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Abstract. A convergence theorem for the method of artificial viscosity applied
to the isentropic equations of gas dynamics is established. Convergence of a
subsequence in the strong topology is proved without uniform estimates on the
derivatives using the theory of compensated compactness and an analysis of
progressing entropy waves.

1. Introduction

We are concerned with the zero diffusion limit for hyperbolic systems of
conservation laws. The general setting is provided by a system of n equations in
one space dimension,

09 (1.1)

where u = u(x, t)eRn and / is a smooth nonlinear map defined on a region Ω of Rn.
The zero diffusion limit is concerned with the convergence of approximate
solutions to (1.1) generated by parabolic regularization. In this paper we shall deal
with the Cauchy problem for diffusion processes of the classical form

ut + f(u)x = εD(u)xx, (1.2)

and we shall establish, in particular, a convergence theorem for the method of
artificial viscosity applied to the isentropic equations of gas dynamics with a
polytropic equation of state

{ρu)t + (ρu2 + p)x = 0, p = const ρy.

The conservation laws of mass and momentum (1.3) may, of course, be formulated
in terms of the primitive densities ρ and m = ρu to yield the form (1.1):
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We shall consider the Cauchy problem with smooth data in L°°(i^) that ap-
proaches a constant state (ρ, ΰ) at infinity and satisfies

o (1.4)

and prove that the solutions (ρε, uε) of the process

x,

u)xx,

based on equal diffusion rates for mass and momentum, converge to a globally
defined distributional solution (ρ,w) of (1.3) satisfying O^ρ^const, |w|^const,
where the constants depend only on the adiabatic exponent γ and the L00 norm of
the initial data (ρ0, u0). After modification on a set of measure zero, the solution
(ρ, u) is continuous in the spatial weak topology as a function of time: for every test
function φ, the average values §φ(x)ρ(x,t)dx9 j φ(x)ρu(x, ήdx are continuous in t
and converge to the data \φ(x)ρQ(x)dx, jφ(x)ρouo(x)dx as t approaches zero.

Several assumptions are adopted for technical convenience. First, we assume a
uniform lower bound (1.4) on the initial density ρ0. In this situation it is
particularly simple to construct globally defined smooth solutions to the system

xχ9

(1-6)
xx,

since (1.6) provides a standard uniformly parabolic representation of (1.5). It can
be shown that cavities do not develop in finite time in a viscous gas, i.e.

ρε(x,ή^δ%t)>0 (1.7)

for an appropriate function <5ε, cf. Sect. 4. In the presence of an a priori lower
bound of the form (1.7), it is a straightforward process to continue a local solution
of (1.6) in time; one need only appeal to the invariant quadrants in the plane of
Riemann coordinates to establish an L°° estimate independent of time (and of ε).
Second, we assume that the initial data (ρ0, u0) lies in C2(R) and rapidly
approaches a constant state (ρ, ΰ) at infinity in the sense that the difference
(ρ0 — ρ, u0 — ΰ) lies in H2(R). In the presence of this type of regularity and decay,
one may easily work on the line and avoid finite boundary terms which arise, for
example, in the analysis of the entropy field. Third, we shall restrict attention, in
the final stages of the argument, to the physically relevant sequence of adiabatic
exponents, namely γ = ί+ 2/n, where n denotes the number of degrees of freedom
of the molecules. We recall that the integer n is necessarily greater than or equal to
three due to the presence of three translational degrees of freedom. In the special
case where n is an odd integer, the Riemann function for the compatibility
equation linking generalized entropy with its flux reduces to a polynomial and the
basic computations are simplified.

Before discussing the proof we shall remark on the relevant background. One
natural strategy for proving convergence as the diffusion parameter ε vanishes is to
seek uniform estimates on the amplitude and derivatives of the approximate
solutions uε and then appeal to a compactness argument in order to extract a
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strongly convergent subsequence and pass to the limit in the nonlinear flux /. In
the context of conservation laws, the spatial L00 and total variation norms provide
a natural pair of metrics to investigate stability (in the sense of uniform
boundedness) of families of exact and approximate solutions. The L00 norm
provides an appropriate measure of the solution amplitude while the total
variation norm provides an appropriate measure of the solution gradient. Uniform
control on both metrics guarantees the existence of a subsequence converging
pointwise a.e. The relevance of these norms for strictly hyperbolic systems (1.1.) is
indicated by Glimm's fundamental theorem [11] which establishes L00 and total
variation stability for the random choice difference approximations in the case of
small initial data. We remark that it remains an open problem to establish the
corresponding stability estimates for either classical diffusion processes or finite
difference schemes that are conservative in the sense of Lax and Wendroff [15],
even in the setting of small data.

An alternative approach to the convergence problem, which is used here, is to
established just L00 stability and pass to the limit with the aid of the theory of
compensated compactness [17, 18, 22, 23]. Regarding previous work in this
direction, we recall that Tartar [22] has established a new convergence theorem
for the viscosity method applied to a scalar law in one space dimension using only
the uniform L00 bound afforded by the maximum principle. The analysis employs
the weak topology and averaged quantities. One of the main tools is provided by
the following result which express composite weak limits as expected values.
Suppose vk :Rm-+Rn is an arbitrary sequence of functions uniformly bounded in
Z,00. One may extract a subsequence, still labelled vk, which converges in the weak-
star topology:

\v{y)dy= lim J vk(y)dy,
Ω k~*co Ω

for all measurable Ω in Rm. By passing to a further subsequence one may assert the
existence of a family of probability measures over the target space Rn, index by
points of the domain space Rm, vy — vy(λ\ λeRm with the following property. For all
continuous real-valued maps on Rn, the composite limit exists in the weak-star
topology and coincides almost everywhere with the expected of value g:

g^ = lim g(vk) weak*,
k

gjy)= ί gWdv,(λ) a.e. in y.
Rm

It follows that the deviation between weak and strong convergence is estimated by
the diameter of the support of the representing measure vy; in particular the
sequence converges strongly if and only if vy reduces to a point mass.

In the setting of a scalar equation Tartar has shown that the measure v(x ί }

associated with a sequence of solutions uε to the equation, ut + f(u)x = εuxx, is
concentrated on an interval where / is affine. In the case where / is not affine on
any interval, for example, in the genuinely nonlinear case / " φ θ , the measure v(xt)

reduces to a point mass and the convergence becomes strong. In the setting of
strictly hyperbolic systems of two equations it has been shown [10] that the



4 R. J. DiPerna

measure v(x t) associated with proper diffusion processes reduces to a point mass if
the characteristic speeds are genuinely nonlinear in the sense of Lax [13]: if uε is a
sequence of uniformly bounded solutions to a 2 x 2 parabolic system of the form ut

+f(u)x = εDuxx, for which the diffusion matrix D induces correct entropy pro-
duction, then there exists a subsequence uεk that converges point wise a.e. to a
solution of the corresponding hyperbolic system. The general conjecture is that the
measure associated with approximate solutions generated by a method which
respects the entropy condition either reduces to a point mass or concentrates itself
on a set whose geometry permits the continuity of / with respect to weak limits. In
addition to diffusion processes, this conjecture has been established for a class of
first order accurate conservative finite difference schemes including the Lax-
Friedrichs scheme and Godunov's scheme, applied to strictly hyperbolic genuinely
nonlinear systems of two equations [10].

We note that it remains an open problem to establish a uniform L°° bound for
diffusion methods and classical difference schemes. Experience with the exact
solution of (1.1) leads one to expect that, at the very least, initial data with small
oscillation generates a solution with uniformly small oscillation. This type of
behavior has been verified for the random choice difference approximations in the
setting of strictly hyperbolic genuinely nonlinear systems of two equations [12].
The only pointwise bounds currently available for diffusion methods and the
difference scheme are those derived for 2 x 2 systems using invariant regions. They
require equal diffusion rates; one observes that the invariant quadrants for the
exact hyperbolic solution operator viewed in the plane of Riemann coordinates
are preserved by precisely those approximation methods which are based on equal
rates of diffusion. This fact motivates our use of the method of artificial viscosity

(1.6).
In this paper we are motivated partly by the problem of establishing existence

of solutions to systems of conservation laws. The first large data existence theorem
was obtained by Nishida [19] for the isothermal equations of gas dynamics,
p = const ρ, using the random choice method. Large data theorems have also been
obtained for the isentropic and non-isentropic equations of gas dynamics with a
polytropic equation of state in the case where the initial data is restricted to
prevent the development of cavities. We refer the reader to [9, 18-20] in
connection with gas dynamics and to [2, 8] for special systems. The relevant
analysis in the aforementioned papers involves estimates on local wave in-
teractions, specifically estimates relating incoming and outgoing wave magnitudes
in a binary interaction. The difficulty in bounding the total variation norm at low
densities arises from the fact that the coupling between characteristic fields
increases as ρ decreases. This increased coupling is a reflection of the fact that both
strict hyperbolicity and hyperbolicity are lost at the vacuum, i.e. the eigenvalues
and eigenvectors coalesce on the boundary of the state space, namely, the line
ρ = 0. For comparison we note that a large data theorem has been obtained using
compensated compactness for the equations of elasticity in the setting of a hard
spring [10]. In that case one deals with distinct eigenvalues with a linear
degeneracy in the interior of the state space. The large data existence problem
arises in a variety of contexts. Concerning basic work on problems with degenerate
eigenvalues we refer the reader to [24-26].
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We shall conclude with a discussion of the convergence proof for system (1.6).
Our analysis involves a study of entropy waves in the state space R2. We recall that
in the setting of a strictly hyperbolic system the representing measure v(JM) is
restricted by a commutativity relation that is derived from an analysis of the
entropy fields and a basic continuity theorem of Tartar [20] and Murat [14] for
bilinear maps in the weak topology. Specifically, v commutes with an anti-
symmetric form acting on entropy pairs (η, q), i.e. solutions of the linear hyperbolic
system which links generalized entropy η to its flux q:

2 1 (1.8)

for all solutions (ηp q3) to

VηVf=Vq. (1.9)

Tartar conjectured that any probability measure v that satisfies (1.8) for all entropy
pairs must reduce to a point mass if the eigenvalues are not degenerate on a large
set. This conjecture has been verified for scalar equations [20], for a broad class of
genuinely nonlinear 2 x 2 systems and for the special 2 x 2 system in elasticity
which admits a single curve of degeneracy in the state space [10]. In order to
establish (1.8) it is virtually necessary to prove that the divergence of the
approximate entropy fields (ηj(uε\ q^u8)) lies in a compact subset of the negative
Sobolev space H ~1. In the setting of the viscosity method applied to a scalar law,
Tartar [20] verified the H ~1 condition for all entropy pairs using Murat's lemma
[18] on the positive cone of if"1. For the viscosity method and first order
difference schemes applied to 2 x 2 systems, the H'1 condition has also been
established for all entropy pairs with the aid of Murat's lemma [10]. In this paper
we shall establish the H'1 condition and therefore (1.8) for a restricted class of
entropy pairs and show it forces the reduction of v to a point mass.

Section 2 contains an analysis of the entropy waves for the equations of
isentropic gas dynamics. In the case of a polytropic equation of state we show that
the governing equation (1.9) for the entropy pair (η, q) reduces to the classical EPD
equation, Euler-Poisson-Darboux. We recall that in [10] the reduction property
for the measure associated with nondegenerate 2 x 2 systems was established using
the progressing entropy waves introduced by Lax [14]. Unfortunately, the
coefficients of the formal asymptotic series for these progressing waves diverge as
the eigenvalues coalesce at the vacuum, and one is required to entertain a different
construction procedure. In Sect. 2 we construct progressing EPD waves by two
different methods. We show that the EPD equation is of Fuchsian type and admits
two distinct classes of waves (weak and strong) characterized by the nature of their
algebraic singularity along the singular line ρ = 0 at the boundary of the state
space. We prove that the weak entropy fields lie in a compact subset of H'1 by
showing that the mechanical energy is a convex weak wave whose Hessian
dominates the Hessian of all weak waves at low density. On the other hand, as the
density ρ vanishes, the strong waves evolve into saddle surfaces whose Hessian
diverges at a rate which is an order of magnitude faster than the mechanical
energy. We conjecture that the strong entropy fields do not lie in a compact subset
of H " 1 as the viscosity parameter ε vanishes. Using only the weak entropy pairs
we show that v reduces to a point mass. It is feasible that one could establish the
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commutativity relation (1.8) for all entropy pairs, weak and strong, using a
truncation or smoothing procedure near the vacuum ρ = 0. Establishing (1.8) for
all pairs would allow one to combine the analysis of [10] and Sect. 2 in a
straightforward way to prove the reduction property for v. We remark that the
long range goal of our program is to prove that v reduces to a point mass for
systems of conservation laws which switch from hyperbolic to elliptic type across a
(parabolic) line. In the setting of mixed equations the first step of our approach is
to establish the reduction property using only (1.8) acting on pairs which vanish on
the transition line; the analysis developed in Sect. 3 has a dual purpose. In this
paper we shall establish the reduction property for a polytropic gas in the case
where γ = ί+ 2/n, n and odd integer > 3. The refinements needed to treat the
general case 1 < y ̂  5/3 will be presented in a forthcoming paper on systems of
mixed type.

In Sect. 3 the reduction property is established by studying the regularity of the
measure v. The basic idea is to analyze the subspace of waves on which the
antisymmetric form

is definite. Our study of elliptic systems in two independent variables has shown
that B is definite on a broad class of pairs (η, q). Indeed, it can be shown that the
coercivity of B is equivalent to the ellipticity of a system of n conservation laws in
two independent variables. Although B is indefinite for a hyperbolic system, it
admits a small coercive subspace defined by the Goursat operator. In Sect. 3 we
show that the coercive structure of B on special Goursat waves allows one to
differentiate v in the Lebesgue sense and show that the derivative vanishes except
at one point. Technically the differentiation process is carried out using pairs of
progressing waves whose leading term is coercive with respect to B. This analysis
bears out the following principle: for a general probability measure, the com-
mutativity relation (1.8) represents an imbalance of regularity the operator on the
left is more regular than the one on the right due to cancellation, a fact which can
only be resolved if v reduces to a point mass. We shall expand on this remark in
Sect. 3. In the following sections we shall assume that the reader is familiar with
the arguments of [10].

We shall conclude with a few remarks on recent progress and open problems
dealing with the representing measure v. Tartar [23] has recently established a
definitive local reduction theorem for the measure v associated with a general
elliptic system in several dimensions: if the support of v is sufficiently small, then v
is a point mass. The proof is based on an analysis of bilinear forms which are lower
semicontinuous in the weak topology. In this connection we recall that the
commutativity relation (1.8) expresses the fact that the antisymmetric inner
product of two entropy pairs is continuous in the weak topology. The relation (1.8)
is derived from the basic div-curl continuity lemma of Tartar and Murat. We have
shown that the weak continuity expressed by (1.8) is sufficient to reduce v globally
for non-degenerate 2 x 2 hyperbolic systems and for the degenerate 2 x 2 system of
gas dynamics, and locally for general nxn elliptic systems in two variables. Tartar
has shown that the corresponding inequalities for lower semicontinuous forms are
sufficient to reduce v locally for general nxn elliptic systems in several variables.
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In the setting of two variables the available class of lower semicontinuous bilinear
forms and continuous bilinear forms coincide.

Open problems remain for degenerate 2 x 2 hyperbolic systems and for non-
degenerate n x n hyperbolic systems with n > 2. In the latter case there typically
exists at most one nonlinear entropy field and a new strategy may be needed.

Regarding work on the weak topology in the elliptic setting of mechanics we
refer the reader to Ball [1-3] and Dacorogna [5-7].

2. Entropy Waves

This section is concerned with entropy waves for isentropic gas dynamics. We shall
begin with some general remarks concerning systems of n equations,

ut + f(u)x = 0. (2.1)

We recall that a pair (η, q) of real-valued maps on the state space Rn is an entropy
pair for (2.1) if all smooth solutions satisfy an additional conservation law,
η(u)t + q(u)x = 0. A necessary and sufficient condition for the existence of a pair
(η, q) is given by the compatibility condition

VηVf=Vq, (2.2)

on Rn. If / is hyperbolic, (2.2) constitutes a linear hyperbolic system of n equations
in two unknowns whose characteristic form

rj'(λjVή-Vq) = O9 .7 = 1,2, (2.3)

is derived by dotting with the right eigenvectors of the Jacobian of / : F/^ = A^..
The characteristic curves of (2.3) are the integral curves of the vector fields r . In the
special case n = 2, it is convenient to introduce a coordinate system of Riemann
invariants (w, z),

r 2 Fz = 0 , d/dz = r1 V,

which transforms (2.3) into

K n z = %z<> λ 2 η w = q 2 . (2.4)

One may work equally well with a second order equation for η by taking the curl
of (2.3):

cml(VηVf) = 0. (2.5)

The hyperbolicity of (2.5) is easily recognized in the characteristic variables after
cross differentiation :

(2.6)
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In the setting of isentropic gas dynamics, the Riemann invariants and eigenvalues

may be expressed explicitly in terms of the sound speed c = ]/p':

w = u + § c/ρdρ, λ2 = u + c

z=u—$c/ρdρ, λ1 = u—c.

For a polytropic gas p = ργ/y, the eigenvalues are linear combinations of algebraic
Riemann invariants:

( + 1 ) ( 3 }

70, λ2= —-—w-\ — z ,

(2.7)

z = u-ρϋ/θ, λi = ~~4—z+~~4—W'

where θ = (γ— l)/2. We have normalized the pressure for notational convenience.
One easily verifies that the characteristic form of the entropy equation (2.6)

becomes the Euler-Poisson-Darboux equation

^ w - ^ r ^ ( ^ w - ^ ) = 0, (2.8)

with index λ= —%(3 — γ)/(γ—ί). The limiting behavior of EPD solutions at the
vacuum w = z, depends upon the index λ. In the setting of a polytropic gas, λ may
be expressed in terms of the number of degrees of freedom of the molecules. We
have γ = l+2/n, —λ = (n—l)/2, where n is an integer ^ 3 .

Progressing waves for the EPD equation may be introduced in several ways.
One may apply the separation of variables procedure in (ρ, u) coordinates to the
equation,

%β = d\u, d = c/ρ. (2.9)

We note that η(w,z) solves EPD if and only if η(u + \c/ρ,u — Jc/ρ) solves (2.9).
Specifically, if k denotes a constant, the function η = h(ρ)eku solves (2.9) provided

h"-k2dh = 0. (2.10)

The Eq. (2.10) for density dependence may be transformed into a standard
Fuchsian equation using the change of variables a(ρ) = ρ(1~θ)/2, r = kρθ/θ. A simple
calculation shows that h = a(ρ)xp(r) solves (2.10) if and only if

)φ = O, (2.11)

when μ = (l-θ2)/4θ2. Here we are working in the plane of Riemann invariants
rotated by 45 degrees: u and ρ70 are half the sum and difference of the invariants.

We note in passing that for a general equation of state p = p(ρ), the substitution
r = k(w — z) leads to a second order equation for ψ with a variable coefficient. We
expect that the program below can be carried out if p acts like an algebraic
function near ρ = 0.

In the case of a polytropic gas the appropriate ansatz for a progressing wave is
provided by η = heku, q = uη + geku, where h solves (2.10) and g(ρ) is determined from
h by the formula kg = ρh! — h. In the factored form,

η = aψek\ q = uη + ageku, (2.12)
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the coefficient ψ solves (2.11) while g is determined from ψ by the formula

. (2.13)

Substituting (2.13) into (2.12) yields a formula for the flux in terms of the entropy,
for each choice of ψ, namely

q = η(u + cψ'/ψ-(l+θ)/2k). (2.14)

In order to analyze the limiting behavior of the waves (2.12) at the vacuum, one
may appeal to the method of Frobenius which, in this case, solves (2.11) with a
series of the form ^

ψ= Σynr -

The indicial equation has two distinct roots with corresponding independent
solutions .

where φ^- are even entire functions with positive coefficients depending on θ:

Φβ = Σ
n = 0

Thus, the Fuchsian structure restricts the limiting behavior at the vacuum to one
of two algebraic rates. The weak singularity j + corresponds to waves that vanish
identically at the vacuum, while the strong singularity j _ corresponds to waves
with a finite limit at the vacuum that is not identically zero. Specifically, for weak
waves the amplitude vanishes like the density:

aψ+ =constρ{1~θ)/2r(θ+ί)l2θφ+ =constρψ + ,

where the constants depend upon k. For strong waves the amplitude approaches a
constant depending on k:

η = aψ_eku,

aψ_ =constρ(1~θ)/2r{1~θ)l2θφ_ = constφ_ .

We shall see below that the space of entropy pairs (η, q) is partitioned into two
subspaces according to the structure of the Cauchy data at the vacuum state
V={(ρ,u):ρ = 0}.

For now we simply mention that familiar weak pairs are provided by the mass,
momentum and mechanical energy,

(Q, QU), (ρu, ρu2 + p), (\ρu2 + ρε, ̂ ρu3 + ρεu + pu).

Familiar strong pairs are provided by the constant state, the velocity and pseudo-
mechanical energy,

(1,1), (u, u2/2 + τ), %u2 + σ, u3/3 + u(σ + τ)).
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Here the enthalpy τ and its transform σ are defined by τ' = p'/ρ, σ — ρσ' = τ. The
classical derivation of these pairs proceeds by rewriting the basic equations in the
form of mass and velocity conservation ρt + (ρu)x = 0, ut + (u2/2 + τ)x = 0, which is
legitimate for smooth flows, and then using multipliers σ' and u to derive the law

A systematic procedure for generating complete sequences of weak and strong
waves will be provided below. We note here that the first three members of each
sequence occur classically.

Next we shall construct the four families of Lax progressing waves [14]. We
recall that for strictly hyperbolic systems of two equations (2.1) one may construct
on each compact subset of the state space R2 four families of entropy pairs with
the following asymptotic expansion

n=0 n=0

CO 00

η = e±k* £ v±/k», q = e±k* £ H^/k", (2.16)
n=0 n=0

where the variable coefficients V9 H are determined by the choice of the Riemann
invariant phase. For convenience we shall regard /casa positive parameter. The
ratio of entropy flux to entropy is asymptotically equal to the corresponding
eigenvalue: with the choice (2.15) we have q/η = λ2 + Θ(l/k) since HQ = A2F0

± with
the choice (2.16) we have q/η = λί + Θ(l/k) since H^ =/l 1F 0

± . Unfortunately, the
coefficients of the formal expansion diverge as the eigenvalues λi and λ2 coalesce.
For gas dynamics the eigenvalues coalesce at the vacuum state V (which represents
a line of parabolic degeneracy since the eigenvectors also coalesce). We shall show
below that although the formal series degenerates at the vacuum, the separable
progressing waves introduced above remain bounded up to the vacuum and
maintain an eigenspeed ratio

q/η = λ + β(ί/k), (2.17)

uniformly on ρ^O.
To this end we recall that the Fuchsian equation (2.11) admits two independent

solutions \px and ψ2 which behave exponentially at infinity like the solutions to the
equation with μ = 0:

(2.18)
ψ2e

r=ί+Θ(ί/ή, ψ'2/ψ2 = - l & ( l / )

as r approaches infinity. By appropriately scaling solutions we may write ψί=ψ + ,
Ψ2=ψ- +ψ + , since ψ+ are independent. With this notation we introduce the
entropy

η = aψ + eku = aψ + e~rekw

f (2.19)

and regard it as a product of a density dependent amplitude with an exponential
phase, η = σk(ρ)ekw, σk = aψ + e~r. Thus the leading coefficient V0 = a, and we have
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η = ekw(a + Θ(l/k)\ uniformly on compact subsets of ρ>0. In order to establish
(2.17) we recast the expression (2.14) for the corresponding flux in the form

q = η(λ2 + dψ'Jφ + - 1) - (1 + θ)/2k),

and observe that the second term may be written

c(ψ'+/ψ+ — 1) = const r(ψ'+/ψ+ — ΐ)k since c = constr/k.

The factor r(ψ'+/ψ+ — 1) is uniformly bounded as a consequence of (2.17) and the
fact that differentiation reduces the order of an algebraic function by one. We
conclude that entropy (2.19) satisfies q/η=λ2 + Θ(l/k) on ρ^O.

In a similar way one shows that the entropy

satisfies η = e~kz(a + Θ(l/k)) on compact subsets of ρ > 0 and establishes a uniform
ratio q/η = λ1+Θ(l/k) by rewriting the corresponding flux

q = η(u-cψ'+/ψ+-(l+θ)/2k)
in the form

In order to adopt convenient terminology we shall refer to a progressing wave as
outgoing (incoming) if it is an increasing (decreasing) function of the phase. Since
we have normalized k to be positive, the incoming wave of the first field and the
outgoing wave of the second field are weak. The companion waves which are
outgoing in the first and incoming in the second field may be introduced as
follows. The entropy

η = a(ψ_ -ψ + )eku = a(ψ_ -ψ+)erekz

satisfies η = ekz(a + Θ(l/k)), on compact subsets of ρ > 0 and represents a strong
(outgoing) wave of the first field; the coefficient aψ_ does not vanish on Fand the
eigenspeed ratio q/η = λί+Θ(l/k) is uniform on ρ^O. The entropy

η = a(ψ_ -ψ+)e~ku = a(ψ_ -ψ + )ere~kw

satisfies η = e~kw(a + Θ(l/k)\ on a compact subset of ρ > 0 and represents a strong
incoming wave of the second field, i.e. q/η = λ2 + Θ(l/k), uniformly in ρ^O.

In order to apply compensated compactness it is necessary to analyze the
limiting behavior of the second derivative of entropy at V in order to determine
whether or not the divergence of the corresponding entropy field remains in a
compact subset of H~γ as ε vanishes. We shall briefly review the relevant
calculations of the entropy production. Consider a diffusion process
ut + f(u)x = εuxx with ueR2. Premultiplication by the gradient oϊη yields

2ηu2
Vη(ut + Vfux) = s Vηuxx, ηt + qx = εηxx - V2ηu

Integration over the strip [0, T] yields an expression for the change in total
entropy:

T

ε J f V2ηu2

xdxdt = Jη(x, 0)dx- \η(x, T)dx.
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If η is non-negative and convex one obtains, in the standard fashion, a coercive
bound ε jj" V2ηu2dxdt ^ c, which implies that ηt + qx lies in a compact subset of H~1

if wε is uniformly bounded. In order to entertain solutions which approach a
constant state ΰ at infinity, one need only introduce a normalized entropy pair

ή = η(u)- η(ΰ)- Vη(ΰ)(u- ΰ),

q = q{u)-q(ΰ)-VηVf(u)(u-u),

which is obtained from a given pair (η, q) by subtracting the linear part of η at ΰ,
and then repeating the argument above.

In the setting of gas dynamics we recall that the mechanical energy Ύ\m=\ρu2

+ ρε(ρ) is a strictly convex function of the densities of mass and momentum, ρ and
m = ρu, provided that p '>0. The corresponding flux q is determined by the rate at
which the pressure supplies work modulo mechanical transport, qm = uηm + up. We
shall see that the Hessian of the mechanical energy dominates the Hessian of weak
waves in the sense that for each weak wave η, | V2η\ £Ξ const V2ηm for an appropriate
constant. Here symmetric matrices are ordered in the standard fashion. It follows
that the divergence of all the weak pairs lies in a compact subset of H~ι and
consequently that

for all weak pairs {rj^q), where v is a representing measure. Unfortunately, the
Hessian of mechanical energy does not dominate the Hessian of strong waves and
it remains to determine whether or not the divergence of a strong entropy field
remains in a compact subset of H~x as ε vanishes. If one could prove this for both
weak and strong pairs then the argument in [10] could easily be adapted to show
that v reduces to a point mass.

Next we shall provide the relevant estimates on the Hessian of entropy. In
considering the second derivative oϊηm we recall that the specific internal energy ε
is determined from the first law

= dε + pdv,

which yields, in the isentropic case the formula

Q

ε=$p/ρ2dρ.

Since we shall work with artificial viscosity in the primitive variables ρ and m, all
functions will be viewed in (ρ, m) coordinates:

where τ = ρ\p/ρ2dρ.

Since the eigenvectors r. are always biorthogonal in the inner product induced by
V2η, i.e. V2η(u)(rj(u), rk(u)) = 0, only two quantities need to be computed, namely
V2η(rp Γj) for j—1,2. A brief computation yields

(2.20)
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for 7 = 1,2. We note in passing that (2.20) demonstrates the known fact that
hyperbolicity is equivalent to the convexity of mechanical energy, i.e. ηm is convex
if and only if p is increasing. The lack of velocity dependence is a reflection of
Galilean invariance. For a polytropic gas one obtains the formula

which displays the behavior explicitly in terms of the adiabatic exponent γ.
The analysis of the Hessian of a progressing wave is facilitated by using the

factored form. For concreteness, consider a progressing wave of the second field
η = σ(ρ)ekw. The product formula

leads easily to the decomposition

v Vσ+V2σ, (2.21)

where the wedge symbol denotes the symmetric part of the tensor product: av b
= ^a®b + \b(g)a. The decomposition (2.21) is motivated by Lax [14] and indicates
the relative contributions of amplitude and phase. The technical advantage of
(2.21) stems from the ease with which the eigenderivatives of a Riemann invariant
can be computed. We have

We remark in passing that the invariants w and — z are not convex but quasi-
convex functions of ρ and m. This point is discussed further below in connection
with the construction of invariant quadrants for the Cauchy problem.

We shall begin with weak progressing waves and consider for concreteness the
entropy η = aψ+e~rekw = σk(ρ)ekw. The evenness of the analytic part φ+ ofψ+ leads
to the estimate

where the constants depend upon k. Substituting σ = ρ — kρθ/θ + Θ(ρ2θ+ί) into
(2.21) reveals the dominant term near the vacuum e'^V^r^r^Θiρ26'1). We
remark that it is necessary to use the exact formula for the second term in σ as in
the case of the mechanical energy, the term ρΘ~x does not appear because of a
cancellation. A similar analysis for weak waves of the first fields show that
η — aψ + e~re~kz satisfies e~kzV2η(rprJ) = Θ(ρ2θ~1). In contrast, the Hessian of
strong wave behaves like ρθ~2. The strong incoming wave of the second field
η = a(ψ~ —ψ + )e~re~k2 has a dominant coefficient

aψ~e~r = const φ_e~r = const (l+r + Θ(r2)).
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Substituting σ=l + kρθ/θ + Θ(ρ2θ) into (2.21) yields

ρ2θ-2),

ekw V2η(r2, r2) = 2kρθ ~ 2 + #(ρ 2 θ ~ 2 ) .

In a similar fashion it can be shown that the strong outgoing wave of the first field
η = a(ψ_ —ψ+)erekz satisfies

η(rvrί)=-2kρθ-2 + Θ(ρ2θ-2),

) .

We remark that the saddle structure of the strong waves at the vacuum is
anticipated by the knowledge that the only invariant regions for gas dynamics are
given by quadrants of the form {(w,z): w ^ const, z ^ const}. If the signs of the
leading terms in (2.22) and (2.23) were equal, there would exist additional local
invariant regions with opposite orientation near the vacuum.

Progressing entropy waves may also be introduced with the aid of the Darboux
integral representation of the solution to the Cauchy problem for (2.8) with data
on the singular line V. In the case of a polytropic gas, the wave equation (2.9) has a
classical power dependence

1ea = Qy~\u- (2-24)

In the case γ ^ 3, the Cauchy problem on V,

lim η(ρ, u) = α(ρ), lim η (ρ, u) = β(ρ),

has an explicit integral representation [27, Chap. 2]. We remark in passing that
the well-known uncoupling of the modes which occurs for γ = 3 is reflected in the
fact that (2.24) reduces to the constant coefficient wave equation. In characteristic
coordinates the Cauchy data for the EPD equation takes the form

lim η(w, z) = α(w),

lim a(w-z)b(ηw-ηz) = β(w), α
w-z->0

Weak waves correspond to the choice α = 0 while strong waves correspond to the
choice β = 0. The integral representation for weak waves is given by

η = const] {(w-z)(s-z)Γλβ(s)ds, " ^ ~ y ? (2.25)

where the constant depends only on γ, [27]. In the case l < y ^ 3 , the Cauchy
problem for (2.24) is not well-posed on V. Nevertheless, the formula (2.25) provides
a valid representation for solutions η which vanish on V and have a finite normal
derivative β:

lim η(ρ, u) = 0, lim η (ρ, u) = β(ρ).
ρ->0 ρ->0

On the other hand, in the range 1 < γ < 3, strong waves have a finite limit on V but
an infinite normal derivative.
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For notational convenience we shall write weak waves in the form
η = jK~λg(s)ds, where the kernel K(w,z,s) is defined as follows,

K = {(w-s)(s-z)}~λ if z<s<w, K = 0 otherwise.

For computational convenience we shall confine attention to members of the
physical sequence of adiabatic exponents corresponding to an odd number of
degrees of freedom:

y = l + 2/n, n = 2m+l9 m ^ l . (2.26)

In this case the index — λ of the EPD equation reduces to the positive integer m
and the kernel K reduces to a polynomial. Correspondingly, for the special
sequence (2.26) the hypergeometric Riemann function for EPD reduces to a
Legendre polynomial. We shall not make use of integral representations with the
Riemann function in this paper.

We observe that the change of scale s = τw + (l — τ)z, recasts (2.25) in a form
which is convenient for introducing progressing waves, namely

η = (w-z)2m+1]{τ(l-τ)rg(τ)dτ.
o

The choice g = D2mψ leads to simple formulas for finitely generated progressing
waves in the following manner. Using the chain rule we have

η = (w- z)} KJτ)(w- z)2mD2mψ(τw + (1 -τ)z)dτ ,
o

where Km = {τ(l — τ)}m. An m-fold integration by parts may be carried out without
producing boundary terms,

An additional m-fold integration by parts yields a progressing wave of order m— 1
based on ψ:

rj = PmΨ= Σ ajiw-zr-JCm.j.lV9 (2.27)
j=o

where the modes are coupled through a linear differential operator Ck of order /c,

Ckψ = Dkψ(w) + ( - l)kDkψ(z), k ̂  1,
(2.28)

C_xψ= \xp{x)dx.
z

The fact that weak waves contain fronts involving both phases w and z is a central
difficulty in trying to prove that the representing measure reduces to a point mass.
On a fixed compact set in ρ>0, one of the two modes may dominate, but in a
neighborhood of V both play a role. In Sect. 3 we shall employ waves of the form
(2.27) with special choices of the base function ψ.

We emphasize that there exist a variety of solution representations each with
distinct technical advantages. One could for example use the Darboux repre-
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sentation to prove that the Hessian of mechanical energy ηm dominates the
Hessian of all weak waves η in the sense that

I P 2 ^ ^ ) ! ^ const F ^ J r ^ r ^ ,

where the constant depends on the C2 norm of g. The essential features of the
proof that v reduces to a point mass involves just a few estimates on the behaviour
of solutions to the compatibility condition (2.2) near V. For a polytropic gas they
can be readily verified using separation of variables or an integral representation.
Presumably corresponding estimates will hold for equations of state which behave
near V like a polytropic gas.

We conclude this section by presenting a generalization of a classical result
concerning entropy sequences for the equations of shallow water waves. We recall
that by interpreting the variable ρ as height, the equations of isentropic gas
dynamics with γ = 2 assume the form of the equations of shallow water waves and
admit a sequence of polynomial entropies in (ρ, u) [28, p. 460]. This generalizes to
the statement that for any y-law gas the progressing entropy waves serve as a
generating function for complete sequences of entropies which are polynomials in
the sum and difference of the Riemann invariants modulo a factor of the density ρ.
These sequences may be introduced as follows. By scaling the wave

η = aψ+eku = (k/θf + 1)f2θρφ + (r)eku,

we find an entropy, η = ρφ + (r)eku, r = kρθ/θ which depends analytically on the
parameter k. Similarly by scaling η = aψ__eku, we find an entropy η = φ_(r)eku,
which depends analytically on k. The power series expansions

generate homogeneous polynomial entropies with positive coefficients, namely

where the summation is taken over indices s and r such that s + r = n and s is even,
while r = (w + z)/2 and τ = (w — z)/2 = ρθ/θ. The flux q* corresponding to the weak
entropy απ

+, and the flux q~ corresponding to the strong entropy a~ have a similar
structure:

which can be derived using (2.14) and the formula for the corresponding flux.

3. The Representing Measure

We shall consider a y-law gas and prove that if v is a compactly supported
probability measure satisfying

iy, (3.1)
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for all smooth entropy pairs (^Ip^j) vanishing on the vacuum state
V={(w,z): w = z}, then either v is a point mass or v is concentrated on V.
Following the terminology of Sect. 2 we shall refer to a pair (η, q) which vanishes
on V as a weak pair. We shall restrict attention to adiabatic exponents with an odd
number of degrees of freedom y = 1 + 2/n, n = 2m + 1 for technical convenience. We
shall show that v = δ if m ̂  2. The special case ra = 1 corresponds to a monotonic
gas y = 5/3 and represents a transition index for the regularity of solutions to EPD.
In the propositions below we shall assume m ^ 1, with the exception of the last two,
where we assume m ̂  2 in order to appeal to enhanced regularity of progressing
waves.

For notational convenience we shall abbreviate (3.1) in the form

Voβ = Bov, (3.2)

where the basic antisymmetric form B is regarded as acting in entropy pairs or
expected values of entropy pairs. We include the obvious remark that if (3.1) holds
for all smooth weak pairs then it folds for all pointwise limits of smooth weak
pairs.

The basic task in proving existence for conservation laws,

g()t f()x 9 (3.3)
using the viscosity method,

, (3.4)

and compensated compactness is to prove that g and / commute with the
operation of taking expected values with the representing measures v(x t) corre-
sponding to the sequence uε as a consequence of a hypothesized or established
uniform L00 estimate for the solutions uε of (3.4), one obtains that the divergence of
the expected value of the field (#,/) vanishes, i.e. gt + fx = 0, where

g(x, t) = $g(λ)dv{x t), /(x, t) = $f{λ)dv(x> t),

and λ denotes the generic variable of the state space. If

g = g{ΰ) and / = /(5), (3.5)

then the center of mass ΰ = ̂ λdv{xt)(λ), provides a bounded distributional solution
of (3.3). Since the equations of gas dynamics

are formally satisfied at the vacuum, it is sufficient to show that either v is a point
mass or v is concentrated on V in order to verify (3.5). Our strategy will be to prove
that supp v is contained in a set of the form F u P , where P is an arbitrary point in
ρ>0. If v admits the decomposition v = v\V + aδp, then the commutativity relation
(3.1) applied to weak pairs yields

from which we deduce that either α = 1 and v is a point mass or α = 0 and v is
concentrated on V.
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To this end we shall study regularity properties of the projections of v onto the
w — z axes. Consider the smallest triangle

which contains the support of a fixed v satisfying (3.1). Let the three vertices be
denoted by P = (wo,zo), Q = (w0, w0), R = {zo,zo). By Galilean in variance one may
assume that Ω is centered at the origin, i.e. that w0 + z 0 = 0. Let Pwv and Pzv denote
the orthogonal projections of v onto the horizontal segment RP parallel to the
w-axis and the vertical segment PQ parallel to the z-axis, respectively:

Pwv(a,b) = v{(w,z): a<w<b},

Pzv(a, b) = v{(w, z): a <z< b).

For notational convenience we shall regard Pwv and Pzv as acting on functions of
w and z respectively. We shall show that the Lebesgue derivative of the projections
of the weighted measure v = (w —z)2wv vanish except possibly at the vertex P, i.e.
DPwv = 0 for zo<w<wo; DPzv = 0 for zo<z<wo. It follows that Pwv and Pzv
vanish on the open segments QP and PR respectively and that the support of v is
contained in F u P . We remark in passing that if one could also prove that either
DPwv(wo) = 0 or DPzv(zo) = 0 then v would vanish, i.e. v would be concentrated
on V.

We recall that the Lebesgue derivative

Dμ{x0) = lim 2nμ{x0 - ί/n, x0 + 1/n),

of a non-negative measure μ exists at almost all points x0 with respect to Lebesgue
measure dx. If Dμ vanishes a.e. with respect to dx then μ is singular with respect to
dx. If Dμ vanishes a.e. with respect to μ then μ itself vanishes [29, Chap. 8]. Here it
is convenient to regard the derivative as the limit of expected values of step waves:

Dμ(xo)= lim $sn(x)dμ,
n —*• o o

sn(x) = 2n if | x - x o | < l / n ; sn(x) = 0 otherwise.

We shall differentiate the projections of v using a sequence of weak EPD waves
which approximate a step wave in each mode. In contrast to the constant
coefficient wave equation, the modes of the EPD equation have varying amplitude.
This difficulty is overcome by appealing to the coercive structure of special EPD
waves in the nullspace of the Goursat operator.

To this end we shall first discuss the singular Goursat problem for (2.8) which
poses data on characteristic rays issuing from V. Without loss of generality we
shall work with the rays w = 0 and z = 0 issuing from the origin and prove that
DPwv(0) = DPzv(0) = 0. For this purpose we shall introduce special Goursat waves
corresponding to a point source at the origin. Consider a consequence of smooth
functions gn which approach the ^-function at the origin, and which have, for
simplicity, compact support. The Darboux formula provides a sequence of smooth
weak entropies w
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that converge pointwise to ηo — ( — zw)mX, where X denotes the characteristic
function of the fourth quadrant w > 0, z < 0. The associated flux is given by

We remark that in general the flux q of a weak pair is easily computed using either
of the formulas

4 = λin 7 — ί *l(x> z)dx, (3.6a)

(3.6b)

which may be derived by integrating the EPD equation,

^ η,

along horizontal segments joining (z, z) to (w, z) and vertical segments joining (w, z)
to (w, w) respectively. One could, of course, begin with a weak entropy η satisfying
(2.8) and show by direct computation that the function q supplied by (3.6a) or
(3.6b) provides the corresponding flux.

In a similar fashion, a sequence of test functions gn approaching the derivative
of the ^-function at the origin generates the pair

as the pointwise limit of smooth weak pairs. We remark that both Go = (ηQ9 q0) and
G1=(ηvq1) lie in the nullspace of the Goursat operator, i.e. vanish on the
characteristic rays w = 0 and z = 0. A complete set of waves in the nullspace of the
Goursat operator may be formally generated by using Galilean invariance: if η
solves EPD so does ηw + ηz. For the purposes of this paper we shall only need the
two independent pairs Go and Gv

A basic coercive property of the Goursat waves Go and Gι is expressed by a
sign condition on the form B, namely

^ (3.7)

which is obtained by direct substitution. Additional coercive properties will be
discussed below for the moment we shall use (3.7) to derive a regularity property
of v. Our analysis is motivated in part by the following lemma.

Lemma 3.1. // v is not concentrated on V then the vertex P of the minimal triangle Ω
lies in the support of v.
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Proof. We shall argue by contradiction using the outgoing 2-waves and the
incoming 1-waves which were introduced in Sect. 2 and satisfy

qx=η

Consider the normalized form of (3.1),

<v,η1q2-η2qί>

The integrand in the numerator of the left satisfies

η1q2-η2qί=ek^z){(λ1-λ2

If the vertex (wo,zo) does not lie in suppv then

for an appropriate δ. On the other hand, for every ε >0, the expected values in the
denominator satisfy

( v ^ ^ c o n s t ^ - ^ 0 ^ ; <v,f/2>^ const ek{w°~ε\

since Ω is minimal. Thus, as k approaches infinity through an appropriate
subsequence, the left side of (3.8) vanishes while the right side converges to the
difference of averaged values of the characteristic speeds,

o=X2-X l f

Since the characteristic speeds are nondecreasing functions of the characteristic

, the extreme values satisfy

j 1 ( ) ^ 1 2 ^ 2 ( ) 2 ,

and strict hyperbolic produces the contradiction X2^λ2(P)>λ1(P)^λv

Lemma 3.1 is the first step in proving that v is concentrated at P if it is not
concentrated on V. The second step is to establish regularity in the form of uniform
boundedness of expected values of singular waves. Suppose that ψ is an arbitrary
smooth compactly support function on the line. Fix m and consider the progress-
ing pair of order m— 1 based on ψ:

(nnΛn)> nn = PJψn), ψn = nψ(nx).

Lemma 3.2. For each ψ the expected values (v,ηn) and <v,<^> are bounded in n.

This lemma is motivated by 'the technical observation that the difference
between entropy flux and characteristic speed times entropy is a smoothing
operator on weak pairs:
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j η{w, y)dy.
^ z ^ z

The regularization afforded by the form B(η,q;ή,q) = ηq — ηq, is put into evidence
by the identity B = τfi — τ.γ\, which involves one order of integration on the right
side. The basic observation is that the left side of (3.1) is generally more regular
than the right side, an imbalance which can only be resolved if v is a point mass.
We shall begin to quantify these remarks with a proposition that is needed in the
proof of Lemma 3.2.

Proposition 3.3. Suppose (η,q) is a pair which vanishes to order m—\ on the
characteristic rays through the origin in the sense that \η\ + \q\ύconstIzwΓ"1. Then
for all smooth compactly supported functions ψ, the form Bn = ηqn — ηnq is bounded
uniformly in n.

Proof Assume for concreteness that ψ is supported on (— 1,1) and consequently
that ψn is supported on ( - ί/n, 1/n). The waves (ηn9qn) vanish on

F = {(w,z): w<-l/n or z>l/n}

by finite propagation speed and the main action is confined to the characteristic
strips

Sw = {(w, z): M < 1/n], Sz = {(w, z): \z\ < 1/n}.

We do not repeat the standing condition w^z. We shall partition Fc in four
regions involving an interaction zone I and a wake quadrant Q:

Q = {(w,z):w^ ί/n,z^ - ί/n}, I = {(w, z): |w\ ί \/n, \z\ S 1/n},

Sw = SwnΓ, Sz = SzπΓ.

On the interaction zone I the pair (η,q) is small, |?/| + |^f|^const/?22m~2, and one
sees easily that Bn is uniformly bounded on /. On the wake quadrant, ηn reduces to
constant function ηn = am\ψn(x)dx, which is clearly bounded uniformly in n, while
qn reduces to a constant function which can be shown to be uniformly bounded by
integrating (3.6) by parts. Thus, we need only consider the truncated strips Sw and
Sz on which ηn consists of just a single mode:

m

nn = Σ afw-zT^D^^ l V » on Sw, (3.9a)
j=o

»/»= Σ a^-zT-K- l r - '-'A.- -iΨΛz) on Sz. (3.9b)

By substituting (3.9a) into (3.6a) we find that

on the set Sw. In a similar fashion, by substituting (3.9b) into (3.6b) we find that
Bn = &(l)onS2.
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Proof of Lemma 3.2. Fix (η,q) and consider the commutativity relation

< v

5 ^ - ^ > = : < v ^ > < v ^ « > - < v ^ « > < v ^ > (3 1 0)

Suppose, on the contrary that

lim|<v, ηn}\ = oo and/or lim|<v, qn}\ = oo .

By dividing (3.10) by the appropriate factor <v,f/n> or {v,qn} it follows that there
exists constants α and β not both zero such that O = oc(v,η}-β(v,q}, since the left
side is bounded uniformly in n. We conclude that the expected value of B acting on
weak pairs (η,q\ (f\,q) of order (zw)™'1 vanishes:

(v,ηq-ήqy = (v,η}(v,qy-(v,ή}(v,qy=O. (3.11)

Substituting Go and Gί into (3.11) leads to the contradiction that the vertex
P = (wo,zo) does not lie in suppv. We have

on β = {(w,z): w > 0 , z < 0 } .

Next we shall prove that the derivatives of the projections of the weighted
measure v exist and vanish escept possibly at the vertex P of Ω. As we remarked
above, Galilean invariance allows one to label the point in question as the origin.
We shall show that DPwv(0) = DPzv(0) = 0, using the coercive character of B on the
subspace of progressing waves Pm(ψ). To this end we shall show that the sum of
appropriate bilinar forms of the type Bn = ηnqn — nnqn, can be constructed to
approximate a step wave in each of the characteristic strips Sw and Sz and deduce,
using the uniform boundedness of Bn, that the operation

produces the derivative of v modulo a factor.
We shall begin by estimating the leading term of Bn. Suppose that ψ and xp are

supported on (— 1,1).

Lemma 3.4. The form Bn = Bn(ψ9 ψ) admits the power decompositions

2m

Bn= Σ n2w-'-Hw-z)2m- Um-/™) o n £w>
7 = 0

2m

Bn= Σ n2m-J-1(n-z)2m-JAm-J{nz) on Sz,
j=o

where the coefficient forms Ak represent bilinear maps sending a pair of functions
(ψ9ψ) into a function Λk(x) = Ak(ψ, xp) (x), determined by the first k—1 derivatives of
ψ and xp. The leading coefficient is given by

Am = const{Dm_2ψDm_1ψ-Dm_2ψDm_1y)).

Proof For concreteness we shall consider the vertical strip Sw. We shall express Bn

in terms of the integral operator τ as follows,

Bn = τJln ~ ϊnΆn \ τ
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On Sw, the waves ηn and /?„ contain only one mode, e.g.

m

%= Σ aJίw-zr-JDn.j^φJtw). (3.12)

An explicit integration shows that the function

J ,π(χ,z)dx (3.13)
- l / n

satisfies

T —— •

Here lower order derivatives are crudely estimated by the formula,

Dkψn = nk+1Dkψ(nw) = Θ(nk+ x ) .

Substituting (3.12) and (3.13) into Bn together with the corresponding expressions
for ήn = Pm(ψn) and τn = τ(ήn) yields the desired result once one observes that the
homogeneous terms involving derivatives of order m — 2 cancel due to symmetry.
The product of Dm_2ψn with Dm_2ψn does not appear.

The process of differentiating v is based on the following uniform bound for the
expected value of Bn acting on progressing waves.

Lemma 3.5. For each smooth compactly supported pair (ψ, <p\ the expected value

2m

is bounded uniformly in n. Here Λk is evaluated at nw if the variable (w, z) lies in Sw

and at nz if the variable (w, z) lies in Sz.

Proof Apply (3.1) to the waves ηn = Pm{ψ^ ήn

 = Pm(Ψr)' The right side is bounded
by Lemma 3.2 while the integration on the left side takes place over the set Fc

introduced in Proposition 3.3:

Since the pairs (ηn, qn) and (ήn, qn) are uniformly bounded on the interaction zone /
and the wake quadrant Q, as was shown in the proof of Proposition 3.3, the
quantity (v\S,ηnqn — ήnqn} is uniformly bounded. Here S denotes the union of the
characteristic strips Sw and Sz. The desired bound follows from the power
decomposition in Lemma 3.4.

The coercive character of B acting on progressing waves can now be put into
evidence by the statement that for each (φ, ψ) there exists a constant c = c(ψ, xp) so
that

2m \

<v\Sn,n
2m-1(w-z)2mA2m{ψ,ψ)-c £ n 2 m - J ' - 1 (w-z) 2 m ~Λ g>c. (3.14)

/
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The form of the leading coefficient motivates the weight (w-z)2m. At this point we
remark that a savings in technical detail can be obtained if one merely proves that
the lower Lebesgue derivatives vanish, i.e. DPJv = 0 for w < vv0, DPzv = 0 for z > z0,
where Dμ(x) = ljm2nμ(x— l/n,x + 1/n). Indeed, if the lower Lebesgue derivatives of
a non-negative measure μ on the line vanish almost everywhere with respect to μ
then μ vanishes [29, Chap. 8]. We shall show below that

DPJ(0) = DPzv(0) = 0. (3.15)

A similar analysis yields the vanishing of the upper Lebesgue derivative. However,
that analysis is unnecessary for current purposes.

The basic strategy for estimating the lower derivative can be conveniently
explained by considering a model situation where it is assumed that the restriction
v\Sn satisfies

2m

n2m-\w-z)lmv\Sn,n
2m-\w-z)lm- Σ cn2m- /-1(w-*)2m~'/) £c, (3.16)

7=1 /

for some constant c. The model situation arises by replacing the leading coefficient
Λ2m(ψ,ψ) by the indicator function of (— 1,1). We shall show that one may choose
a finite set of pairs (ψ., ψ.) so that the sum of the leading coefficients,

is positive on (— 1,1). Then the argument for the model situation can be applied
with a simple modification to the bound obtained by considering (3.14) with the
choice (φ., ip.) and summing over i. In the following analysis we shall assume that
the integer m exceeds one.

Proposition 3.6. The uniform upper bound (3.16) implies that

lim(v\Sni(w-z)2mn> = 0, (3.17)

or equiυalently that (3.15) holds.

Proof. We shall show that quantity <v|Sn,(w — z)2mn2m~ls) is uniformly bounded in
n. We shall estimate the lower order terms of (3.16), namely,

2m

in two steps. If (w —z)^π~α, then

and vanishes in the limit if the exponent is negative, i.e. if

(2ro-2)/(2m-l)«x.

If (w-z)^n'β with β<ί, then the leading Ltι = (w-z)2mn2m~~1 dominates the
lower of terms in the sense that Ln ^ IJ2 for large n. Therefore if we fix α so that
(2m—2)/(2m— l ) < α < 1, we find that an upper bound of the form
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< v\SnnAn, Ln - /„> + <v\SnnAe

n9 Ln - /„> ̂  const

Λ = {(w,z):(w-z)ί»-"},

yields the desired estimate, ^v\Sn,Ln}^const.

As a technical comment, we remark that in the case m ̂  2 there is flexibility in
the exponents. For example, if one assumes a weakened version of (3.16) in which
the order of the leading coefficient is reduced by a small amount ε, i.e.,

2m \

v\SH9n
2m-1(w-z)2m~e- Σ cn2m"3'1(w-z)2m-J) ^c9

7=1 /

then the statement (3.17) still holds. This fact makes the actual situation in which
A2m{ψ,ψ) has compact support easily accessible.

We conclude this section with a discussion of the structure of the leading
coefficient

Am = constA2Jψ,ψ)=Dm_2ψDm_1ψ-Dm_2ψDm_.1ψ.

In the simplest case, m = 2, the function A2 reduces to the familiar form A2=ψψ'
— ψψ' = ψ2D(\pl\p). lϊxp has compact support and we define ψ in terms of ψ by the
rule ψ = χψ, then ψ has compact support and A2 is coercive, A2(ψ9ψ) = ψ2^0. If
m = 2, it suffices to employ one pair (ψ, xψ\ where ψ is a rough approximation of
the indicator function of (— 1,1):

for - ,

ψ(x)>0 for — 1 + ε ^ x ^ l —ε,

ψ(x) = 0 otherwise,

with ε small. If m^2, we introduce φ = Dm_2ψ, and write

Am = φDφ = φDφ = φ2D(φ/φ) = (Dm_2ψ)2D(Dm_2ψ/Dm_2ψ).

We observe that if ψ is supported on (— 1,1) and satisfies

1

f ψ(x)dx = 0, (3.18)
- 1

x

then the function ίp = xψ — p j ψ(y)dy is supported on (—1,1) and satisfies
-i

Dp\p = xDpψ. Hence Am is coercive on the pair (ψ, ψ):

X

Am(ψ,Ψ) = (Dm_2\p)2 if <p = xψ-{m-2) J ψdx.
- 1

By taking a finite collection of functions ψ. satisfying (3.18) and having distinct
zeroes in (— 1,1) we may arrange that

^ 0 on - l g x g l ,

The remaining details are routine and are omitted.
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4. The Viscosity Method

We shall briefly discuss the existence problem for the parabolic system,

-em ( 4 1 )

and prove an ε-dependent lower bound on ρ, cf. Theorem 4.1. We shall begin with
some elementary remarks concerning a priori estimates for systems of the form

ut + /(ύ)x -\-g(u) = uxx, (4.2)

where / and g are arbitrary smooth maps on JR". It is not difficult to show that a
priori pointwise control on the amplitude leads to pointwise and integral control
on the higher derivatives: if \u( , ί)!^ ̂ m(t, |MO!C»X t n e n

\u{ , t)\ck^pk(t, \uo\ck), (4.3)

\u(' t)\ —Q it \u I k) (4.4)

where the bounds pk and qk denote finitely-valued functions depending on /, g, and
m.

In the semilinear case, / = 0 , the estimate (4.3) can be derived by inverting the
heat operator while the estimate (4.4) can be derived by differentiating (4.2) in
space and multiplying by Dxu. In the quasilinear case the same process works after
one derivative is put on the heat kernel. For example, if g = 0, then

OO ί 00

u(x,t)= I Z(x-y,i)uo{y)dy+\ J Zx(x-y,t-τ)f(u(y,τ))dydτ,
— oo 0 — Q O

where

1

{4π(ί-τ))1

A standard induction shows that the spatial C* norms satisfy a Gronwall
inequality of the form

since the first spatial derivative of the kernel is integrable,

\Zx\ύ j - ^ - . exp{-(x-y) 2 l2{ t-τ)},

(4.5)

ί \Zx(x-y,t-τ)\dy^c(t-τΓ112.
— oo

Given pointwise control of the form (4.3), one can derive integral control (4.4) with
the standard multiplier Dxu. One may, of course, proceed in a variety of ways.

We recall that, in the setting of artificial viscosity applied to isentropic gas
dynamics, the presence of invariant quadrants leads to a U° estimate which is
independent of ε. The Riemann invariants w = rn/ρ + ρθ/θ and — z = — m/ρ + ρθ/θ
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are quasi-convex functions of (ρ, m), i.e. convex in the directions tangential to their
level sets:

0 2 (

The general theory of invariant regions developed by Chueh, Conley and Smoller
[30] yields upper bounds of the form

w(x, t) g sup wΌ(x), - z(x, t) ̂  sup {- zo(x)}.
X X

The intersection of half-planes provides the classical invariant quadrant of the
w — z plane which translates in uniform control \u\ Sconst, O^ρ^const, where the
constants depend only on the modulus of the data. Thus, to continue a local
solution of (4.1) one needs only an a priori lower bound on the density
ρ^(5(ί,ε)>0. We shall sketch a derivation of such a estimate using the L00 bound
and the dissipation of mechanical energy.

We recall from Sect. 2 that quasilinear systems of the form ut+f(u)x = εuxx

admit an estimate of the form

^ j ηodx (4.6)
O — o o

for a normalized convex entropy ή=η(u) — η(u)—Vη(ΰ)(u—u), provided that the
solution u approaches the constant state ΰ at infinity. Applying (4.6) to the
mechanical energy

W/Q+Φ) =W/Q + QγMγ -1),

yields

J ±ρ(u-u)2 + Qσ(ρ,ρ)dx^c, (4.7)

where Qσ denotes the quadratic part of σ at ρ: Qσ = σ(ρ) — σ(ρ) — σ'(ρ) (ρ — ρ). In the
following we shall assume without loss of generality that ΰ = 0. With the aid of the
integral estimate (4.7) we shall obtain a pointwise lower bound on ρ by deriving H1

estimates on convex functions h(ρ) which blow up algebraically at the vacuum. At
first we shall proceed formally and multiply the mass equation by hf and integrate
over the strip (0, t):

ht + (hρu)x - h"ρ2ρxu = hxx- εh"ρ2

x , (4.8)
00 ί 00 t 00

J h(t)-h(O)dx + εj j h"Q2

xdxdt = \ j h"ρ2ρxudxdt.
— oo O — o o O — o o

If M 1 / 2 denotes an upper bound for ρ, we may use Young's inequality to obtain

h"ρρxu S ^ h"ρ2ρ2

x + ̂  h"ρ2u2,

(4.9)
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In order to estimate the right hand side of (4.9) in terms of the mechanical energy
we shall restrict h to the class K of strictly convex C 2 functions with the following
properties:

) = Q~a o n (0»β/2) for some α , 0 < α < l .

We note that the functions in K have the following convenient properties

h^c(ρ — ρ)2 for ρ near ρ,

ρ2h"^cρ for ρ/2^ρ^M1/2,

ρ2h"^ch{ρ) for 0 < ρ < ρ / 2 .

Thus for a solution with velocity bounded by M we have h"ρ2u2 ^ c(ρu2 + h), and a
Gronwall inequality,

f h{t)- h{0)dx + ^ } j h"ρ2

xdxdt ^ - + ί j h(ρ)dxdt,

since the contribution from the term ρu2 is controlled by the mechanical energy.
Therefore we obtain a growth estimate

J h(t)dx+] f h"ρ2

xdxdt^cectl\ (4.10)
— oo O — o o

where the constant c depends upon h and the amplitude and mechanical energy of

the data. We shall convert the integral estimate into a pointwise lower bound using

the following lemma (which has numerous obvious generalizations).

Lemma 4.1. // φ(t) is a non-negative function satisfying

φ{t)-φ(s)^Cl{t-s)112 if ί > s , (4.11)
T

\φ~adt^c2, (4.12)
o

then φ^c3 on the interval (0, T\ where the constant c3 depends on cv c2, T, and a.

First we shall verify (4.11) for the function

φ(t) = minρ{x,t).
X

This can be done by inverting the heat operator in the mass equation to obtain

t

ρ = \Z{x-y,t- s)ρ(y, s)dy + \\ Zx(x -y,t- τ)uρ(y, τ)dydτ = J χ + 1 2 .
o

Since Z is a non-negative fundamental solution we have

y

1 / 2while the bound (4.5) implies | / 2 | ^c( ί — s)1 / 2. To prove (4.15) we shall show that

f f h2 + h2dxdt^cect/ε, (4.13)
O - o o
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from which the Sobolev inequality implies

J sup h(ρ(x,t))dt^cect/ε,

o x

or equivalently

]supρ-a{x,t)dtScectlε.
o x

The first term in (4.13) can be handled by simply replacing h by h2 in (3.14). The
second term can be handled by replacing h with a function g satisfying h'2^g", so
that

Π h2

xdxdt = if h'2ρ2dxdt S f J g"Q2Jxdt ^ cectlε.

We conclude that if (ρ, u) is a smooth solution with initial data (ρ0, w0) which
approach a constant state (ρ, ΰ) at infinity and satisfy

ί ( ρ 0 - ^
— 00

where

ρ= lim ρo(x), M= lim uo(x),
χ-> ±00 χ-> ±00

then the density ρ is strictly positive, ρ(x, t)^δ(t)>0. These a priori estimates may
be used in a variety of ways to produce an existence theorem. One representative
theorem is the following.

Theorem 4.1. Suppose that (ρo — ρ,uo — u)eC2Γ)H2 and ρo^<S>O. There exists a
global solution (ρ, u) to the Cauchy problem with data ρ0, u0 such that

(ρ( ,t)-ρ,u(-,t)-ΰ)eC2nH2,

for an appropriate function δ.

One may, of course, consider regularity properties of the solution. It is easy to
show that any locally bounded distributional solution to a system of the form (4.2)
is C00 i f / a n d ^ a r e C00.
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