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Abstract. We present a simple derivation of on-shell N=2 supergravity by
using fibre bundle analysis; this is done by introducing a central charge as a
part of the connection in a principal bundle whose structure group is the super-
Poincaré group. As a consequence there is a non-trivial generalization of the
supersymmetry transformations.

I. Introduction

Recently [2] it has been proved that N =1 supergravity can be constructed in a
purely geometrical way by using fibre bundle analysis. This is done by extending
the orthonormal frame bundle of a manifold admitting a spin structure to a bundle
with structure group, the super-Poincaré group [1].

This method shows its virtues as far as geometrical formulation of supergravity
theories are concerned by overcoming certain difficulties [1] that arise when we
use a superspace approach ; additionally it gives an easy technique for constructing
supergravity and its invariances in a more direct way than the work of [3, 4].

In this paper we will show how fibre bundle techniques enable us to include
matter fields, and in particular to exhibit in a purely geometrical way, a very
natural construction of N =2 supergravity with its set of supersymmetry transfor-
mations. This is done by introducing a central charge as a part of the connection
and which has a trivial action on the supersymmetric transformations. This is a
natural extension of the work of Yates [1].

II. Formalism

Analogously to the N=1 supergravity theory discussed in [1], we construct a
principal bundle (E,n, M) which has structure group, the N=2 super-Poincaré
group, with a single central charge Z. Thus a connection I" in this bundle may be
expressed as

=1, +0°P,+y"Q, + AZ, @.1)
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where J,, generates the SL(2,C) subgroup and P, (respectively, Q,,) are the
generators of boson (respectively, fermionic) translations and Z is the central
charge generator of U(1); note that 6° (respectively, y*) is a one-form on E taking
values in the even (respectively, odd) part of a Grassmann algebra, and A is a
1-form on E (i=1,2).

The algebra of the generators in (2.1) is the extended one defined by:

[Jab’ ch] = r[chad + nad‘]bc - nac'jbd - nbd']ac ’
{Qusr Qﬂj} =(CY)50;; P, + CoptiiZ

[Jab’ Qai] = (O-ab)gijQ[}j Hap =%['yas yb] 5

[Jab’ Pc] = nbcPa - ”ach >

where C,; is the antisymmetric charge conjugate matrix, and the central charge
commutes with any of these generators. This charge is the key ingredient in our
construction and makes it significantly different from that in [3, 4].

Let ¢ be a cross-section® from M to E; then the pull back of I" will give

(2.2)

o*o®=wldx*,
o*00 = ehdx,
e d

o¥yp*=yiidxt,
o*A=A,dx",

(2.3)

where wZ” is the usual Levi-Civita connection, e; is the vierbein, wj‘f is the usual

spin 3/2 field and A, is the electromagnetic field. The curvature two-form 4 is
given by the structure equation

A=dl+3[T, 17, (24)
whence writing
A=30%J , + TP, +0"Q,,+HZ, (2.5)
we find
QP =do+ 0™ ra?, (2.6a)
T*=df"+ o™ A0, + v’ A Cy*y;, (2.6b)
" =dp* +10" A (0, p)", (2.6c)
H=dA+3y' A Cyle,, (2.6d)
whose pull back is given by:
o*Q =1R%® dx* A dx’, (2.72)
o*T*=1T5dx" Adx’, (2.70)
o*g" =10k dx" ndxX', (2.7¢)
o*H=3F, dx"ndx", (2.7d)

1 If E is non-trivial, then local sections must be used
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Where b b b b b
Rﬂvzauwv — 0,07 + wyfw], — wi‘w,, (2.8a)
Ty, =0,e;—0,e,+ w, e, — ) e, +vp,Cry,,;, (2.8b)
o =0,y = 0,pi + 30 (0, )" — 30 (0,,9,)", (2.8¢)
F,,=e%F,,=0,4,—0,A,+ v, Cple,, (2.8d)

where ¢, is the inverse of €} such that ejel =47
Finally the Bianchi identities read

DA=0, (2.9
where D is the horizontal exterior derivative; we deduce
dQP +w? A QP — Q% A =0, (2.10a)
AT+ 0™ AT, — Q5 A0, + ' A Cy?g,;=0, (2.10b)
dg™ + 10" A (0,00 ~ 12 A (0,9 =0, (2.10¢)
dH +y' A ngaij =0. (2.10d)

Let us consider the U(1) subgroup of the structure group of E as a theory of
Kaluza-Klein type, i.e. let 7: U(1) x M =P— M (i.e. P is a sub-bundle of E), and let
k be a metric defined on the real numbers [Lie algebra of U(1)=L(U(1))]. Then we
can construct a metric k(g, k, A) on P, where g is the metric on M. Given ae U(1),
let R,: P—P be the corresponding isometry of E; then the usual Kaluza-Klein
metric h is defined by:

h=n*g+kA, (2.11)
where for X, Ye T,P
*g(X, Y)=g(n,X,n,Y) and kAX,Y)=k(AX), A(Y)),
and under the action of R, we have:
R, X,R,,Y)=hX,Y). (2.12)

Let E,,E,, ..., E, be four vector fields on (M, g) defined on a neighbourhood U of
x=m(p); pe P with their horizontal lifts E, ... E, relative to the connection A
defined on ™ *(U)e P. Let E, be a basis of L(U(1)) relative to , then relative to the
metric h on P, E,,...,E5 will be an orthonormal basis defined on 7~ *(U). With
a,b,c=1,...,4 we write
9u=9(E,E,)=h(E_E,)=n,=diag(..., +), kss=hEsE)=—1.
Then following [8], one can prove the following:
R§55 :Rgas =R§5a=R:55 =0,

also

Rgab= —(FfaFCSbﬁchbFCSa)’

ijc=(F5 _FSb,c)’

ac,b
5 _ 5 5 e
RaSb—Fab,5+Fch5a>
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where Rj.p (4,B=1,...,5) is the Riemannian tensor on P computed from the
metric i and expressed in the frame basis E, ..., E5. The Ricci tensor is

R2b=sz"2chaFc5b’ R.;s= _Fga,b’ Rs; =FgaF§b
and the scalar curvature is
R4=R°+R3=R,_F,F*, (2.13)
where F,, is a matter field strength which includes the electromagnetic field
strength, and it is defined through Egs. (2.7d) and (2.8d) as the U(1) part of the

curvature 2-form in Egs. (2.5) and (2.6d). Now by definition the Riemannian tensor
R, is related to the curvature 2-form in Eq. (2.6a) by

QP =LR®  6° NG, (2.14)

Therefore, after some manipulations, Eq. (2.13) can be written in 4-form notation
as

QB AO A%, =(Q—Lfmmf 0 AO)YAO°AO%,,,,. (2.15)
Hence in what follows it will be understood that
do®+ o AP =Q¢=Qb—1f "m0 A0, (2.16)
where f,,, is a O-form matter field which is antisymmetric tensor representation of
SO(1,3) and is given in the E, ..., E basis by
Jom=5Fm> (2.17)
where F,,, is as defined in Eq. (2.13) and (2.8d).

III. The Lagrangian

The construction of the lagrangian is very simple provided we bear several facts in
mind. In general relativity one can view the Einstein lagrangian as arising from the
requirement that the variation of it with respect to the connection w, should lead
to an equation stating that the torsion is zero. Specifically with L being a 4-form,
then

5L1 |6 =const = 25(0&1 AT A be‘abcd ’ (3 1)

using (2.6a) and (2.6b) with f,, =0, y=0, 4=0 and the fact DQ¥ =0 (D is the
horizontal exterior derivative D =d + [, ]), one can integrate (3.1) to get

L,=0°n0"AQ¥e,, ., (3.2)
whose pull back is
£, =eR, (3.3)

where R is the scalar curvature and e=dete;. To obtain N=1 supergravity we
need to drop the condition =0 [1]; however to get N =2 supergravity we need
to drop A=0, and f,,, =0, and assume that 6L, _, will give non-zero torsion. This
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torsion is proportional to A4, F, and 0. Therefore we expect L, _, to contain at
least a part which arises from the variation of the matter field, i.e. f,,. The most
general expression is

6L2|9,A =const 5f€d A M A ebgabcd > (34)

where M“ is a 3-form which is determined from T% 6% H, and A. The correct
expression is:

Me=aH A0 +BANT, (3.5)

where o and f are real coupling constants.
The integration of Eq. (3.1) will give, after using Egs. (2.6a), (2.6b) and requiring
SL(2, C) invariance:

L, =0"n60P A Qe . —4p' A Cysy,0A0°, (3.6)
and the integration of (3.4), using Eq. (3.5) gives
Ly=—aDfn0%AO° A Aeyy,+of ' A Cyyp; AO° A Ae gy,

+ %f"dwi ACY NG A%, ,+ K, (3.7)

with
K=—Qu+p) [ Of“ATAO"AAty,.

A,0=const
The lagrangian L, is not invariant under a gauge transformation induced by an
element of SL(2,C) [1], but we make it so by adding the term

o ‘ ‘
— Z(4dA +9' A Cyle ) ApE A Cysyle,,,

which will not affect (3.4), and setting = — 2a.. Then the full lagrangian after using
Eq. (2.16) is

Ly_,=0"N0" ANQe, =5 fonf ™0 A OP A O° A 0%,
. o . .
— 4t A Cygy,0, A 00— Z(4dA +9' A Cyle) ApE A Cysyley,
—aDf NG AP A Ae,y +of AP A CYp AOP A Agy,,

(3.8)

o . )
+ Ef‘dtp‘ ACY AO* A%, 8-
(The invariance of this lagrangian under supersymmetry transformations will be
proved in the next section.) Equation (3.8) is the result obtained in [5, 3] (after
redefining the v in (3.8)—iy and dropping the i (complex number) in the result
of [3]).
The above result can be generalized by extending the group of the bundle from
the N =2 super-Poincaré group to the Orthosymplectic group OSP(4/2). In this
case the generators will satisfy
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o Joad =My g+ - »
[P, P =y,
[Py Qu1=3()00,;,
[y Qi = (aab)gijij >
{0, 0y} =(07C), 50, 1y + Cogers Z + 5, (CY) 5P, (3.9¢)
[ ap PI=1 Py = 1Py,
(9. Z]1=¢,;0,;>

with Z commuting with the rest of the generators. The algebra (3.9) closes and the
algebra of Eqgs.(2.2) may be recovered from (3.9) by rescaling J,, and Q,,
(3.92)-(3.9d) to m-J,,, m-Q,, and taking the limit m—0, ie., a form of Wigner-
Inodnii contraction. Therefore the contracted OSP(4/2) corresponds to the usual
extended super-Poincaré group. Now by using (2.1), (2.4), and (3.9) we obtain the
following:

(3.92)

(3.9b)

(3.9d)

A=3Q7) 3+ TP, +0"Q, +HZ,

with
Qb =dw™+ " AP +60° A 0°+ ' A(Ca®)y;,
. (3.10a)
T*=d0°+ ™ A0, + 59" A Cy*y;,
Qai=dl/)ai+lwbc(0' clp)ai_,_Lg A,ywai_i_sijA A l/)aj,
S 2 (3.10a)

H=dA+3y' A Cyle,;.

We substitute (3.10a) and (3.10b) into (3.6), but then (3.6) is no longer invariant
under SL(2,C) gauge transformations, so this may be corrected by adding

—3[0° A 0"+  A(Ca™p ] A O° A 0%,
which will not affect the variation (3.1). Then the Ly_, which corresponds to
OSP(4/2) is=0"A 0" A(Q" =% £,/ "0° A O+ 9" A Ca™p;+0° A 0%,
—20° AP AO° A O+ A Cap,)e
—4p' A Cygy,0, A 0°
« . :
- Z(4dA Ty A Cyle ) Ay A Cysyle,,
—aD AN N A Ay
+of At A Cy*p, A O° A Aeyy,
LN IN N 311
+5f1p/\ Y A0 N8 pea - (3.11)

This is the unconcentrated Ly_, obtained in [6, 4] (after redefining our v in
(3.11)—iyp and dropping the i factor in the final result of [4]).
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Finally and for later use, we exhibit the equations of motion following from
Eq. (3.8):

Torsion Equation (variation of w
240a T A 01 =206, 0 A 6*AA=0, (3.12)

ab)'

from which we deduce that
T°=—af* AAND,. (3.13)
Matter Field Equation (variation of 1),

T A A A+oe, 0N ANH-2 0" AO"AOP A OT==0

(3.14)

20

abcd absmnpq

from which we obtain 4
H= &fabe"é)b. (3.15)

Taking the pull back of (3.15) and using Eq. (2.8d), we have

o B = {19 BT
eyerk, dx" ndx’ = fmne”evdx AdxY,

from which we obtain F,,,= ; S Using Eq. (2.17) we deduce that « =4, which is
the usual value for the N =2 supergravity coupling constant.
Gravitino Equation (variation of §*) (v*C,,=P}).
— 87570 A 0% —8ysep A H + 200 f Pyyp™ A 04 A Aegyeg
Fof PO A O AP+ 457 A TO=0; (3.16)
by substituting Egs. (3.13) and (3.15) we get:
0% =040 A"+ Ke'i(y ™ A0, £ +Lysp 9w A D, £, (3.17)

where K is equal to , and g% are the inner components which satisfies the Rarita-
Schwinger propagatmg equation for the spin 3/2-particles, that is

VsValpae™ e =0. (3.18)

Note that the above equation is equivalent to saying that the quantity
0% =0%20% A 6P is a horizontal vector field in the bundle E.

Maxwell's Equatidn (variation of A).
40" A Cys' = 9" A Cy50))e,;— aDf 0 A 0% ey
+of "y’ A Cyp, A 0%, , =0, (3.19)
by substituting Egs. (3.13), (3.15), and (3.17) in (3.19) one gets:

2
Dfab= “ ade al(CVS) ﬂQCdFll (320)
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IV. Invariances of the Lagrangian

Evaluating the supersymmetry transformations and showing the invariance of
(3.8) is most easily done when we reduce the bundle (E, n, M) to one whose group is

(2,0 [1].

Let (E/SL(2, C),j, M) be the associated bundle to (E, 7, M) with cross-section o.
Then we define the reduced bundle to be o 'E={(x,u);a(x)=pr(u)};
0 'ECMXE, pr:E-E/SL(2,C)_,, u=P,(x,u), x=P,(x,u), P,:6 'E—~E, and
P,:0”'E—M. We are interested in bundles ¢ ~'E upon which we can choose new
tors1on T* and H such that H=T“=0 on ¢~ 'E. In order to achieve this we have to
construct ¢ in such a way that the forms w* and S=(6% A) pulled back to ¢ *E
via P, are an absolute parallelism (in physical terms this means that the matrix e,
has an inverse, and the central change acts trivially on the supersymmetric
transformations induced on ¢~ !E).

Now there is a natural group action on M X E by the extended super-Poincaré
group, namely (x, u)—(x, ug) and we consider the submanifolds R o~ 1E defined by
(x,u)eR,0~'E if, and only if, o(x)=pr(ug™"'). The above group action is then
defined to be R,(x,v)=(x,vg" 'hg), heSL(2,C). If geSL(2,C), then R~ 'E
=0 'E, and any change in the forms is just a gauge transformation which is not of
particular interest. Therefore we will assume that g is not in the SL(2, C) subgroup
and it is generated by an element of the superalgebra spanned by the P, and Q ;; in
other words g is a group element which is either a bosonic or fermionic translation.

Suppose now we choose ¢ such that w® and S still form an absolute
parallelism on R 0~ LE (we will assume that this has been done). Then we can find
a horizontal one form y such that with respect to the connection @' = w® +
the new torsion T® and H are zero. A good choice of g is g =exptV, with V being a
vertical vector field in E; this choice will allow us to find the infinitesimal form of
the supersymmetry transformations such that these transformations do not mix
with the usual gauge transformations induced by SL(2, C). These supersymmetric
transformations are defined to be the pull back from R 6™ 'E of o', S, y* by R, to

o~ 'E with the above choice of g. By definition of w“b f* and 4 we have:

(V)=f*V)=A(V)=0;
let 0V)=P*
Wi (V) =24
Then the infinitesimal change in 0% w*, f%, and A will be given by Lie
differentiation by V(L,). Using L,=d/},+{,-d we have:
86°=L,0°=d0(V)+ £, (T*— 0% A0 = Jp' A Cy'y,)
=dP*+ P — 'Cy“y; .
Therefore
80°=DP*— A'Cy*y;, 4.1)
dA=L,A=dA(V)+/,(H—5y' A Cple, )= — A Cyle;;, 42)
of =L, [ =df (V) +, df " =4, (Df*~[w, f1) =4, Df*.
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Therefore

2 .
5fab — :.; sabcdlw(cys)aﬁgﬂ (43)

e,

dy*(extended super-Poincaré)= L y* =dy*(V)+4, (¢* — 30" (a,p)*)
—‘d/lai l bc(o.bc )ai'l‘f Qai
= DA+ Ke () A40°f,, + 5y sy 20 ™",
— Ke 9y p P fy + 3757V P [ ) s (4.4)

op*(OSP(4/2)) = DA™ + Ke“(y 208 £, + 3y 57 A70° £ 108 comm)
+32%0y + €92 A
—GW Py + Ke (w0, + 57 VWP fromn) - (45)

In the above derivation we have used Egs. (2.6), (3.10b), (3.17), (3.20) and the
fact that 7, T*=7, H=1/, ¢}, =0 since V is a vertical vector field in E. Equations
(4.1), (4.4), and (4.5) are the generalized supersymmetry transformations of Ly _,
supergravity. This is an important difference between our work and that of [3, 4].
Moreover the above construction of supersymmetry transformations was a direct
consequence of bundle reduction, and thus it arises in a purely geometrical way.
This is a considerable improvement on the method of [9]. In addition the above
construction overcomes the interpretation of the “non-geometrical” terms which
arise in [9] and their link to the supersymmetry transformations.

Most uses of the invariances (4.1), (4.4), and (4.5) have focussed on the case
P_=0, based on the assumption that a variation with respect to a non-zero P,
corresponds to a gauge transformation, which is not the case when we compare
(4.1)+(4.5) with the usual gauge transformations [1]. In fact from their con-
struction, it is easy to see that neither P,=0 nor A*’=0 transformations can be
thought of as gauge transformations. Therefore it is not surprising that the case
P_=0 has lead to many problems in quantization techniques of supergravity.
These problems are mainly in using Fadeev-Popov ghosts which lead to the
incorrect S matrix of relativistic systems describing boson and fermions first and
second class constraints [10]. So we expect P,=+0 will have considerable impor-
tance in understanding quantum aspects of supergravity theories.

To show the invariance of (3.8) under transformations (4.1)-(4.4) we calculate
L,L'=0L where L' is the Lagrangian constructed using @'® defined on R~ 'E;
then

oL=L,L'=d, L'+¢,dL". (4.6)
Consider now the bundle (E, Pr, E/SL/(2C)). This bundle is a principal bundle
with group SL(2, ¢) and connections w over this bundle Ly _, is, by construction, a

horizontal four-form invariant by right multiplication of SL(2, ¢), and hence with
D being the horizontal exterior derivative we have dL=DL [7]. Therefore

oL=d, L' +{,DL’. 4.7)
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From Egs. (2.6) we have
Q¥ =D,
0" =Dy*,
T*=D0"+3v' A Cy*w;,
H=DA+y' A Cyle,;, (4.8)
and from Bianchi’s identity DA =0 we have
DQ% =0,
DT*=Q¥ A0, —y' A Cy?g,,
Do =10k, )",
DH = —y' A C¢e;;. 4.9)
Using Egs. (4.8) and (4.9) we arrive at:

DL'=2T" A(0° A Qe 00+ 20" A Cy57,0) +4H A (@' A Cyse’— @' A Cysplle,
4.10)

However T*=H =0 on ¢~ 'E, therefore DL’ =0 and we have 6 L= d, L ie.atotal
divergence which can be ignored as a surface integral. Therefore the super-
symmetry transformations are invariances of Eq. (3.8). The above analysis is well
applicable to the gauged N =2 supergravity given by Eq. (3.11).

From the above construction presented in this section one can show that by
the standard theorems, we can always construct a bundle F reducible from E such
that in this bundle w® and 6° form an absolute parallelism and therefore we can
always choose a new torsion 7“ such that 7*=0 in F. As a consequence a new
L, _, of supergravity can be found which is invariant under the supersymmetric
transformations (4.10)-(4.5) and under O(2) gauge transformations. It is given by
[using Egs. (3.10) and (3.11)]

Ly_,=0"A0"A(QU—1f £ A0 +6° A6+ ' A Cop,)eye
+ &gpeal —30° A OP A(O° A O+ A Cop)]— 4y A Cysp,0, A0
—4H A A Cyspe, + 29 A Cpy At A Cpsy/
+of*°0° AO* A He - (4.11)

V. Conclusion

Unlike other geometrical approaches to supergravity, by introducing a central
charge, we have obtained N =2 supergravity in a simple, natural geometrical way,
with the symmetry group the super-Poincaré group. Then we have shown that by
shifting the charge from being central we could obtain the extension of Ly_,
(super-Poincaré) which is Ly _, (OSP(4/2)). As a consequence of our construction
we could show that the supersymmetry transformations can be generalized non-
trivially in such a way that they do not mix with the usual gauge transformations.
Another interesting result is the fact that the coupling constant of N=2
supergravity has been determined by requiring Z invariance rather than P, and Q,,
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invariances which is the case of [ 5, 6]2. Moreover it is shown that the invariance of
the lagrangian (3.8) can be shown in a straightforward manner when we reduce our
bundle to one whose group is SL(2, ¢).

We expect that due to the success of this simple approach to N=2 super-
gravity, the derivation of N =8 supergravity and its generalized supersymmetric
transformations will be relatively straightforward. We will leave for further
publication a fibre bundle treatment of off-shell versions of N=1 and N=2
supergravity.
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Note added in proof. The invariance of the Lagrangian (3.8) can also be shown using a simpler method
than that which is outlined in Sect. IV. By contracting equation (4.11) invariance may be shown on
M, rather than ¢~ 'E. From (4.7) we have 6Ly =d, Ly +/,DL). Using the Bianchi identities in
(4.9) we have
DLy =2T* A (0 A Qe+ 20 A Cy57401 + 20" A [ A He )
+8H Ayt A Cysgle,;— 40 A Cys7,0, A 0" +aD % A O° A O A He ey

—af ' A CY P, A0 A Hegpoq—2f P A N0 A A COIt ey -

2 Kellogg S. Stelle (private communication)
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Set P*=0 on M, and choose w* such that T*=0. Use of equations (3.17) and (3.20) leads to
DLy = —40ko, A CPsYu0inior A 0°. This implies that £,DL), ., since £y0h, - and £;,6*=0%v)=P*=0.
Hence 0L, =d,, L), is a total divergence which can be ignored. The main idea behind this procedure
is that the variation of the supergravity Lagrangian under super symmetry transformations is equivalent
to the substitution of (3.17) and (3.20) which are responsible for deriving the supersymmetry trans-
formations into dL,,.





