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Abstract. We present a simple derivation of on-shell N = 2 supergravity by
using fibre bundle analysis this is done by introducing a central charge as a
part of the connection in a principal bundle whose structure group is the super-
Poincare group. As a consequence there is a non-trivial generalization of the
supersymmetry transformations.

I. Introduction

Recently [2] it has been proved that N = 1 supergravity can be constructed in a
purely geometrical way by using fibre bundle analysis. This is done by extending
the orthonormal frame bundle of a manifold admitting a spin structure to a bundle
with structure group, the super-Poincare group [1].

This method shows its virtues as far as geometrical formulation of supergravity
theories are concerned by overcoming certain difficulties [1] that arise when we
use a superspace approach additionally it gives an easy technique for constructing
supergravity and its invariances in a more direct way than the work of [3, 4].

In this paper we will show how fibre bundle techniques enable us to include
matter fields, and in particular to exhibit in a purely geometrical way, a very
natural construction of iV = 2 supergravity with its set of supersymmetry transfor-
mations. This is done by introducing a central charge as a part of the connection
and which has a trivial action on the supersymmetric transformations. This is a
natural extension of the work of Yates [1].

II. Formalism

Analogously to the N=l supergravity theory discussed in [1], we construct a
principal bundle (E,π,M) which has structure group, the N = 2 super-Poincare
group, with a single central charge Z. Thus a connection Γ in this bundle may be
expressed as

(2.1)
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where Jah generates the SL(2, C) subgroup and Pa (respectively, Qaί) are the
generators of boson (respectively, fermionic) translations and Z is the central
charge generator of U(l); note that θa (respectively, ψaι) is a one-form on E taking
values in the even (respectively, odd) part of a Grassmann algebra, and A is a
1-form on E (j=l,2).

The algebra of the generators in (2.1) is the extended one defined by:

uz' ( 2 2 )

Uab> QJ=(σab)
βjQβj#ab=ίly<» 7b] ,

where Caβ is the antisymmetric charge conjugate matrix, and the central charge
commutes with any of these generators. This charge is the key ingredient in our
construction and makes it significantly different from that in [3, 4].

Let σ be a cross-section1 from M to E then the pull back of Γ will give

(2.3)

σ*A = Aμdxμ,

where ωa

μ

b is the usual Levi-Civita connection, ea

μ is the vierbein, ipaj is the usual
spin 3/2 field and Aμ is the electromagnetic field. The curvature two-form A is
given by the structure equation

Γ,Π, (2.4)

whence writing

Δ = $%JΛ + TaPa + Q^Qai + HZ, (2.5)

we find

(2.6a)

ψt, (2.6b)

ρ«' = dyf1+\ωbc Λ (σbcΨf, (2.6c)

H^dA + ̂ ACxp^ij, (2.6d)

whose pull back is given by:

(2.7a)

(2.7b)

(2.7c)

(2.7d)

1 If E is non-trivial, then local sections must be used
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where
K = d»ω"b - δv< + « - « , (2.8a)

7 v̂ = dμe"v - a v < + ω»c< - < / μ + < C y > w , (2.8b)

V ^ φ ί j y , (2.8d)

where ea

μ is the inverse of eμ

a such that ea

μe
μ

c = δa

c.
Finally the Bianchi identities read

DΔ=0, (2.9)

where D is the horizontal exterior derivative we deduce

dΩf + ωa

cAΩc

E

b-Ωa

E

cAωb

c=O, (2.10a)

dTa + ωac ΛTC- Ωa

E

c A θc + ψι A Cy% = 0, (2.10b)

dρri + i ω * Λ ( σ & c ρ Γ - ^ Λ (σbcΨr = 0, (2.10c)

S (2.10d)

Let us consider the U(l) subgroup of the structure group of £ as a theory of
Kaluza-Klein type, i.e. let π :U(l) xM = P^>M(i.e. Pis a sub-bundle of E\ and let
fe be a metric defined on the real numbers [Lie algebra of U(1) = L(U(1))]. Then we
can construct a metric h(g,k,A) on P, where g is the metric on M. Given αeU(l),
let Ra:P->P be the corresponding isometry of E; then the usual Kaluza-Klein
metric h is defined by:

h = π*g + kA, (2.11)

where for X, Ye TpP

π*flf(X,y) = β(πl|[Z,πJ|cY) and kAQC, Y) = k(A{X\A{Y)),

and under the action of Ra we have:

h(Ra*X,Ra*Y) = h(X,Y). (2.12)

Let EVE2, ...,E4 be four vector fields on {M,g) defined on a neighbourhood U of
x = π(p); peP with their horizontal lifts E 1 . . . £ 4 relative to the connection ^
defined on π ' ^ J e P . Let E5 be a basis of L(U(1)) relative to fc, then relative to the
metric h on P, £ 1 ? . . . , £ 5 will be an orthonormal basis defined on π~1(U). With
a,b9c=l, ...,4 we write

Then following [8], one can prove the following:

R555=R5a5Z=R55a:=Ra5

also

n5 /r5 175 \
^ α b c ~~ v r ac, b Γ ab, c''

^a5b ~ Γ ab5^ Γ cbΓ 5a >
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where RβCD (A,B=19...,5) is the Riemannian tensor on P computed from the
metric h and expressed in the frame basis Ev . . . , £ 5 . The Ricci tensor is

and the scalar curvature is

Rί = K + R5

5=R4-FabF
ab, (2.13)

where Fab is a matter field strength which includes the electromagnetic field
strength, and it is defined through Eqs. (2.7d) and (2.8d) as the U(l) part of the
curvature 2-form in Eqs. (2.5) and (2.6d). Now by definition the Riemannian tensor
Rab

cd is related to the curvature 2-form in Eq. (2.6a) by

Ωa

E

b = ^Rab

cdkθ
cΛθd. (2.14)

Therefore, after some manipulations, Eq. (2.13) can be written in 4-form notation
as

Ωf Λ ^ Λ θ\bcd = (Ω? - \ΓmLJa Λ θb) Λ θc Λ θ\bcd. (2.15)

Hence in what follows it will be understood that

dωab + ωac A ωcb = Ωab = Ωab - ^fmmfmmθa A θb, (2.16)

where fmm is a 0-form matter field which is antisymmetric tensor representation of
SO(1,3) and is given in the Ev > ,E5 basis by

fmm=ΪFmm, (2.17)

where Fmm is as defined in Eq. (2.13) and (2.8d).

III. The Lagrangian

The construction of the lagrangian is very simple provided we bear several facts in
mind. In general relativity one can view the Einstein lagrangian as arising from the
requirement that the variation of it with respect to the connection ωμ should lead
to an equation stating that the torsion is zero. Specifically with L being a 4-form,
then

l ATaAθ\bcd, (3.1)

using (2.6a) and (2.6b) with /m m = 0, ψ = 0, A = 0 and the fact DΩf = 0 (D is the
horizontal exterior derivative ϊ ) ω = J + [ ω , ] ) , one can integrate (3.1) to get

Ir^Λ^Λ^,, (3.2)

whose pull back is

^=eR9 (3.3)

where R is the scalar curvature and e = dQtea

μ. To obtain N = ί supergravity we
need to drop the condition ψ = 0 [1] however to get N = 2 supergravity we need
to drop y4 = 0, and/m m = 0, and assume that δLN = 2 will give non-zero torsion. This
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torsion is proportional to A, F, and θ. Therefore we expect δLN = 2 to contain at
least a part which arises from the variation of the matter field, i.e. fmm. The most
general expression is

{ > e % b c d , (3.4)

where Ma is a 3-form which is determined from Tα, θa, H, and A. The correct
expression is:

Ta, (3.5)

where α and β are real coupling constants.
The integration of Eq. (3.1) will give, after using Eqs. (2.6a), (2.6b) and requiring

SL(2, C) in variance:

L, = θa A θb A Ωcdεabcd - V Λ Cy5yaQi A θa, (3.6)

and the integration of (3.4), using Eq. (3.5) gives

L2 = -oiDfcdΛ 0« Λ 0b Λ Aεabcd + ocf V Λ CfΨiΛθbΛ Aεabcd

\ Γ V Λ Cψj ΛθflΛ θ\ jSabcd + K , (3.7)

with

J δfcdATaAθbAAεabcd.
A,θ = const

The lagrangian L 2 is not invariant under a gauge transformation induced by an
element of SL(2, C) [1], but we make it so by adding the term

- -(4dA + v?f Λ C y Λ l 7 ) Λ / Λ Cγ5ψ^εk^,

which will not affect (3.4), and setting β = — 2α. Then the full lagrangian after using
Eq. (2.16) is

LN = 2 = θa A θb A Ωl\bcd - kLnΓV A θb A θc A θ\bcd

- Aψ A Cy5yhQt Λ ^ - ^ ( 4 d A + ψ* A Cxph^ A\pk A Cy5\p*εu

-aDfcdΛθflΛθ&Λ Aεabcd + afcd Axpl A Cyaxpi Λ ^ Λ Aεabcd

+ \ΓW Λ CψjΛθflΛθ^ε, εfl6cd. (3.8)

(The invariance of this lagrangian under supersymmetry transformations will be
proved in the next section.) Equation (3.8) is the result obtained in [5, 3] (after
redefining the ψ in (3.8)->/φ and dropping the ί (complex number) in the result
of [3]).

The above result can be generalized by extending the group of the bundle from
the N = 2 super-Poincare group to the Orthosymplectic group OSP(4/2). In this
case the generators will satisfy
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fl" cd J h c ad '"' (3.9a)

α ' ai 2 7a*i

j

 βP (3.9b)

{Qai> Qβj} = (^QaβSi/ab + C^jZ + δ^CjXβPa , (3.9c)

C J f l b ' ^ ] ~ ^ c P f l ~ f / α Λ ' (3.9d)

with Z commuting with the rest of the generators. The algebra (3.9) closes and the
algebra of Eqs. (2.2) may be recovered from (3.9) by rescaling Jab, and Qaί

(3.9a)-(3.9d) to m Jab, m-Qai and taking the limit m->0, i.e., a form of Wigner-
Inonίi contraction. Therefore the contracted OSP(4/2) corresponds to the usual
extended super-Poincare group. Now by using (2.1), (2.4), and (3.9) we obtain the
following:

with

Qab = dωab + ωac Λ ωcb + βa Λ Qb + i

(3.10a)
Ta = dθa + ωacAΘc^-^ψiA Cyaxpi,

Q™ = dψai + \ωbc{σbcφ)ai + \Q A γψaί + εijA A ψ«j,

H = dA + $ψiΛCψjεij.

We substitute (3.10a) and (3.10b) into (3.6), but then (3.6) is no longer invariant
under SL(2, C) gauge transformations, so this may be corrected by adding

- \ [θa A θb + V>f Λ (Cσ^ψJ Λ θc Λ θ\bcd ,

which will not affect the variation (3.1). Then the L N = 2 which corresponds to

OSP(4/2) is = θa A θb A (Ωc

4

d - \fmnf
mnθc Λ θd + ψ* A Cσcd

Ψi + ΘCA θ%bcd

-±θa Aθb A(ΘC Aθ' + ψ1 ACσcd

Ψi)εabcd

-4ψίACγ5ybρίAθb

- - (AdA + ψι A C\pj&i3) A\pk A Cys\p£εkS

-*DfcdAθaAθbAAεabcd

+ afcdAψiACyaψiAθbAAεabcd

+ ^fcdψίΛCιpjAθaAθbεijεabcd. (3.11)

This is the unconcentrated LN = 2 obtained in [6,4] (after redefining our ψ in
(3Al)-+ίψ and dropping the i factor in the final result of [4]).



Fibre Bundles and Supergravity 59

Finally and for later use, we exhibit the equations of motion following from

Eq.(3.8):

Torsion Equation (variation of ωab).

2εabciT Aθ'-2af^mJ< ΛΘ'AA = Q, (3.12)

from which we deduce that

Ta=-afabΛAΛθb. (3.13)

Matter Field Equation (variation of f a b ) .

^ a b c J c ΛΘ"ΛA + aεabcdθ< ΛΘ'ΛH- lfabεmnpqθ
m Λ θ" A θ» Λ 0* = = 0

(3.14)

from which we obtain

H=-fabθ«θb. (3.15)

Taking the pull back of (3.15) and using Eq. (2.8d), we have

2eμevΓmn

o

from which we obtain Fmn= -fmn. Using Eq. (2.17) we deduce that α = 4, which is

the usual value for the N = 2 supergravity coupling constant.

Gravitino Equation (variation of ψaί) (ψaιCaβ = ψβ).
ai ^θa- Zγ^ψ* ΛH + 2a fabfψai Λθd Λ Aεabcd

θcAθdAxp)εabJ^Ay5yyiA Γ = Q; (3.16)

by substituting Eqs. (3.13) and (3.15) we get:

ρ*i = ρ * 0« Λ θb + KέKyjφ* A θbf
ab + ±y5yaψ«j A θbfcdε

abcd), (3.17)

where K is equal to -, and ρ™b are the inner components which satisfies the Rarita-

Schwinger propagating equation for the spin 3/2-particles, that is

y 5 7 α ώ ^ d e = 0 . (3.18)

Note that the above equation is equivalent to saying that the quantity
QHOT = Qaab®a Λ ^& is a horizontal vector field in the bundle E.

Maxwell's Equation (variation of A).

4(ρ* Λ Cy5ψ
1 - ψι A Cy5Q%j- aDfabθc A θdεabcd

+ afabψiACfψiAθdεabcd = O, (3.19)

by substituting Eqs. (3.13), (3.15), and (3.17) in (3.19) one gets:

Dfab =~\ zahcdwΛCy5)aβQ
β

ckj. (3.20)
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IV. Invariances of the Lagrangian

Evaluating the supersymmetry transformations and showing the invariance of
(3.8) is most easily done when we reduce the bundle (E, π, M) to one whose group is
SL(2,C)[1].

Let (£/SL(2, C)J, M) be the associated bundle to (£, π, M) with cross-section σ.
Then we define the reduced bundle to be σ~1E={(x,μ);σ(x) = pτ(u)};
σ~1EQMxE, pr :£-*£/SL(2, C)_v μ = P2(x,w), X = P 1(X,M), P2:σ~1E-^E, and
P1:σ~1E^>M. We are interested in bundles σ~xE upon which we can choose new
torsion Ta and H such that H = Ta = 0 on σ~ λE. In order to achieve this we have to
construct σ in such a way that the forms ωab and S = (θa,A) pulled back to σ~λE
via P2 are an absolute parallelism (in physical terms this means that the matrix ea

μ

has an inverse, and the central change acts trivially on the supersymmetric
transformations induced on σ~1E).

Now there is a natural group action on M x E by the extended super-Poincare
group, namely (x, M)->(X, ug) and we consider the submanifolds Rgσ~ ιE defined by
(x9u)eRgσ~iE if, and only if, σ(x) = pr(ug~1). The above group action is then
defined to be Rh(x,v) = {x,vg~1hgl heSL(2,C). If #eSL(2,C), then Rgσ~ιE
= σ~ ίE, and any change in the forms is just a gauge transformation which is not of
particular interest. Therefore we will assume that g is not in the SL(2, C) subgroup
and it is generated by an element of the superalgebra spanned by the Pa and Qai in
other words g is a group element which is either a bosonic or fermionic translation.

Suppose now we choose g such that ωab and S still form an absolute
parallelism on Rgσ~ 1E (we will assume that this has been done). Then we can find
a horizontal one form ψab such that with respect to the connection ω'ah = ωab + ψab

the new torsion Ta and H are zero. A good choice of g is g = exptV, with Vbeing a
vertical vector field in E this choice will allow us to find the infinitesimal form of
the supersymmetry transformations such that these transformations do not mix
with the usual gauge transformations induced by SL(2, C). These supersymmetric
transformations are defined to be the pull back from Rgσ~ 1E of ω\ S, ψaι by Rg to
σ~xE with the above choice of g. By definition of ωab, fab and A we have:

ω(V)=fab(V) =

let θa(V) =

Then the infinitesimal change in θa, ψa\ fab, and A will be given by Lie
differentiation by V{LV). Using Lv = d°tfv + ίv°d we have:

δθa = Lvθ
a = dθa{V) + t?v(Ta-ωa

cΛθc-^xp1 A Cya\p^

Therefore

δθa = DPa-λiCγaψi, (4.1)

δA = LVA = dA(V) + SV(H-^ Λ Cψ^) = -^Cxph^,



Fibre Bundles and Supergravity 61

Therefore

δfab =-2- εabcdλai(Cy5)aβρ% , (4.3)

<Sφαί(extended super-Poincare) = Lv ψai = dxpai(V) + ίγ {ρaί-\ωbc{σhc\p)ai)

XhmX (4.4)

ί + KεV(fλ*jff>fcb + i y 5 f λ*Wfmn*cbm „)

M β c ^ ) (4.5)

In the above derivation we have used Eqs. (2.6), (3.10b), (3.17), (3.20) and the
fact that ^vT

a = ̂ vH = ίvρ^or = 0 since Fis a vertical vector field in E. Equations
(4.1), (4.4), and (4.5) are the generalized supersymmetry transformations of LN = 2

supergravity. This is an important difference between our work and that of [3, 4].
Moreover the above construction of supersymmetry transformations was a direct
consequence of bundle reduction, and thus it arises in a purely geometrical way.
This is a considerable improvement on the method of [9]. In addition the above
construction overcomes the interpretation of the "non-geometrical" terms which
arise in [9] and their link to the supersymmetry transformations.

Most uses of the invariances (4.1), (4.4), and (4.5) have focussed on the case
P c = 0, based on the assumption that a variation with respect to a non-zero Pc

corresponds to a gauge transformation, which is not the case when we compare
(4.1)-(4.5) with the usual gauge transformations [1]. In fact from their con-
struction, it is easy to see that neither Pc = 0 nor λaι = 0 transformations can be
thought of as gauge transformations. Therefore it is not surprising that the case
Pc = 0 has lead to many problems in quantization techniques of supergravity.
These problems are mainly in using Fadeev-Popov ghosts which lead to the
incorrect S matrix of relativistic systems describing boson and fermions first and
second class constraints [10]. So we expect P c φ 0 will have considerable impor-
tance in understanding quantum aspects of supergravity theories.

To show the in variance of (3.8) under transformations (4.1)-(4.4) we calculate
LγL' = δL where L is the Lagrangian constructed using ω'ab defined on Rgσ~1E;
then

δL = LvL' = d,vL' + ίvdL'. (4.6)

Consider now the bundle (£, Pr, E/SL/(2C)). This bundle is a principal bundle
with group SL(2, c) and connections ω over this bundle LN = 2 is, by construction, a
horizontal four-form invariant by right multiplication of SL(2, c), and hence with
D being the horizontal exterior derivative we have dL = DL [7]. Therefore

δL = dsvL' + ίvDL/. (4.7)
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From Eqs. (2.6) we have

Ωa

E

b = Dωab,

^ ί j , (4.8)

and from Bianchi's identity DA = 0 we have

DTa = Si%Λθc-ψiΛCγaρi9

DQΆi = ^{σhcxpγ\

DH=-ψiΛCρjεij. (4.9)

Using Eqs. (4.8) and (4.9) we arrive at:

DL' = 2TaA(θbA Ωc

E

dεabcd + 2ψ Λ Cy5yaQi) + 4HA {xpι A Cy^-ρ1 A Cy5xp%

(4.10)

However Ta = H = 0 on σ~ ίE, therefore DL' = 0 and we have δL = d^vL\ i.e. a total
divergence which can be ignored as a surface integral. Therefore the super-
symmetry transformations are invariances of Eq. (3.8). The above analysis is well
applicable to the gauged N = 2 supergravity given by Eq. (3.11).

From the above construction presented in this section one can show that by
the standard theorems, we can always construct a bundle F reducible from E such
that in this bundle ωab and θa form an absolute parallelism and therefore we can
always choose a new torsion Ta such that Ta = 0 in F. As a consequence a new
LN = 2 of supergravity can be found which is invariant under the supersymmetric
transformations (4.10)-(4.5) and under O(2) gauge transformations. It is given by
[using Eqs. (3.10) and (3.11)]

LN = 2 = θa A θb A (Ωc

4

d - \fmnΓθc A θd + θc A θd + ψi A Cσcd

Ψi)εabcd

+ εabcdl~ Ψ ^θbA (θc Aθ' + ψ^ Cσcd

Ψi)-] - 4xpl A Cy5yaQί A θa

-4H Aψk A Cγ5ψ'εM + 2ψt A Cψj A ψι A Cy5ψ
j

+ otfabθcAθdAHεabcd. (4.11)

V. Conclusion

Unlike other geometrical approaches to supergravity, by introducing a central
charge, we have obtained N = 2 supergravity in a simple, natural geometrical way,
with the symmetry group the super-Poincare group. Then we have shown that by
shifting the charge from being central we could obtain the extension of LN=2

(super-Poincare) which is LN = 2 (OSP(4/2)). As a consequence of our construction
we could show that the supersymmetry transformations can be generalized non-
trivially in such a way that they do not mix with the usual gauge transformations.
Another interesting result is the fact that the coupling constant of N = 2
supergravity has been determined by requiring Z invariance rather than Pa and Qai
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in variances which is the case of [5, 6] 2. Moreover it is shown that the in variance of
the lagrangian (3.8) can be shown in a straightforward manner when we reduce our
bundle to one whose group is SL(2, c).

We expect that due to the success of this simple approach to N — 2 super-
gravity, the derivation of N = 8 supergravity and its generalized supersymmetric
transformations will be relatively straightforward. We will leave for further
publication a fibre bundle treatment of off-shell versions of N = 1 and N = 2
supergravity.
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M 4 rather than σ~ιE. From (4.7) we have δLM = d£vL'M + ίvDL'M. Using the Bianchi identities in
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DL'M = 2TΆ (θb A Ωc

E

dεabcd + 2ψι A Cy5yaQi + ocθb A fcd A Hεabcd)

+ 8//Λ ψι A Cy5ρkι} - 4ρι A Cy5yaQι A θa + otDfab Λ 0C Λ βd Λ Hεahcd

- otfabφι A CfΨι Λθ d Λ Hεabcd - ifah A ΘC A 0d A ψι A C ρ y c , / a b c d .
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Set Pa = 0 on M 4 and choose ωab such that Ta = 0. Use of equations (3.17) and (3.20) leads to
DLM= -^ρuorACγ5yaρiHorAθa. This implies that ίvDLM = 0 since ^vQuor = 0 and ίvθ

a = θa{v) = Pa = 0.
Hence δLM = d£vLM is a total divergence which can be ignored. The main idea behind this procedure
is that the variation of the supergravity Lagrangian under super symmetry transformations is equivalent
to the substitution of (3.17) and (3.20) which are responsible for deriving the supersymmetry trans-
formations into δLM.




