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Abstract. In this paper we give sufficient conditions for the stability of the
standing waves of least energy for nonlinear Klein-Gordon equations.

0. Introduction

In this paper we give sufficient conditions for the stability of standing waves of the
nonlinear Klein-Gordon equation:

(0.1)

or equivalently the steady-state solutions of the modulated equation:

-ω2)u+f(\u\)aτgu = 0. (0.2ω)

We show the stability of the standing waves of lowest energy in the energy norm.
They are stable with respect to the lowest energy solution set of

-Au + (l-cD2)u+f(\u\)argu = O. (0.3ω)

The existence of solutions of (0.3ω) has already been shown in [9] and [10]. In the
generality presented in Sect. I this problem was solved by Berestycki and Lions in
[10]. The condition for stability is very simple. If we define

d(ω) = 1/2 j I Vψ J2dx + (1 - ω2)/2 J \φ J2dx + j G(\φ J)dx,

where G =f and φω is a least energy solution of (0.3ω), then:

Theorem. // d{ω) is strictly convex in a neighborhood of ω 0, then φωo is stable.

Equation (0.1) arises in particle physics. It models the field equation for spin-0
particles [4]. The existence of stable standing waves has, until now, eluded any
rigorous proof. Anderson [1] showed by numerical computation that these
equations can have stable standing waves. He studied the particular example
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where f(\u\)argu = — \u\2u + \u\4u, xeR 3 , and showed numerically that there are
both stable and unstable standing waves. We have shown in [6] the existence of
unstable standing waves for this example when ω is close to 1. Here we show that
d(ω) is strictly convex for some ω and therefore there are stable standing waves.
This problem was subsequently considered by Lee [4] and others who arrive at
the same conclusion, heuristically, using the principle of least energy.

It can be shown that the condition d(ω) is convex, is equivalent to the condition
that the energy of Eq. (0.1) E(u, v) restricted to the charge Q(u, v) = Q{φω, Jωφω) has
a local minimum at (φω, icoφω), where the charge Q(u, v) = Im J uϋdx. This agrees
with the physical intuition of the problem [4].

The theory of linearized stability does not give a clue to whether there are
stable standing waves or not. The spectrum of the linearized problem might lie
entirely on the imaginary axis and therefore one cannot deduce the stability of
these waves.

It is interesting to compare this result of stability with the instability result of
the ground state, i.e., the least energy steady state solution of Eq. (0.1). Berestycki
and Cazenave [2] showed that for special type of nonlinearities, solutions that are
close to the ground state blow up in finite time. In [6] we generalized this result to
show instability, but not necessarily blow up, of the ground state for all
nonlinearities that we can prove the existence of a ground state for.

Finally, for the Schrόdinger equation: iut — Δu+f(\u\)a.rgu = Q. Cazenave and
Lions [3] showed the existence of stable standing waves for some nonlinearities.
Berestycki and Cazenave [2] showed the existence of unstable standing waves for
another type of nonlinearities.

Notation. We employ here the standard notation

iίr

1(lRw) = {w5 radially symmetric functions on R"

\\u\\=($\Vu(x)\2dx+ j\u(x)\2dx)i/2<oo}9

LPr (Rn) = {u, radially symmetric function on R"

C£(R") = {radially symmetric, infinitely differentiable functions

with compact support},

f(s) = o(s) o |/(s)/s|-0 as |s|->0,

f(s) = O(s) o \f(s)/s\ is bounded as s-*0.

1. Standing Waves

Consider the nonlinear Klein-Gordon equation

utt-Δu + u+f{\u\)aΐgu = 0, /(0)=/'(0) = 0, xeW, n>2. (0.1)

This equation has nontrivial standing waves, u(x9 t) = eiωtφ(x) provided that

0 (O.3ω)



Stable Standing Waves 315

has a nontrivial solution.

Definition 1.1. Let

where G'(\ψ\)=f(\ψ\) and G(0) = 0,

In order that Eq. (0.3ω) has nontrivial solutions it is sufficient that/and G satisfy
[10]:

ί/ί.l 3η>0B:G(η)<0

Iff. 2 M'/M/V^O, /<l+4/(»-2).
[ 17-+00

Definition 1.2. Let ω* = {infω^09:3^ ?(l-ω2)^2/2+G(^)<0}. Thus ω*e[0,l).
We shall always take ω * < ω < l .

Lemma 1.1. For ωe(ω*, l)Mω is a C1 hypersurface in H}(βP) bounded away from
zero.

Proof See [6].

Proposition 1.1. // φωeHl(W) is a solution of (0.3ω), and \G{\φω\)dx< oo,

/ Let φβ(x) = φω{x/β\ then

^ ( ^ ) = ̂ "V2J|ΓφJ2^ + Ml-ω2)/2j|φJ2^+JG(|φJ)dx), (1.1)

since φ ω is a solution then δJω(φω) = 0 => d(JJφβ))/dβ\β=1=0, but

d ( J > ^ ) ) / d ^ = 1 = ( n - 2 ) / 2 j | F φ J 2 d x + w ( l - ω 2 ) / 2 ί l φ J 2 ^

therefore K J φ J = 0.

Theorem 1.1. Lei ω2E(ω*2,1), n>2, then

d(ω)= inf Jω(υ)
veMaj

is achieved for some v + 0,

d(ω)

Moreover v satisfies

-Δυ + (l-ω2)v+f(\υ\)a.τgv = 0. (0.3ω)

Proo/ First we show the equivalence of both minimization problems. Consider
any function veHj;QELn) such that KJv)<0. Let vβ(x) = v(x/β). Then

2 ^ (1.2)
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Now for β = 1 KJυJ = Kω(v) < 0 and for β close to zero KJυβ) > 0. Therefore there
exist a βoe(0,1) such that KJvβo) = 09 and

Since Jω(υ) = l/n{$\Vv\2dx + Kω(v)\ then

d{ω)= inf J » = inf{l/nf |Ft>|2dx,
eM

Next, consider any minimizing sequence vk. Then (J|Pi;fc|
2<ix) is bounded. By H.2

for every ε > 0 there exist C1(e)>0such that G(η)> -ε/2η2- Cx(ε)ηι+ί, where / < l
+ 4/(w-2). Since K J ^ ^ O , then

and this implies

Now by Sobolev embedding H^(IR")^^(3Rn), 2 < p < 2 + 4/(n-2) and since
(J|Fi;k|

2dx) is bounded we get that ||i;J is bounded. Therefore there exist a
subsequence, also denote it by (vk\ such that

vk^υoeHl(W) and vk->voeLp 2<p<2-f 4/(n-2),

since for radially symmetric Hr

x(IR") ->Lf (R") is compact for 2 < p < 2 + 4/(n - 2). By
lower semicontinuity of weak limits we have:

$ G(\vk\)dx) = 0.

And from the above argument the inequalities are equalities and the weak limit is
strong. Consequently uo + 0 by Lemma 1.1, and

d(ω)= inf Jω{υ) = Jω(v0).
veMω

Finally, to show that v0 satisfies Eq. (0.3) we have by the Lagrange multiplier
method

δJω(v0) = λδKω(υ0), (1.3)

or

- ω2)v0 +f{\υo\) argϋ0

By Proposition 1.1 we have

$ G(\vo\)dx)

$ G(\υo\)dx)]. (1.4)
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But

therefore

0 = λ{n-2)$\Vυo\
2dx,

and this implies that λ = 0.

Definition 1.3. Let Sω be the solution set of d(ω)= inf Jω(v).
veMω

Corollary 1.1. Sω is also the solution set of

inϊJω(υ) = d(ω)9 ω 2 e ( ω * 2 , l ) , l/n$\Vv\2dx =

Proof Suppose 3v such that l/n$\Vv\2dx = d(ω) and Jω(υ)<d(ω). Then

l/nKω(v) = Jω(v)-l/n$\Vv\2dx<0.

But by Theorem 1.1

and this contradicts the above assumption. Therefore

inf JJv) = d( ω ), 1/n JI Vυ\ 2dx = d(ω).

Now to show that the solution set of this problem is Sω we note that \/v which is a
minimum we have

δJJυ) = λΔv9 or - ( l + λ)zdt; + (l-ω 2)t;+/(|t; |)argι; = 0, (1.5)

and by Proposition 1.1

-2)/2\\Vv\2dx + n((l-ω2)/2\\v\2dx+ $G{\v\dx) = 0

Jω(v)-1/2JIVv\2dx-(l+λ)(n-2)/(2w)J|Vυ\2dx = d(ω)

=> A = 0 and .-. Kω{v) = 0 => veSω.

Corollary 1.2. Let vkeHj:(JRn) be a sequence such that l/n$\Vvk\2dx~>d(ω) and
JJvk)-^dι Sd(ω\ then vk has a strongly convergent subsequence vk-^φωeHl(lRn) for
some φωeSω and

Proof Since \\Vυk\2dx and Jω{vk) are bounded, vk is a bounded sequence in Hj fβ!1)
(see the proof of Theorem 1.1). vk has a weakly convergent subsequence, also
denote it by vk, such that

Now \/n\\VvQ\2dx^hm l/n\\Vυk\2dx = d{ω\ and KJυQ)^M. Kω(vk) (by the proof
k-+oo /c-> oo
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of Theorem 1.1), therefore

or

But from Theorem 1.1 we have

Therefore all inequalities are equalities and the weak convergence is strong.
Therefore

lG{\υk\)dχ-*\G{\φω\)dx a n d dι=

> 0 ) = 0 => ι;oeSω and.-. υk->υoeHl{W\vo

Remark 1.1. This is the only place where radial symmetry is needed. One can
generalize the above result to include the space H^R") by using the notion of
"concentrated compactness" introduced by Lions [5]. In this case the sequence
DjeH 1 ^") of Corollary 1.2 will have a subsequence vkn such that
vk{ +ykn)eH1(W) is relatively compact in H^IR") for some sequence (ykj.

2. Standing Waves as a Function of Frequency

In this section we'll study the behavior of d(ω) = 1/n j | Vφj2dx as a function of the
frequency ω.

Lemma2.1. Let ω1<ω2 be such that [ω 1 ? ω 2 ]C(ω*, 1), then d(ω) and
§\φω\2dx(φωeSω) are uniformly bounded in ω e [ ω 1 , ω 2 ] .

Proof. Since K is continuous in ω, d(ω) is bounded for ωe [ωv ω 2 ] . Now for φeSω,
Kω(φω) = 0. By H2 G(η)^-cηι+1; Kl + 4/(n-2), for η large, and G(0) = G'(0)

>0,%

Now because K ω ( φ J = 0, and by Sobolev embedding

for a small.
This implies that \\φω\2dx is uniformly bounded for ωe[ω 1 9 ω 2 ]C(ω*, 1).

Proposition 2.1. a) d(ω) is a decreasing function of ωe(ω*, 1), b) if ω1<ω2,

ii) J(ω 1 )<J(

Consequently, d(ω) is a continuous function of ωe(ω*, 1).
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Proof, a) Let ωx <ω 2 , then

or

+ G{\φωi\)dx)-n{ω2

2-ω2)l2\\φίaι\dx,

KJφJ = Kωί(φJ- n{ω\ - ω\)/2 f \φj2dx,

but Kωi(φJ = 0

Therefore

ί/(ωi) = 1/n \ I Pφω i |
2dx > inf {ί/n JI Fu|2dx, Kω:i(t>) ̂  0,« Φ 0},

since Koli(φm)<0,

b) Again let ω x < ω 2 and ψβ(x) = φωι(x/β), then

Let

Λ1 2=(ω2-ω2)/2ί|φJ2Λx, (2.1)

then Kω2(ψ/J) = (n(«-2) ίi(ω1)/2F-2-«((π-2)ί/(ω1)/2 + zί 1 2 )^, and for

' Kω2(ψβ2) = 0, (2.2)

|2dx = jβr 2 ' ί(ω 1) (2.3)

But for ωι— ω2 small, |/l 1 2 |<C(ω 2 —ω2), since \\φω\2dx is bounded. Therefore

^ - ^ l - J ^ / d ί ω J + oίd^), (2.4)

and from Eq. (2.3) we get

φ > 2 ) £ d ( ω i ) - 4 1 2 + o(Λ12), (2.5)

or

^ω^g^ω^-ίω^-ω^jl^J^x + oίω.-ω .̂ (2.6)

To show the second part of b) let ψy(x) = φω2(x/y), then

or

Kωi(ψy) = (n(n~ 2)d{ω2)l2)f-2 - n((«- 2)d(ω2)/2- J2 1)y", (2.7)
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where

since \\Vφωi\
2dx = nd{ω2) and Kω2(φω2) = 0.

For

L = l / ( l -2Λ 2 1 /(n-2Mω 2 ) ) 1 / 2 ,

J. Shatah

(2.8)

(2.9)

(2.10)

(2.11)

The continuity of d(ω) follows from Eq. (2.6) and (2.11).
Next we'll need this lemma about strictly convex functions.

Lemma 2.2. Suppose h(ω) is a strictly convex function in a neighborhood of ω 0, then
Vε>0 3iV(ε)>09:|ωε-ω0| = ε,

a)-ωg<ω0<-ω, |ω — ωo|<ε/2

but for ωλ — ω2 small

(h(ωε) - h(ω))/(ωe - ω) ̂  (h{ω0) - h(ω))/{ω0 - ω) -

b) ω<ω o <ω ε , |ω — ωo|<ε/2

(h(ωε) - h(ω))/(ωε - ω) ̂  (h(ω0) - h(ω))/(ω0 - ω) +

Proof The proof is very easy to see geometrically from the picture below.

Fig. 2.1

We'll give a proof for the case ω ε < ω 0 < ω and the second part follows by an
identical argument. Assume that the claim is false. Then there is an ε0 > 0 and a
sequence ω k 3 : | ω ε o - ω 0 | = ε 0 , | ω k - ω 0 | < ε / 2 ,

(Λ(ω0) - ft(ωk))/(ω0 - ωk) - 1/k < (ft(ωβo) - Λ(ωk))/(ωeo - ωk). (2.12)

Pick ω1 such that ω ε o < ω 1 < ω 0 , then

(ft(ω0) - Λ(ωΛ))/(ω0 - ωk) > (fc(ωi) - h(ωk))/(^i" ωfc) (2.13)

[since h(ω) is convex]. From Eq. (2.12) we get

/(ω1 - ω k ) - 1/Λ. (2.14)
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Since ωk is bounded it has a convergent subsequence. Also denote it by ωk such
that ωk-^ω2^ω0>ω1>ωεo. Now from Eq. (2.14) and continuity of h{ω)

(h(ωεo) - h(ω2))/(ωβo - ω2) §; (hiωj - h{ω2))/{«>i ~ ωi) (2.15)

But since h(ω) is strictly convex

(hiωj- Λ(ω2))/(ω1 - ω2) > (h(ωj - ft(ω2))/(ωeo - ω 2 ) , (2.16)

which contradicts Eq. (2.15). Therefore the claim is true.

Theorem 2.1. Suppose that d{ω) is strictly convex in a neighborhood of ω 0, then for
ω close to ω0 3η(ω)>0, η(ωo) = 0, such that

d(ω)-d(ω0)^{ω0-ω)ω0$\φωo\
2dx + η(ω).

Proof Let ω < ω 0 , ω close to ω 0 . Then from Lemma 2.2 and for ω < ω o < ω 1 ?

{φ1)-d{ω))/(ω1-ω)^{diωί)-d{ω0))/{ω1-ω0)-ί/N{ω)i (2.17)

and from Proposition 2.1

(diωj - d{ωo))/(ω1 - ω0) < - {ωι + ωo)/2 J \φωfdx + o(ω1 - ωo)/(ω1 - ω 0 ).
(2.18)

From Eq. (2.17) and (2.18)

{d(ωι)-d{ω))/{ω1 - ω ) ^ -{ω1 +ωo)/2 j \φωfdx- ί/N(ω) + o(ω1 -ωo)/(ω1 - ω 0 ) .

Let fflj-^co,,, then by continuity of d(ω)

(d(ω0)- d(ω))/(ω0 - ω) ^ - ω 0 J | Φ ω o | 2 d x

or

d(ω) - d(ω0) ^ ωo(ωo - ω) J \φωfdx + (ω0 - ω)/JV(ω). (2.19)

For ω > ω 0 , from Lemma 2.2 and ω > ω o > ω 1 , we have

(d(ω) - d(ωi))/(ω - ω x) ^ (d(ω0) - d ( ω i ) ) / ( ω 0 - ω,) + 1/N(ω), (2.20)

and from Proposition 2.1

Again from Eq. (2.20) and (2.21) and letting ω ^ ω , , ,

(φ>)-d(ω o ) )£ -ω0(ω-ω0)$\φao\
2dx + (β>-co0)/N{ω), (2.22)

and this concludes the proof of Theorem 2.1.

3. Stability of the Standing Waves

Now if we consider the Cauchy problem
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we don't have strong solutions (u( )eC([05 T],Hl(Rn)lut( )eC([09 T\Lr

2(Rn))) for
the general nonlinearities we are considering but we always have weak solutions

(u(-)eL°°([0, D,Hl(W%u t( )eL°°([0, T\L2{W))),

that are weakly continuous in t. Also we don't necessarily have uniqueness, or
energy identity, but we always can find a weak solution that satisfies the energy
inequality

1/2 f \ut(t)\ 2dx + J0(u(ί) S1/2 J K12dx + J 0 (u 0 ),

provided JG(|w0|)dx<oo (see Strauss [8]).

Definition 3.ί. Define the metric space X = {completion of ueC™r(JR?) with the
metric

ρ(uvu2)=\\uί-u2\\+\$(G(\uί\)-G(\u2\))dx\

and define the modulated energy functional of Eq. (0.2ω), £ί0(w, ϋ) = l/2j|ί;|2rfx

, t e Lr

2(RΛ) £ > , t;) < d(ω), KJμ) > 0} u {(0,0)}

= {ueX, VEL2(W) Eω{u, v) < d(ω), 1/n j | Vu\2dx < d(ω)},

2 = {ueX, veLfm £ > , t;) < d(ω), KJμ) < 0, u Φ 0}

, U6L2(R") £ > , ϋ)<d(ω), ί/nf |Fu|

Lemma 3.1. R^ and R^ are invariant regions under the flow of (0.2ω) for the
solutions that satisfy the energy inequality.

Proof We'll prove this by contradiction. Let (M0, w1)ejR^ and assume that there
exist a tγ such that (u{t^), u^t^φR^. By lower semi-continuity of KJu(ή) there exist
a minimal t0 such that (u(to\ut(t0))φRl, i.e. KJu(to))S0 and KJu(t))>0 for
ίe[0,ί o). Now

l/n$\Vu(tQ)\2dx<liml/n\\Vu(t)\2dx
t^to

ί<ίo

t<to

therefore

ί/n JI Vu(to)\2dx S lim JJu(ή) gJim EJu{t)9 ut(t)) < d{c

and we also have K(u(to))^0. This contradicts the definition of

Therefore R^ is invariant under the flow of Eq. (0.2ω). Similarly we can show that
R2 is also invariant.
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Lemma 3.2. Let u(t) be a solution of

utt-Δu + u +/(|M|) argK = 0,

u(0) = uoeX, uf(O) = tt16Lr

2(R"),

that satisfies the energy inequality. Then for every K > 0 there exist δ(K) such that if

Q(uo> Ψω0) + K ~ ^ ( Λ o L < δlκ)>

then d{ωo + l/K)^l/nj\Vu{ή\2dx^d(ωo-l/K) Vί.

Proof Fix K>0 and let ω + = ω 0 + l/X, ω_=ω o - l/ J K, and u(t) = v+(t)eiω + t

= ϋ_(ίyω- ί. Then

v ± f f + 2iω±i;±ί-Zlι;± + ( l - ω ^ ) ι ; ± +/(|ι?±|)argι?± = 0 ,

U±(0) = MO, ϋ±ί(0) = u 1 - i ω ± u o .

The energy inequality of this equation is

y2J\Ul-ιω±u0\
2dx + l/2^\Vu0\

2dx

+ {\-ω2

±)l2\\u0\
2dx+ \G{\uo\)dx, (3.1)

or

but

+ C(ω±, ω0) f |ι/1 - z'ωoφωo|
2ώc + j |M0 - φωo\

2dx. (3.3)

Now since d(ω + )<d(ω0)<d(ω_) and

^ ( ω 0 ) Ξ l / / t l | P φ ω o | 2 ^ = l / n j | P i / 0 | 2 ^ + O^). (3.4)

If we pick δ small enough we have

+ )<l/n\\Vu0\
2dx<d{ω_), (3.5)

(3.6)

since (ωl — ω
By Theorem 2.1 and for (5 small

o ± o $ j + η(ω±)^d(ω±), (3.7)

and therefore from Eq. (3.6) we have the energy inequality

l/2J|ι;±ί(ί)|2^x + Jω ±Wί))<^(ω±) Vί

=> d(ω±)<l/n$\Vu{t)\2dx<d(ω_) Vί (3.8)

by Lemma 3.1.
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Theorem 3.1. If d(ω) is strictly convex at ω 0 , then the standing waves of frequency
ω0 are stable in the following sense: for every ε > 0 there exists a δ(s) > 0 such that if

inf (ρ{u(t), ψ) + \ut{t) — iωoψ\ 2) < ε for all t.
ψeSωo

Proof Assume not. Then 3 sequence (uOk,ulk\ (tk) and an ε o > 0 such that

and

inf ρ(uk(t% ψ) + |«kf(ίfc) - ίω0ψ\2 >ε0.
ψeSωo

From Lemma 3.2, 3 subsequence also denote it by (uk(tk)) such that

d(ω0 + 1/fc) ^ 1/n f I Vuk(tψdx g d(ω0 - 1/fc),

and (J|wfc(ίfc)|2ίix) is bounded (by Theorem 1.1). Now as fc->oo

\ln\\Vuk{tk)\2dχ->d{ω0) (3.9)

from continuity of d(ω). From Eq. (3.8) we have

therefore 3 subsequence such that

JJuk{tk))^dl^d{coo). (3.10)

By Corollary 1.2 Eq. (3.9) and (3.10) imply that 3ψeSωo such that

II ut(t*)-ψ | | - 0 ,

Jωo(uk(tk))^d(ω0).

Again from Eq. (3.8) we have

$\v + kttΨdx = \ukt(tk)-iω + uk(tk)\2

2-^0,

and

\$(G(\uk(tk)\)-G(\ψ\))dx\-+0,

which contradicts the assumption of instability.

4. Examples

We'll present here two examples where we have stable standing waves.

Theorem 4.1. The equation

has stable standing waves for 1 <p< 1 +4/w.
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Proof. In order to show the existence of stable standing waves it is sufficient to
show that d(ω) is strictly convex for some interval of ω.

Solution of the equation

ω 2 )φ ω - |φ ω p-Vcα = 0 (4.1)

has the following scaling property: let v(x) = (l/δ)φω(x/β), then

-δβ2Av + (l-ω2)δv-δp\υ\p~1υ = 0, (4.2)

and for

jS^ l-ω 2 ^- 1 . (4.3)

Equation (4.1) becomes

-Δv + υ-\υ\p"1v = 0. (4.4)

Now

i\rφj2dχ=(i-ω2rs\vφo\
2dx9 (4.5)

where α = (4 - (n - 2) (p - l))/2(p - 1).
Now it becomes easy to see when d(ω) = l/n\\Vφω\2dx is strictly convex,

(4.6)

=> d"(ω) = 2 α [ - 1 + (2α- l)ω 2] (1 -ω2)α~2rf(0), (4.7)

since l<p<l+4/rc, α>0, 2 α - l > 0 .
Therefore d"(ω)>0 implies - l- + (2α- l )ω 2 >0,

Moreover ω2> 1 for Eq. (4.1) to have a solution. Therefore

and this set is not empty for 1 <p< 1 +4/n.

Remark 4.1. For 1 +4/n<p<l +4/(n — 2) we showed that αZ/ standing waves
obtained by Theorem 1.1 are unstable [6].

Another example we'll consider is one which appears in studying spin-0
particles in field theory [4]. The potential, i.e. G(|w|)5 for this model is of the form

Proposition 4.1. The equation

2 2 * 3 (4.8)
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has nontrivial solution φω of lowest energy for ω2e(13/16,1). Moreover

as ω 2

Proof For Eq. (4.8) to have nontrivial solution it is sufficient to have 1— ω2>0
and 3η such that (l-ω2)η2/2 + G(η)<0. Now

(l-ω2)η2/2-η*/4 + η6/6<0

for some η if

(l/4) 2-4(l-ω 2)/12>0

=> ω2> 13/16.

We show that d(ω)->oo as ω2-* 13/16 by contradiction. Assume that d(ω) remains
bounded then by Theorem 1.1 \\φω\\ is bounded. This implies that 3 sequence
ωk-+13/16 and veHl(WL3) such that φωk^υeH^(R3). Again by Theorem 1.1

KJp) ^\jmKωo(φJ = lim(ω2 - ω2)/2 J IφJ 'dx + χ ^ ( φ j ? ( 4 β 9 )

where ω 2 = 13/16. But Kωk{φωj) = 0, therefore

(4.10)

Now Kωo{u)>0 VueHliR3), wφO, so from (4.10) we have that t; = 0. By Eq. (4.9)
we have that-the convergence is strong. But d(ω) = ί/2 §\Vφω\2dx is monotone
decreasing function,

d(ω1)>0 => 0=limd(ω / c )>d(
k->oo

a contradiction. Therefore d{ω)-*oo as ω-^ 13/16.

Theorem 4.2. The equation

utt-Au + u-\u\2u + \u\4u = 0, xeJR3

has stable standing waves for ω close to 13/16.

Proof By Proposition 4.1 d(ω)->oo as ω—• 13/16 and by Proposition 2.1 d(ω) is
monotone decreasing function of ω. Therefore the graph of d(ω) looks like

όlω)

13/16

Fig. 4.1
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Now it is easy to see that d(ω) is strictly convex for ω close to 13/16 and by
Theorem 3.1 these standing waves are orbitally stable.

Remark 4.2. This particular example was studied numerically by Anderson [1]
where he showed that for ω2 close to 13/16 there are stable standing waves and
that for ω close to 1 they are unstable and this is precisely what we show in [6].

Acknowledgement. I would like to thank Professor Walter Strauss for his helpful remarks.

References

1. Anderson, D.L.T.: J. Math. Phys. 12, 945-952 (1971)
2. Berestycki, H., Cazenave, T.: Instabilite des etats stationnaires dans les equations de Schrodinger

et de Klein-Gordon, non lineaires. C. R. Acad. Sci. 293A, 489-492 (1981)
3. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrodinger

equations. Commun. Math. Phys. 85, 549-561 (1982)
4. Lee, T.D.: Particle physics and introduction to field theory. New York: Harwood Academic

Publishers 1981
5. Lions, P.L.: Principle de concentration - compacite en calcul des variations. C. R. Acad. Sci. Paris

294, 261-264 (1982)
6. Shatah, J.M.: Unstable ground state and standing waves of nonlinear Klein-Gordon equations (to

appear)
7. Strauss, W.A.: Nonlinear invariant wave equations. In: Lecture Notes in Physics, Vol.23,

pp. 197-249 (Erice 1977). Berlin, Heidelberg, New York: Springer 1978
8. Strauss, W.A.: Anais. Acad. Bras. Cienc. 42, 645-651 (1970)
9. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149

(1977)
10. Berestycki, H., Lions, P.: Arch. Rat. Mech. Anal. (1983)

Communicated by A. Jaffe

Received November 8, 1982; in revised form May 11, 1983






