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Classical Equations dNi/dr=%isijk[NJ9N13
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Abstract. We study the first order system of equations dNi/dr = %iεij<k[Nj9Nk']9

where the Nt are classical, "non-abelian" gauge-Higgs fields with spherical
symmetry. Exact solutions are constructed.

1.

Our starting point are the Bogomolny equations (vanishing self-coupling for the
adjoint Higgs field), when there is spherical symmetry

- =H# + >ΛΓ]> v± = ± [>,#*], (1)
dr dr

[Γ3,^]=0, [T3, #*] = +#*. (2)

Here T3 is a generator of the SO(3) subgroup of our gauge group G, and \j/,N±

(related to the original Higgs and gauge fields) are elements of the Lie algebra L(G)
and satisfy ψ = ψ+, (N+)+ = N~ (Hermitean conjugates). The connection between
these variables and the title variables Nt is N3 = — ψ and N± = Nt ± iN2. For a
derivation of the above equations see [1]. We also use the notion of the "grade" n of a
generator X, if

The grade n is an eigenvalue of T3, and therefore an integer or half-integer. We also
need the star (*) operation

which defines an involution of the subalgebra of L(G) with integer grades.
Define R = - ψ + ΛΓ and R* = - ψ - N + . Using (1) one finds that

^(Λ + Λ*) = [Λ*,Λ]. (3)

The reverse is also true: given a Lie algebra element R which consists of a grade
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— 1 part and a hermitean grade 0 part and satisfies (3), system (1) follows, by
equating the different grades. We therefore look for such an R.

2.

We have adapted the method used by Leznov and Saveliev [2]. We shall work in the
complexification Gc of our original gauge group. The corresponding Lie algebra is
spanned by diagonal generators (we fix a Cartan subalgebra h and an ordering of the
roots), and raising and lowering generators E±a corresponding to the roots. (For
definitions, see [3].) We assume that T3 is a (hermitean) diagonal generator in the
positive Weyl chamber. This means that raising generators (Eα, α > 0) have positive
or zero grade.

Define the following subgroup: G° generated by the grade 0 elements of the Lie
algebra L(GC). For an arbitrary embedding, G° may be non-abelian and non-semi-
simple. The G± are generated by £ C£α(α > 0 or α < 0 respectively). These are the

α

maximal nilpotent subgroups of Gc. The corresponding nilpotent subgroups of G°
are denoted G+. Then M+ are generated by the positive grade generators. It is
isomorphic to G+ /G +. Similarly for M _. The above nilpotent subgroups are related
through the action of the * operation (we use (£α)

+ =£_α), e.g. (G°)* = G0..

3.

We can now proceed with the construction. Pick a hermitean element Q ofh (Cartan
subalgebra), which in addition lies in the positive definite Weyl Chamber:
Q α > 0 for all roots α > 0. Also pick grade 1 element M ([T3, M] = M). One can
now solve for xeM+ and

xQχ-1=Q + M. (4)

This defines x uniquely [5]. We next consider the group element xeQrx*, with r our
single variable, and decompose it in a product of factors:

xeQrx* = msa2s*m* (5)

with weM_, seG°, aeH and α = α*. Here H is the Cartan subgroup. This
decomposition is unique, provided that the left hand side is regular [4]. We will
assume this to be the case since we have the freedom to vary M and Q. (Non-regular
elements have measure zero in the group manifold.) In any specific representation m,
s are lower triangular with 1 along the diagonal, a is diagonal and hermitean, m*, 5*
are upper triangular. They depend on the parameters of x and eQr through a system
of linear equations. In particular we note that m, s, α, depend on r.

The above decomposition is the key to the solution of (3). Set R = t~^t,
where-denotes d/dr and t = msa. We will show that R satisfies (3). Using the
definition of t and (4), (5) we see that
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But also

— (ίί*)^*)-1 = t(Γlt + fί*-1)*-1 = t(R + R*)Γ1

9dr

and we can conclude that

t(R + R*)t-l=Q + M. (6)

At this point we observe that R = t~ 1t contains by construction non-positive grade
generators and jR* only non-negative. Further from (6) we conclude that the positive
grade part of R* must be entirely grade 1 , since we have only grades 0, 1 on the right
hand side. Therefore R has the required "grade" structure and by differentiating (6)
once more, we see that R satisfies (3):

t(R + jR*)r l + t(R + R*)Γ 1 + t(R + R*)Γ 1 = 0 =>

From (6) we see that the positive grade part of R* is a~1s~1Msa. So we can
finally write

R = as*M*s*-1a-1 + a-1s-1sa + a~1ά. (7)

We further conjecture that every solution of (3) can be gotten this way (up to gauge
transformation).

4.

The grade 0 part of .R that we have just constructed will not be in general hermitean.
However we still have a residual gauge symmetry at our disposal:

R->u+Ru + u+ύ with weG°, u+u = 1.

This "grade 0" gauge transformation leaves our system (3) invariant. We should
therefore choose u such that

u+a~1s~1sau

(8)

This determines u up to a constant. To summarize let us write the expressions for our
original field variables :

ΛΓ = w*αs*M*s* ~ 1a~ V (10)

where a and s are determined by (5) and u determinded by (8). Here M contains the
"integration constants" together with Q which enters in (5).

The case of maximal embedding [1] can be derived as a special case of the above.
The G° is diagonal and therefore s = 1, and u are constant phase transformations
and can be used to make M real. Then ψ = — a~lά, N~ =aM*a~ί. In [1] the
regularity conditions at the origin could be satisfied by an appropriate choice of the
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integration constants. These conditions still have to be worked out in detail for our
general solutions (9), (10); we are presently studying this problem.
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