
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the Levi-Civita connection determined by gμv. The Levi-Civita connection

coefficients calculated from gμv are of class Hs~l(U x ] — T, T[), hence the surfaces
N, I are near Z, where they intersect S0, null hyper surfaces of class Cs~3. Further
away from Z these surfaces may develop caustics and selfmtersections. To simplify
the following argument, T will be restricted such that N and / remain smooth in

U x ] - T, T[.

Lemma (6.2). The pair (DUQ(S0),u) only depends on the conformal hyperboloidal
initial data set (S0, w0).

Consider on U x ] — T, T[ a differential operator of the form

Luw = Aμw>μ + Cw, (6.3)

where Aμ = v4/cβ/c

μ (see (5.4)) with £7c

μ being the frame supplied by υ and C being

some continuous matrix valued function. It will be shown that w must vanish on
DUo(S0) if it is a solution of L^w = 0 of class C1 and vanishes on S0. This will entail

Lemma (6.2) because if v0 is another extension of u0 and ΰ the corresponding
solution of (5. 1), w = v — v satisfies an equation of type Luw — 0 as follows from (5.4),

(5.5).

From (5.1) one obtains

det (Aμξμ) = c(ρ0(ξ))/to(ρ1(ξ)f1(β2(ξ)^(ρ3(ξ) p, (6.4)

where c ή= 0 is a constant, the k are positive integers and

(6 5)

The characteristics of (6.3) are hypersurfaces of the form {Φ(xμ) = const, Φ ^
with Φ being a function of class C1 such that det (AμΦιβ) =0 on these surfaces.
From (6.4), (6.5) one finds that all characteristics of (6.3) are in fact timelike or
null hypersurfaces with respect to the metric gμv. Furthermore from (5.5), (6.5) one

concludes

Aμξμ is positive definite for all covectors ξμ such that — gμvξv

is timelike future-directed with respect to g (6.6)

Now the result follows from a standard argument for symmetric hyperbolic systems

[28]. For 0 ̂  ί < T, set

denote by dv the volume element defined by the euclidean metric on [R/c and by

(u\υ)Mt the L2 scalar product on Mt with respect to dv. One has

dυ, (6.7)

where Lu* is the formal adjoint of Lu. Because of the symmetry of the matrices Aμ

the operator Lu +1^* is in fact of zeroth order. Since A° is positive definite one
has an estimate

w, (Lu + L/)w)MJ g c'μ V w)Mt (6.8)
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with some constant c' depending only on T. Applying the divergence theorem
to (6.7) and taking into account (6.8) and Lu w = 0, w| s = 0 one obtains

j ?wA°w)dS ^ - J (^Aμ^)ημdS + c' Π J ?\vA°w)dS }dt', (6.9)
St JV t 0 \ S t /

where dS denotes the respective surface elements implied on St respectively Nt,
and ημdxμ is a 1-form proportional to the differential of a function with level
surface N and gradient (with respect to the euclidean metric) pointing out of
DUo(S0). By (6.6) the first integral of the right member of (6.9) is positive since Aμημ

is positive (though not definite). Because the integral on the left vanishes for t = 0,
it vanishes for all ί, 0 ̂  t < T by GronwalΓs lemma [33]. Hence w vanishes in the
future of S0 in Du (SQ). Similarly one concludes that w vanishes in the past of S0

in Duo (S0).

Lemma (6.3). The solution u of (5.7) on DUQ(S0) satisfies in fact the conformal
vacuum field equations (3.17) and Eq. (3.6)

ΩVkVkΩ = 2VkΩVkΩ

on DUO(S0). Moreover one has, possibly after restricting T further, Ω > 0 on DUo(S)\I,
Ω = 0 on /, V Ω 7^ 0 on I. The hyper surfaces N and I are given as level surfaces of
functions of class HS(U x ] - T, T[)n CS~2(U x ] - T, T[).

The zero-quantity z obtained from υ on U x ] — T, T[ by (3.14) is of class
Hs~ί(U x ] — T, T[) and satisfies the subsidiary equation (5.6). By our assumptions
on u0 and by Lemma (3.2) z vanishes on S0. For the subsidiary equations (5.6) one
has with the notation (6.5)

det(F*g = c"(Q,(ξ))^(Q2(ξr(Q,(ξ)V\

where again c" ^= 0 is a constant and the ja are positive integers. It follows that the
characteristics of (5.6) are timelike or null hypersurfaces with respect to the metric
eμv, which is defined by eμve

vλ = δμ

λ, where evλ = gvλ — e0

ve0

λ. Hence the character-
istics of (5.6) are in particular all timelike with respect to gμv. Furthermore, Fμξμ

is positive definite for all ξμ such that — ζμe
μv is future-directed and timelike with

respect to eμv. This is the case in particular for ημ as discussed before. By repeating
for the subsidiary equations the arguments used above one concludes that the
zero quantity vanishes on Du (S0) (in fact, since N and / are spacelike with respect
to eμv, the zero-quantity vanishes even on a neighbourhood of DUo(S0)\Z in
(U x ] — T, T[)\Z). Equation (3.6) holds because of Theorem (3.1) and Lemma
(3.2). Let rf be a past-directed parallel propagated non-vanishing null vector field
on /. From Oj = 0, Qjk = 0 is obtained the system of ordinary linear homogeneous
differential equations

for Ω, nlΣt along the null generators of /. Since by choice of w0 Ω and niΣi vanish
on Z, these quantities vanish everywhere on /. Because Σt ^0 on Z, Ω >0 on S
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one has £. ^0 on / and Ω>0 on DUo(S0)\I for sufficiently small T. Finally the
geodesic flow is of class Hs since it is determined by the system

J< p μz ek ,

(6 10)

which is defined by the functions ek

μ, yk

j

t of class Hs [29].
Going from any coordinate system to Gauss-coordinates formally implies a

loss of differentiability. However, one has

Lemma (6.4). Suppose s^4, xμ' is a coordinate system of class Hs+l on Dμo(S0),
u' a collection of quantities as in (3.13) given with respect to xμ' and an orthonormal
frame ek,. Ifuf is of class Hs, satisfies the conformal vacuum field equations (3 .17) on
DUQ(S0) and implies on S0 the data MO, then, near 5, there exists a coordinate
transformation x^xμ) of class Hs+l and afield of Lorentz transformations Al'k(xμ)
of class Hs such that u', if expressed with respect to the coordinates xμ and the frame
ek = Al'ker is of class Hs and satisfies the gauge (3.21), (3.22).

Solving the geodesic equation in the form (6.10) and similarly the parallel
transport equations gives xμ'(xμ), eμ'k(xμ) of class Hs, and det (xμ'/xμ) ^ 0 near S0.
Then AJ

k(xμ), obtained from eμ'k = Ak

j'ef

μ' is of class Hs and consequently Ω, Σk,, σk,r,
df'jw and R f ' ,kτ if expressed with respect to xμ, ek are of class Hs. But formally
eμ

k = (dxμ/dxμ)eμ'k and yi

jk = Alj(Aί'ktμ,e
μ'l, + An'kyl,

i'n)A-ίi

iV are of class /f5"1,
though the corresponding quantities implied on S0 are of class HS(S0). Then rl

jkl as
given in (3.15) is of class Hs~2 . However, since u' satisfies the conformal vacu-
um field equations, rl

jkl = Rl

jkl is in fact of class Hs. Now from Tl

j0 = 0, Kl

jol =
0 (see 5. la) follows that eμ

k, y
l

jk are in fact of class Hs. Since σk

v, defined by σk

μ,ek

v' =
δμ,

v> is of class Hs the same is true for dxμ/dxμ' = eμ

kσ
k

μ,. Collecting results one
obtains

Theorem (6.5). Suppose s^4 and (S0,w0) is a conformal hyperboloidal initial data
set such that UQ is of class HS(S0). Then there exists a unique (up to questions of
extensibility) solution (D(S\ u) of the conformal hyperboloidal initial value problem
for these initial data, such that:
D(S) may be considered as a submanifold with boundary of a manifold of class Hs + 1.
The boundary surfaces of D(S) may be given as level surfaces of functions of class
Hs. The solution u is of class HS(D(S)). In particular the conformal factor Ω and the
metric gμv supplied by u are of class Hs,gμv = Ω~2gμv solves Einstein's vacuum field
equations on D(S)\I and I represents past null infinity with respect to gμv.

Remarks, (i) From the Sobolev imbedding theorems it follows in particular that
the solution (D(S),u) is of class C°° if the data set (S0,w0) is of class C°°.

(ii) The integration of Eq. (5.1) may stop for various reasons. There may build
up curvature singularities which should be indicated by the tendency of some
components of dl

jkl to blow up. There may also develop caustics of the Gauss
coordinates used in (5.1). However, since one is dealing with the "non-physical"
geodesies, it is difficult to estimate when this may happen, furthermore the
conformal factor may go to zero in regions not belonging to null infinity. In the
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example in Minkowski-space discussed in Chap. 2 this happens at the origin of
Minkowski space, which represents the "top" of D(H).

(iii) Similarly as the propagation equations (5.1) imply improved smoothness
results (6.1) for the lower order structures, one may expect the constraint equations
(4.3), which are satisfied on the surfaces St, to imply an increase in smoothness for
the lower order structure on these surfaces. However, this requires a more detailed
analysis of the system (4.3).

Concluding Remarks

The conformal vacuum field equations in the regular representation (3.17) and the
technique of reducing initial value problems of different types for these equations
as developed in [5,9] and the present paper are seen to be sufficient to deal with
questions concerning the propagation of the field in regions comprising part of
past or future null infinity. Whereas in the asymptotic characteristic initial value
problem the equations can completely be solved in terms of the nonphysical
quantities, because there the constraints essentially reduce to ordinary differential
equations, in the Cauchy problems one possibly has to solve the constraint
equations in terms of the vacuum field. In York's approach to the constraint
equations these are solved by using conformal techniques. Notice, however, the
difference between the type of rescalings used there for the various parts of the
second fundamental form and the transformation (2.13) of the second fundamental
form implied by conformal rescalings of the space-time metric. The investigation
of the problem of finding hyperboloidal initial data should also lead to a
formulation, in terms of the physical fields, of the differentiability conditions, which
are specified here completely in terms of the non-physical quantities. Correspond-
ingly should the differentiability properties of the solution of the propagation
equations be translated into physical terms. At first sight one may expect the
conformal factor and its derivatives to come in as weight factors in the definition
of the appropriate function spaces, however, the conformal factor itself is in the
present treatment of the problem provided by the solution of the differential
equations.

Acknowledgements. The author should like to thank Henning Miiller zum Hagen and Hans-Jiirgen
Seifert for discussions.

References

1. Penrose, R.: Asymptotic properties of fields and space-times. Phys. Rev. Lett. 10,66(1963); Penrose,
R.: Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. R. Soc. A284,159-203
(1965)

2. Bondi, H., van der Burg, M. G. J., Metzner, A. W. K.: Gravitational waves in general relativity VII.
Waves from axi-symmetric isolated systems. Proc. R. Soc. A269, 21-52 (1962)

3. Sachs, R. K, Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time.
Proc. R. Soc. A270, 103-126 (1962)

4. Newman, E., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J.
Math. Phys. 3, 566-578 (1962)



Conformal Vacuum Field Equations in General Relativity 471

5. Friedrich, H.: On the regular and the asymptotic characteristic initial value problem for Einstein's
vacuum field equations. Proc. R. Soc. A375, 169-184 (1981)

6. Ehlers, J.: Isolated systems in general relativity. Ann. N.Y. Acad. Sci. 336, 279-294 (1980)
7. Schmidt, B. G., Stewart, J. M.: The scalar wave equation in a Schwarzschίld space-time. Proc. R. Soc.

A367, 503-525 (1979); Porrill, J., Stewart, J. M.: Electromagnetic and gravitational fields in a
Schwarzschild space-time. Proc. R. Soc. A376, 451-463 (1981)

8. Walker, M., Will, C. M.: Relativistic Kepler problem. I. Behaviour in the distant past of orbits with
gravitational radiation damping. Phys. Rev. D. 19, 3483-3494 (1979); II. Asymptotic behaviour of
the field in the infinite past. Phys. Rev. D. 19, 3495-3508 (1979)

9. Friedrich, H.: The asymptotic characteristic initial value problem for Einstein's vacuum field
equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system. Proc.
R. Soc. A378, 401-421 (1981)

10. Friedrich, H.: On the existence of asymptotically flat and empty spaces. In: Proceedings of the
summer school on "Gravitational radiation". Les Houches 1982, Deruelle, N., Piran, T. (eds.).
Amsterdam: North-Holland 1983

11. Friedrichs, K. O.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 8,
345-392 (1954)

12. Choquet-Bruhat, Y.: Theoreme d'existence pour certains systemes d'equations aux derivees
partielles non lineaires. Acta Math. 88, 141-225 (1952)

13. Friedrich, H.: On the existence of analytic null asymptotically flat solutions of Einstein's vacuum field
equations. Proc. R. Soc. A381, 361-371 (1982)

14. Friedrich, H., Stewart, J.: Characteristic initial data and wavefront singularities in general relativity.
Proc. R. Soc. A, 385, 345-371 (1983)

15. Choquet-Bruhat, Y., York, J. W.: The Cauchy problem. In: General relativity and gravitation, Vol. 1,
Held, A, (ed.), pp 99-172, New York: Plenum 1980

16. Fischer, A. E., Marsden, J. E.: The initial value problem and the dynamical formulation of general
relativity. In: General relativity. Hawking, S. W., Israel, W. (eds.). Cambridge: University Press 1979

17. Christodoulou, D., O'Murchadha, N.: The boost problem in general relativity. Commun. Math.
Phys. 80, 271-300(1981)

18 York, J. W.: Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett. 26,
1656-1658 (1971); York, J. W.: Role of conformal three-geometry in the dynamics of gravitation.
Phys. Rev. Lett. 28, 1082-1085 (1972); York, J. W.: Conformally invariant orthogonal decom-
position of symmetric tensors on Riemannian manifolds and the initial value problem of general
relativity. J. Math. Phys. 13, 125-130 (1973)

19. O'Murchadha, N., York, J. W.: The initial-value problem of general relativity. Phys. Rev. DIG, 428-
436(1974)

20. Beig, R., Schmidt, B. G.: Einstein's equations near spatial infinity. Commun. Math. Phys. 87, 65-80
(1982)

21. Ashtekar, A., Hansen, R. O.: A unified treatment of null and spatial infinity in general relativity. I.
Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math.
Phys. 19, 1542-1566 (1978)

22. Ashtekar, A.: Asymptotic structure of the gravitational field at spatial infinity. In: General relativity
and gravitation, Vol. 2, Held, A. (ed.), pp 37-69, New York: Plenum 1980

23. Schmidt, B. G.: A new definition of conformal and projective infinity of space-times. Commun.
Math. Phys. 36, 73 (1974)

24. Geroch, R.: Asymptotic structure of space-time. In: Asymptotic structure of space-time, Esposito,
F. P. Witten, L. (eds.). New York: Plenum 1977

25. Geroch, R., Horowitz, G. T.: Asymptotically simple does not imply asymptotially Minkowskian.
Phys. Rev. Lett. 40, 203-206 (1978)

26. Hawking, S. W., Ellis, G. F. R.: The large scale structure of space-time. Cambridge: University Press
1973

27. Penrose, R.: Relativistic symmetry groups. In: Group theory in non-linear problems. Barut, A. O.
(ed.). New York: Reidel 1974

28. Courant, R., Hubert, D.: Methods of Mathematical Physics, Vol. 2. New York: Interscience 1962



472 H. Friedrich

29. Fischer, A. E., Marsden, J. E.: The Einstein evolution equations as a first-order quasilinear symmetric
hyperbolic system. Commun. Math. Phys. 28, 1-38 (1972)

30. Taylor, M. G.: Pseudodifferential operators. Princeton: University Press 1981
31. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech.

Anal. 58, 181-205(1975)
32. Adams, R.: Sobolev spaces. New York: Academic Press 1975
33. Dieudonne, J. Foundations of modern analysis. New York: Academic Press 1969

Communicated by S.-T. Yau

Received March 7, 1983




