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Abstract. Some difficulties with sharp momentum (one-particle) states for
massless particles are indicated, in the framework of unitary irreducible
representations of the Poincare group. It is shown that a Poincare co variant set
of such states requires the introduction, in the spatial direction opposite to the
point stabilized, of momentum generalized eigenstates which (when the helicity
is nonzero) have a nontrivial orbital transformation. The relevance of these
generalized momentum eigenstates for massless theories is then shown

1. Introduction

The basis of all the existing modern fundamental particle theories is a family of
interacting massless fields. This is so in gravity, in the electroweak model before
spontaneous symmetry breaking, and in quantum chromodynamics (at least in the
original version). For this reason massless particles became even more important in
the last decade or so

In spite of a few recurring claims that from some point of view the massless limit
can be considered smooth [1], singularities do appear in the massless limit. Even

the kinematics of one-particle massless particles presents a picture that is
entirely different from massive particle kinematics.

In this paper we shall show that the concept of sharp momentum states, used
elsewhere in physics with relative safety, has to be treated with great care as far as
massless particles are concerned. In fact, distributions of the c)-function type are not
relevant everywhere — sometimes they must be replaced by "twisted ^-functions"
that, though supported on a single point, carry angular momentum.

A Paradox

Consider a massless state with momentum p and helicityy ^ 0, commonly defined by

7ΊPJ> (1)

If p points along the positive (negative) third coordinate axis, then the third
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component of angular momentum is +7 (—7). On the other hand, consider the
generator J3 of angular momentum, in the canonical form [2] of the unitary
irreducible representation (UIR) of the Poincare group & with mass zero and
helicity 7 (denoting d/dpk by dk):

Then on ^-functions localized at p1 = p2 = 0, p3 ̂  0 fixed arbitrarily, irrespective of
the sign of p3, we have J3 =7. On the other hand, on ^-functions localized at p2 = p3

= 0, /?1 φ 0 fixed, (with p0 = |p|)

Jι= - i(P2^3 - £3^2) +JPι(Po + PiΓ1 (3)

reduces to J1 =7'(sgn pj. A similar result is obtained for all other rotation group
generators except that of the little group, in accordance with (1). We thus get the
paradoxical result that the little group rotation generator (the only one with a
regular analytic expression) has a strange action on ^-functions localized on its
rotation axis, while this does not happen for the other rotation generators.

The Resolution

Normalized states are of the form

In order to justify the above formal considerations, it would be necessary to
assume that one can find two sequences of wave functions that converge respectively
toδ(pι)δ(p2)δ(p3 — \)andδ(p1)δ(p2)δ(p3 + 1). In the massive case this would pose
no problem. In the massless case, as we shall see in the next section by studying the
space of differentiable vectors for the mass zero helicity 7 representations of the
Poincare group (in a canonical formalism), this hypothesis is incorrect. In fact, the
correct space of (generalized) wave functions has the very interesting structure of the
dual space to a space [3] of differentiable sections of a nontrivial complex line
bundle over the vertexless forward light cone. In the above formulation, it then turns
out that δ ( p l ) δ(p2) δ(p3 + 1) does not belong to this space and has to be replaced by
a "twisted ^-function" carrying angular momentum — 2j, the "twist" being caused
by the transition functions.

Remarks

(a) The above paradox is caused by difficulties arising, in the massless case for) φ 0,
in what can be called p-space localizability. Similar difficulties occur in x-space
localization of massless particles: only generalized localizability exists [4,5]. The
usual Wigner-Newton localizability (derived from the massive case) works in the
massless case only for spinless particles or for two-helicity (±^) massless
"neutrinos." In the latter case, since the direct sum of helicity + \ and — \ UIR of
3P is equivalent to the massless limit of a spin \ UIR of ̂ , which does not exhibit a
singularity for p3 = — |p|^0, the problem of p-space localizability can also be
avoided (it is pushed back to the intertwining operator realizing the equivalence).
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For \j\ > 1/2, constraints are needed to eliminate redundant components arising
in the massless limit, and the localizability problem cannot be avoided.

(b) The absence of the vertex of the light cone, on which the massless
representations are realized, is the source of another particularity of massless
representations (which occurs even in the zero helicity case): the space of all
differentiable vectors [6], i.e. the largest subspace of the Hubert space of the
representation on which the enveloping algebra of & is defined, is not nuclear. In the
massive case it is nuclear [7]. [The topology on the space of differentiable vectors is
defined in a natural way by the action of the enveloping algebra. Nuclearity would
ensure that the dual contain all the generalized eigenstates appearing in the spectral
resolutions of the essentially self-adjoint elements in this enveloping algebra, and is
thus a useful technical property.] The difference is due to the fact that in the massless
case there is an integrability condition around p = 0.

(c) The massless discrete helicity UIR of & are the only ones which are
extendable, and uniquely so [8], to a (most degenerate, so-called ladder) UIR of the
conformal group SU(2, 2). The space of all differentiable vectors for this conformal
group extension is nuclear [7], and invariant under the Poincare group action. It
thus provides a natural nuclear space of differentiable vectors for ̂ .

2. Singularities in Zero-Mass UIR'S of the Poincare Group

The massless, discrete helicity, positive energy representations U of the Poincare
group & are traditionally realized on the space H = L2(Ω0,d

3p/p0) of square
integrable functions on the forward light cone

The action U(a,Λ) representing an element (a, A) of&>, with aεR4 and ΛeSL(2, C)
is given by

lU(a,Λ)n(p) = eia pQj(p,A)f(A-lp). (4)

Here) is the helicity and Q is a function that satisfies the multiplier condition

Qj(p,ΛίΛ2) = Qj(p,Λ1)Qj(Λ^p,Λ2). (5)

If the representation is to be unitary, then Qj is a complex number of modulus one,
and can be taken to be the exponential of i times a real valued 1-cocycle of the
Poincare group — in fact, of the Lorentz group, since Eq. (5) shows that it is trivial on
the translations.

When the representation is built as an induced representation in the sense of
Mackey, then the inducing subgroup is R4 (x £(2), where the "little group" £(2) is the
two-fold covering of the Euclidean group of the plane. In this case Qj is a
representation of £(2), trivial on the translations, and takes the form

where A(p) is a Lorentz transformation that maps the point stabilized by the little
group to p. Various choices of A(p) all lead to the same multiplier, namely [5,9]
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where Λ = ( 1 and ζ = —(p1+ Φ2)(Po + Pa)~ *• The usual infinitesimal generators
\yδj

can then be computed, with following result:

Pi P2M 3 1 = -i(
Po + Pa Po + Pa

03 = φ0δ3. (7)
+

Here dk = d/dpk. The little group £(2) is generated by M12 and M32 + M02,M31

+ M01; together with M03 they generate a four-parameter, solvable subgroup of
SL(2, C), the largest subgroup that possesses non-singular generators.

One notices that, when 7 ̂  0, a singularity appears, both in the global form (6) of
the multiplier Q. and in the infinitesimal form (7), at p0 + p3 = 0. This is unimportant
as far as the Hubert space representation is concerned, but it becomes relevant if we
need continuity or differentiability properties. It turns out that this singularity has
an interesting and profound effect on the construction of generalized eigenstates of
momentum.

Generalized momentum eigenstates do not belong to the representation space,
but an action of the representation on such states can be defined by duality on the
GeΓfand triplet D c H a D'. If D is a complete, invariant, topological vector space of
differentiable vectors for the representation, dense in H, then one restricts the
representation U to D and extends to D' by duality. Since the Lie algebra generators
leave D invariant, they too can be extended to D'. Thus, for a massive representation
of the Poincare group, one can take for D the space of C°° functions with compact
support on the mass hyperboloid; the dual D' contains the generalized functions
<5(P — P) that are nothing else than the generalized momentum eigenstates |/?>. We
have Pμ |p> =pjp> and all the other generators are also defined on these states.

In the massless case one may attempt to exclude the singular set p0 + p3 = 0 from
the support of the functions of D; but then this space is not invariant under the group
action and the construction fails. For every |p> there will be Lorentz transfor-
mations that are singular on it (those that take p to the singular set) and for every
Lorentz transformation not belonging to the regular subgroup (that generated by
the little group and by M03) there will be a |/?> for which it is singular. (That is, there
will be a |p > that is transformed outside D'.)

Alternatively, one can take for D an invariant space of differentiable vectors for
the representation of & — or of its extension to the conformal group, endowed with
its natural Frechet topology — which is nuclear in the case of the conformal
extension. In this case not all momentum eigenstates δ(p — p) will belong to D', A
simple demonstration of this is the following. Consider first a rotation R"θ of angle θ
around the axis (1,0, 0) Ξ π,

. θPi sin -

[t/(Λ3)/](p) = exp 2ijarctan \f(R"θp). (8)
~
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In the limits /(p)-><5± * = δ(p0^pί) δ(p2) δ(p3), we get

U(Rl)δ±fl = e±^δ±^ n>(0,0,l). (9)

As indicated, the same result is obtained for any axis of rotation, except for the
special case when n coincides with the singular third axis (0, 0, 1 ). In that exceptional
case the limits f(p)-> δ ±%(p) still exist, but now

$δ±t = e + i»δ±ίί9 ιί = (0,0,1). (10)

In fact, from (1) and (3), one sees that the space Q> of C°° functions with compact
support on the forward light cone is not invariant under U: it is transformed into a
larger subspace of//. Taking sequences Rh

θ of rotations and δ_fl of eigenstates for
π->(0,0, 1), formulas (9) and (10) show that there is no way to remedy this situation
and extend U to a continuous representation & x E-+E on a topological vector
space E of distributions containing// and all the generalized momentum eigenstates
6* (when 7^0).

A suitable set of momentum eigenstates will be constructed in the next section.
To be complete one may mention that using a space of functions as given by Mackey
theory [10, 1 1], over the Lorentz (or Poincare) group, will eliminate the need for a
multiplier in the realization of the representation (it will be hidden in the space) but
this will also change the expression of the representation.

3. Poincare Covariant Momentum Eigenstates in Zero-Mass UIR of &

(a) A more Appropriate Expression of these UIR

We have seen that, when j ^ 0, the generalized eigenstates δ(p — p) cannot belong to
the dual of a dense space D of differentiable vectors for these UIR's of 3P when p is on
the singular semi-axis, and that under a Lorentz transformation which takes p to the
singular semi-axis, the transforms of these states δ(p — p) are not even defined in the
Schwartz distribution space <&'. A more attentive look at the definition of the
representation will explain this anomaly. For this purpose the p-space para-
metrization (4) and (7) of the representation is not the most appropriate, due to the
fact that the forward vertexless light cone is diffeomorphic to R x S2 which needs
two charts to be parametrized. We shall use a parametrization similar to that given
by Rideau [3], by two charts and stereographic projections of the sphere S2 on the
complex plane C,R x (S2 — {p3 = — \9p1 = p2 = 0}) being parametrized by

ί = logPo, ζ = _ , (11)

and the opposite chart by (ί, — ζ~ ').
Then the representation (4) takes the form

(U(a,Λ)f)(t,ζ) = e»->Qj&,A)f(tM (4')

where Qj(ζ,Λ) = (βζ + δ/\βζ + δ\)~2j for A = MeSL(2,C) and
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In order for the group action written as (4') to be always well-defined and
differentiable, the functions / must satisfy a condition at the limit ζ -» oo , adapted to
the form of the multiplier QJ9 and be differentiable. Therefore we shall choose the /
belonging to the space Dj of infinitely differentiable functions in ί, Re ζ and Imζ, with
compact support in ί, such that the function

/:(ί,0^(C 1 I C I ) + 2j'/(ί,-Γ1) (12)

has the same properties; Dj is endowed with a ^-type topology (uniform
convergence, together with all derivatives, on bounded subsets of R x S2, the
support in t being inside a fixed compact set). This is a nuclear dense invariant
subspace of the (Frechet nuclear) space of differentiable vectors for the (uniquely
defined [8]) extension of U to SU(2,2), which is defined in a similar manner but with
a 5^-type of behavior in el (instead of the ^-type preferred here).

The differentiability condition of/and/is nothing but a more explicit way to say
that DJ is a space of diίferentiable sections of a nontrivial complex line bundle on
R x S2, the transition functions being (ζ~1\ζ\)+2j. It may be of interest, though a
posteriori not surprising (as we shall see in Subsection (c)) to note that these factors
have been also introduced around 1960 by E. Wigner [12] in his extension of U to
the orthochronous Poincare group <^+.

(b) Poincare Covariant Momentum Eigenstates

In the above parametrization, ζ = Q(teR) describes the semi-axis passing through
the stabilized point (1,0,0, 1) while ζ = oo(feK) describes the "singular" semi-axis.
For any finite value ζ of ζ, we can define a Dirac measure on the S2 sphere p0 = 1 by

(13)

where (p0 = 1, p) is related to (ϊ = 0,£) by the parametrization (1 1). For ζ = oo we
have to pass to the other chart, or equivalently to take the limit, in this chart of S2, of
suitable functions with compact support "around ζ = oo" which after inversion, ζ ->
— ζ~ x, and multiplication by the transition function (ζ~ 1 \ζ\)2j are C°° with support
around ζ = 0. Thus for p = (1,0,0, — 1) we have to define the state |p> by

Γ1). (14)

In a similar manner (taking any fixed value f) we define the states | p > for multiples of
the preceding four-vector p. Formula (13) defines a usual Dirac δ, but (14) defines a
"twisted delta," which we shall denote by 'δ and may call "twelta", belonging to the
dual Dj of Dj. The duality is defined by the GeFfand triplet Dj a H c Dj.

We can now check that, since in the covering map SU(2)-»SO(3),

cos Θ — sin Θ 0

sin θ cos θ 0
0 e~iθl2 LO 0 1.

a rotation in the (1,2) plane, we have

f, C) = (U(R3(θ))f)(t, ζ) = e"ef(t, eίθζ\ (15)
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and therefore

(16)
ζ-o

In other words, by using an appropriate set of generalized eigenstates |p>, we have
restored the identity

p J | p > = 7 l p l l p > , (Π
and the Poincare covariance of the momentum eigenstates. The use of transition
functions amounts to the fact that the eigenstates of the "twelta" type have a built-in
angular momentum — 2j. Note that, while in (1 ) the p outside and inside the ket are
identical, we still have the identity P J = jpQ9 where (P0, P) are the translation
generators of (7), on any differentiable vector. This is a special case of the defining
relation εμvpσPvMpσ = 2/Pμ which (together with P2 = 0) characterizes the massless,
helicity 7 representation of .̂

(c) Parity and Massless UIR. (The Orthochronous Poincare Group)

As is well known, in contrast to the massive (or massless spinless) case, the massless
(nonzero helicity) UIR of & cannot be extended to the orthochronous Poincare
group (@> together with space reflection Σ): Σ has to be represented by a (unitary)
operator exchanging the +y helicity space Dj with the —j helicity space D_j (the
Hubert spaces Hj and H _• are also exchanged, but their analytic definitions are
identical since the singularity which requires the line bundle formulation for the
differentiable vectors is unimportant at the Hubert space level). More precisely, if &
is represented by (4) or (4'), then we have [12]:

U(Σ)f{Po, p) = ( " f V - X P o , ~ P)

U(Σ )/. j(Po, p) = ' /j(Po. ~ P) = ~ j | Σζ), (17b)

where Σζ = (p^ + ip2)/(Po — P$) In particular, the momentum eigenstates |/?0,pJ>
are transformed to (ζ ~ 1 1 ζ \ ) ~ 2 J f | pQ , — p, — j > . It is not surprising to see the transition
functions appear here, since the geometrical parity operator Σ exchanges the
stabilized semi-axis pQ = — p3 with the singular semi-axis p0 =p3, and therefore
exchanges the two charts which were chosen to cover the sphere S2. It is interesting
to note that they have been used by Wigner about twenty years before the line
bundle formulation was made explicit.

The representations of the orthochronous Poincare group must therefore be
realized in a space Hj ®H_j. One can then be tempted to utilize the limit w->0 of
the representation D(m,\j\) of mass m and spin \j\ of&>, the usual expression of which
has a singularity only for pQ = 0 (there is no singular semi-axis). However this limit is
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not written as a direct sum (to which it is equivalent) and when projecting out on an
irreducible subspace of helicity + \j \ a singular semi-axis will appear, so that the line-
bundle formulation cannot be avoided (for \j \ = ,̂ this formulation will be needed at
least for the parity operator).

To end this discussion one should mention that for physical fields (satisfying
some field equation), the representations of the Poincare group which appear are not
the irreducible ones but extensions of some of these, extensions which are in general
(i.e. when gauge fields appear) non-trivial. For instance, for the photon, we have an
extension of the representations with helicities 1,0, — 1, and 0: the restriction to E(2)
of the co variance representation D(^, \) of the Lorentz group (acting on vector fields)
is an extension of the inducing representations of E(2) parametrized by 1,0, — 1 and
0. The representations parametrized by ε = ± 1 contain the states (;3 = ε, p) and
(73 = — ε, — p), and the parity invariance of the field equation is clear in this case. On
the other hand, for the neutrino, the co variance representation of the massless Dirac
equation is the representation usually denoted by D(^,0)θ^(0,^) of the Lorentz
group, hence, the splitting of this 4-component equation (if complex 4 x 4 matrices
are allowed) into two 2-component factors, the Weyl and the anti-Weyl equations.
Each contains both energy signs (in first quantized theories) and both helicity signs,
as a direct sum of 2 representations. The parity operator exchanges both factors (and
changes the sign of helicity), while the particle-antiparticle operator (PC) exchanges
the components within the same factor. Furthermore, in this case, there exists [3] a
non-trivial extension between the + \ and — \ helicity representations (with the
same energy sign): it would be of interest to look (in second quantized theories) for a
physical interpretation of these extensions, which looks like a "neutrino gauge
theory."

4. Consequences for Massless Particles

As we saw, for j =£ 0 massless UIR's of the Poincare group, the generalized
eigenvectors of the energy-momentum four-vector are radically different from those
of the massive case. It is also well understood from physical reasons that in any direct
particle interpretation (as in S-matrix theories), sharp momentum states have a
fundamental importance (this is true for the massless and massive cases).

It is therefore quite clear that difficulties with sharp momentum eigenstates in the
massless case have additional consequences for the already ill-defined notion of S-
matrix in massless theories. Also the fact that the most interesting massless theories
we have are gauge theories, and that therefore the space of the field theory (the
indefinite metric one) is different from the physical states space (positive-definite
Hubert space), is related to the smoothness problem discussed before in connection
with massless particles.

With respect to the infrared singularities appearing in interacting theories
containing massless particles, there occurs an interesting possibility that "tweltas"
carrying nontrivial angular momentum might, at least partially, correct the bad
behavior of these singularities. Moreover, the fact that the dual of the (nuclear)
space of differentiable vectors for the conformal group (expressed as equivariant
functions on [R4 in massless discrete helicity representations) contains [13] elements
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having support in p = 0 can also be used to attempt to cancel these singularities.
In the remainder of this paper we shall analyze in the light of what precedes a

recent no-go theorem by Weinberg and Witten [14], where extensive use is made of
the sharp momentum states for massless UIR's of the Poincare group.

As a step towards showing that all massless field theories for helicity \j \ > 1/2 must
be gauge theories, Weinberg and Witten have recently attempted to show that in
any theory allowing the construction of a Poincare co variant conserved four- vector
current Jμ (respectively energy-momentum tensor θμv), massless particles with
helicity \j\ > 1/2 (respectively \j\>l) cannot be contained if the conserved charge
Jj°d3x (respectively the energy-momentum four- vector §θμ°d3x) is nonvanishing.
Evidently, as the authors remark, this no-go result does not apply to gravity, pure
Yang-Mills, supergravity, etc ____ , since the associated tensors will not be Lorentz
covariant due to the presence of gauges.

If |p> denotes a sharp momentum generalized eigenstate (for a fixed helicity j,
index which we shall drop from the notation), they look at the Lorentz co variance of

matrix elements <pV(*)|P> and <p'|0μv(x)|p>.
Rigorously speaking, these matrix elements are "twisted kernels" (i.e. belonging,

in p and p', to the dual of a space of C°° sections of a bundle)-valued distributions in
x-space. However, it is not difficult to show that the x-dependence of these matrix
elements is entirely of the form exp(ι(p — p')x), which multiplies a constant (in x)
matrix element. Therefore, though Jμ and θμv are a priori operator-valued
distributions (in x), it makes sense to write symbolically this constant matrix element
as <p'| Jμ \p > and <p'| θμv\p >, and to forget about the x-dependence when expressing
the Poincare co variance. The limits of these matrix elements (if defined) when p'-*p
are then guessed to be respectively epμ/E(2π)3 and pμpv/E(2π)3, where e is the one-
particle charge. They then say that they get a contradiction by showing that if
(p1 - p)2 ± 0, then these matrix elements vanish when |j | > 1/2 and 1 (respectively), the
basis of the proof being the transformation properties of these matrix elements, for
p = p = (p0,p)e£20 and p' = (p0,— p)eΩ0, under rotations R(θ) around the
(p'-p)axis.

A first remark is that the continuity assumption of a kernel around the diagonal
p = p', which is replaced in a footnote by a plausibility argument based on
measurement, is by no means an obvious property. In particular the argument
becomes empty if the kernel has its support concentrated on the diagonal. As a
matter of fact, it is not clear whether continuity can be proved for any realistic
massless particle theory. Indeed, Sudarshan [15] has recently produced examples of
massless (free) fields for which this assumption does not hold (even for the j = 1/2
case, where no gauges are present).

Let us now come back to the proof of Weinberg and Witten. Since (p' — p)2 ^ 0,
they choose a Lorentz frame for which p = p = (p0, p) and p' = pf = (p0, — p) (if the
Poincare representation U is already given, one can get this configuration by acting
with a suitable Lorentz transformation, provided this is legitimate on the given
momentum states). Then they state that under a rotation R(θ) around such a p' — p
axis, one has

C/(K(0))|p>W|p> while I/(K(0))|p'> = έΓyVX (18)
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and utilize the Lorentz covariance of the Jμ and Θμv to get

The contradiction arises because the eigenvalues of .R are eιmθ with m = ± 1 or 0.
How can this be justified in the known Poincare representations? Let us take for

R(θ) a rotation, R^θ), say around the pj axis, on which are located p and p' and
consider C°° functions /- and /-,, of the variable pe£20, with compact support
concentrated around p and p' (respectively), and invariant under R^θ). Consider the
limits f~(p)-> δ(p - p) and/~,(p)-> δ(p - p') (in the 2' topology, or in Dj). Then from
(8) we have

θ

fM\ ^ i ΐ i f f* tin1 ΔlJ dlddll

\ p°

Pi sin -

θ . θ
f P3)cos- + p 2sm-

and similarly for/p,(p), whence (18) in the limit. The same thing is true for any other
rotation axis except the one passing through the stabilized point. For the latter we
have shown earlier (cf(l 5) and (16)) that (18) still holds, provided that the states |p'>
are of the "twelta" type (if p is the stabilized point). Therefore this part of the
Weinberg-Witten argument is rigorously established. However, the only conclusion
one should draw from Weinberg-Witten's argument is the discontinuity of current
matrix elements around p = p'. Such a consequence is not too surprising, and indeed
Sudarshan's argument [15] mentioned before shows that such discontinuities exist
for some massless wave equations even in the free case and for low spins.
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