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Abstract. We obtain explicit expressions for infinitesimal regular Riemann-
Hilbert (RH) transforms. Using them, the group theoretical aspects of in-
finitesimal RH transforms are discussed with an eye to the comparison with the
hidden symmetry transformations proposed by us before. We find that the RH
transforms have very rich group structure e.g. in the 2-d principal chiral models,
their group contains two Kac-Moody algebras as subalgebras. But not all of
them are nontrivial hidden symmetries of the theory.

I. Introduction

Very recently there has been much progress in understanding the existence and Lie-
algebraic structure of an infinite-parameter hidden symmetry in 2-d principal chiral
models [1-7] and 4-d self-dual Yang-Mills equations [8-12]. Basically, there are
two approaches to this problem. One is explicit construction of the infinitesimal
hidden symmetry transformations for the basic fields under consideration [1-5, 7]
and [9,11,12]. Another one is to use the regular infinitesimal Riemann-Hilbert
(RH) transform for the auxiliary quantities—the solutions to the linearization
equations [6 and 10]. The original motivation of this paper was to investigate the
connection between these two approaches.

However, during the course of this study, it gradually became clear that our
explicit expressions for infinitesimal RH transforms and the evaluation of their
commutators are in fact generally true. Therefore the study has developed into a
general discussion of the group theoretical aspects of (infinitesimal) RH transforms
which have been already a powerful tool for solving many nonlinear equations. But
we prefer to start with a concrete example, in order to make the presentation not too
abstract at the beginning.
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II. Brief Review of RH Transforms

First let us consider 2-d principal chiral models as an example. The equations of
motion are

Bξ(g-1dηg) + dη(g-1dξg) = 0, (1)

where ξ and η are light-cone variables and the basic fields g(ξ, η) takes values in a
matrix group G. The Riemann-Hilbert transform method [13,14] starts with the
linearization system for the theory

where { is a complex parameter and

Aξ = g~ldξg, An=g-ldηg. (3)

Note that Aξ and ̂  are independent of/, but the solution U to the system (2) is a
function of both f and ξ, 77.
We can always normalize U, so that

ί/ = (̂  = 0;ί,ι/) = l. (2')

The key point here is that the necessary and sufficient conditions for the existence of
a solution \J(f\ ξ,η) to the system (2) are just the equations of motion (1) and the
following curvature-free condition derivable from the definition (3)

SξAη-dηAξ + lAξ,Aη-]=0. (4)

Therefore, from a solution to the system (2) we can reconstruct

0) (5)

(where a dot denotes differentiation with respect to /), and then, according to Eq. (3),
obtain g(ξ, η) by integration.

The basic idea of the RH transform method for solving Eq. (1) is first to generate
a new solution U' of the linearization system (2) from an old U by means of the RH
transform and then obtain a new solution g' of Eq. (2) from U' in the above way. The
RH transform from U to U' consists of the following steps [13]:

1 ) To select, in the complex /-plane, a small circle C with the centre at the origin
such that (7(/) is analytic on C+ u C (hereafter C+ denotes the inside and outside of
C respectively).

2) To choose a matrix function of only /, w(/)eG, which is analytic on C and
forms the kernal

, CeQ. (6)

3) To consider the following RH problem of finding a pair of functions X
which are analytic in C± and continuous on C, respectively, such that

(7)

(We can always normalize X±(f) so that

* + (/=0) = l). (8)
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4) To introduce a new I/' by

'_(t}V(t}u(trl in C_

It can be shown [6] that this £/'(/) is also a solution to the linearization system (2)
with the new potential

(We will be restricted to the case in which d e t X ± ( f ) i=0 for all /, the so-called
regular RH transform.)

The transform U(f) \-> ί/'OO can be written as an integral equation. To derive it,
note that as X _ ( t ) is analytic in C_ uC (including { = oo), we have

Using Eq. (7) and

and noting that according to Eq. (8), [X+ (t) - I]// is analytic in C+ u C, we obtain

(.3.

Multiplying V(f) from the right and using Eqs. (6) and (9), it follows that for ίεC

1

2nι c i \f — t )
(14)

III. Explicit Expressions for Infinitesimal RH Transforms

For infinitesimal RH transforms we are able to obtain explicit solutions to the
integral equation (14). For in this case we have

δυ(ί)=υ'(f)-υ(£) = Δ(ΐ) υ(ί)9 (for *?eC+), (15)
where

and Ό(£') = u(£') —I is an infinitesimal function in the Lie algebra of G. The
infinitesimal variation of Aμ is given by

^ = 3^17(0), Aη=-dηδU(Q). (16)

To be more explicit, we assume

where Ta are the generators of the Lie algebra of G, αα are infinitesimal constants and
k is an integer (because v (t) was required to be analytic only on C, k can be positive,
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negative or zero). The corresponding δU(£) will be denoted as δ^U1. Note that for
+ and /'eC we always have K//'| < 1> so we nave tne expansion

1

Because [/(/) is analytic on C+ uC, we can have the expansion

00

uQ (19)
m = 0

(where x = (ξ, η)). Upon substitution of Eqs. (17) and (18) into Eq. (16) and by using
Eq. (19), and

. W - k = δktl, (fceZ), (20)
Zπi c

it follows from Eq. (15)

). (21)

To examine the implications of Eq. (21) for different values of A;, we observe that
as U(f) is analytic around t' = 0 and U(t' = 0) = 1, in Eq. (19) we should have

Qβ (22)

Let us consider the following three cases respectively:
1) /c = 0:Eqs. (21) and (19) give

]. (23)

The corresponding (5^0)Aμ can be obtained from Eq. (16); e.g.,

<5<%=-α«[^,ΓJ (23')

2) /c < 0: using Eq. (22) and noting \k\ ̂  1,

' ), (24)

(24')

The result (24') is not surprising, because in the original linearization system (2), U(t)
is determined only up to a right-multiplicative matrix which is independent of (ξ, η)
but may depend on £. So Eq. (24) implies that all the infinitesimal RH transforms
with k ̂  — 1 are trivial in the sense that they do not give new solutions g ' ( ξ , η) to the
equations of motion (1), although formally they give global right-multiplication
transforms for £/(/).

3) /c>0: in this case,

= -α

1 The generic infinitesimal (regular) RH transform is a linear combination of δ(^
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° TaΓ") + £ oίY"-fcΓ<"'(x) 17(0, (25)
n = 0

(25')

Thus, excluding the trivial transformations (24) we obtain from Eqs. (23) and (25) an
infinite set of transformations (indexed with zero and positive integers) all of which
generate nontrivial solutions to the equations of motion (1).

To compare the above results with those in our approach [2, 4], we encapsulate
the transformations (23) and (25) as follows. Introducing another complex
parameter £' we can consider the sum

δμ(S)= Σ^'XW), (26)
fc = 0

which can be viewed as a parametric (infinitesimal) transformation for U(f).
Correspondingly,

(27)

where Γα = αflTα, Dμ = dμ + [Λμ, ], and we have used Eqs. (23'), (25'), (19) and, in
particular for the last equalities, the system of equations (2) (with ί replaced by /') for
U(f'\ In general we have

δAμ = δ(g-1dμg) = Dμ(g-1δg). (28)

Therefore, from Eqs. (27) and (27') we can read off the parametric (infinitesimal)
transformation for the basic field g(ξ,η) corresponding to Eq. (26) as follows:

δ'ag=-gU(S')TΛU(n-1. (29)

It is none other than the infinitesimal hidden symmetry transformation proposed
before in our explicit approach [2,4]. In some sense here we have found its origin
from the infinitesimal RH transform. It can be easily verified that with Eqs. (23) and
(25) substituted into it and by exchanging the order of two infinite sums, the
definition (26) leads to the following formula

aΣ Σ ^n~kτ(:\χ)
k=Qn=k+l

<χaΣ "Σ fkfn~k~iT(a)(^
n=l k=0

}, (30)

as we proved in [7].
Now that we already have the explicit expressions (23)-(25) for the action of
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infinitesimal RH transformations on £/(/), we can use them directly to check that
these actions on U(t) provide a representation of the Kac- Moody algebra (without
the center) [15] G®C[/,/~1], where C^X'1] is the algebra of Laurent
polynomials in / and /"*; i.e., the following commutation relations hold for any
integer) and k:

(7,/ceZ), (31)

where Cc

ab are structure constants of the Lie algebra of G. In fact, the proof for the
case of both j and k < 0 is trivial. For the case of both j and k ̂  0, we can make use
Eq. (30) to obtain a commutator for δ'Λ and δ"β, and then expand it in powers of £' and
/". The case of j < 0 and k > 0 is easy to check too:

-{(aj)~(b,k)}. (32)

Using
δ<»T£\x) = - Cc

abT*+J\x\ (j < 0), (33)

which can be derived from the action of δ(

a

j} on Eq. (19), the commutator (31)
for) < 0, k > 0 follows from Eq. (32). The advantage of our development here is the
fact that to check the infinite-parameter Lie Algebra for RH transforms it is
sufficient to use the explicit expressions for δ(

Λ

j) U. We avoided the introduction of
certain cumbersome auxiliary quantities such as

G(ΛO= Σ c"'V^"=— ί— K'-^i/ίn 't/ίoi
m,n = 0 * ~t

which appeared in previous treatments (see, e.g., [6] ). This fact makes our treatment
greatly simplified both conceptually and operationally.

However, we would like to emphasize again that though formally the RH
transforms (23)-(25) acting on U(f) form the Kac-Moody algebra G ®C[//~1],
not all the generators of it correspond to true and nontri vial symmetry of the theory.
As we pointed out before, half the set of generators, i.e. δ(

a

j)U with j < 0, do not lead
to nontri vial transformations for the basic field g(x): actually

δ(»g(x)=0, O'<0) (34)

(One may wonder if δ(

Λ

j)g (j < 0) could be some specific left global transformations
dependent on Λ In fact, if we act δ(

β

j) (j < 0) on Eq. (29), it is easy to see that only Eq.
(34) is consistent with

[WP]g = Ce

ab#e

s+k>g9 (7<0,/c>0).) (35)

So in our opinion, for the infinitesimal RH transforms considered above (and also in
[10]), only those with non- negative integer indices are true nontri vial symmetry
transformations in the model, and they merely form the subalgebra G®C[«f].

IV. Another Infinite Set of RH Transforms

To extend the nontrivial hidden symmetry from G ® C[/~\ to G ® C[/,/~ x] (as we
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did in [7] in our previous explicit approach) in the RH transform approach, let us
consider the alternative form of the linearization system

dζW = -^AξW, dηW = ̂ AηW, (36)

with
(37)

From Eq. (36) it is easy to see that

OΓ1 (38)

For Eq. (36) we can introduce RH transforms using exactly the same treatment given
in Sect. II.

Suppose we already have a solution W(f} to Eq. (36) which is analytic around
/ = 0. Let us choose a small circle C in the complex Λplane, with center at the origin,
such that W(f) is analytic on C+ u C. Introduce a kernal, which is defined on C, as
follows:

\ 0?eC), (39)

where U(£)G G is analytic on C. And then consider the RH problem associated with it:

y_00 = r+(W), (40)
where Y±(f) are analytic in C± and continuous on C respectively. We shall
normalize Y±(f) so that2

y_(^ = oo)=l. (41)

A new solution to Eq. (36) can be obtained by defining

I Π C+ (42)
* i n C _ . l ;

The corresponding potential is given by

A'μ = Y+ (0)Aμ Y+ (QΓl+ Y+ (0)δ, Y+ (0) - l (43)

which, in turn, corresponds to the following solution-generating transformation for

(χ) = 9(χ) Y+(OΓ1 (44)

From the Cauchy formulas for Ύ±(f)

2 Note that in this case we cannot choose Y+ (C = 0) = 1 as we did in Sect. II; for this would lead to only
the identity transformation for A , as is clear from Eqs. (42) and (38)
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it follows that

- ,46,

For infinitesimal RH transforms we have

and
%W(t) = W'(t) - W(ί) = SY+ (f) - W(ί)9 (48)

where ϋ(f) = w(/) — 1 is an infinitesimal function taking values in the Lie algebra of
G. Without losing generality we can assume

<fTaΓ
k, (fceZ). (49)

The corresponding RH transform is explicitly given by

= - αfl ΓΎ i"+fc)(x) ̂ (/), (50)
n = 0

where T^(x) (π ̂  0) are defined by the expansion

oo

W(£) Ta W(f) ~ ί = X /" t<">M, (g e C + u C), (51)
M = 0

and
T?>(x)Ξθ for π<0. (5Γ)

Concretely we have to discuss the cases of k ̂  0 and k> 0 respectively:
1) For /c^O,

£*>HW = py(0{ - ααT/*i }. (52)

It corresponds to

Aμ.

n=k

According to Eq. (44), it gives rise to

Spg = ff[α T?>(x)] for fc>0. (56)

If we use the following definition to summarize these transformations

(57)

**>-"?"
which are trivial in the sense that they do not lead to a nontrivial transformation for

δ^Aμ = Q for/c^O. (54)
2) For k > 0,

(55)
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from Eq. (53) and (56) we find

δ'Λg = gW(nτaw(S'Γl, (58)
which is just what we proposed previously in [7] for the second half of the infinite set
of hidden symmetry transformations giving rise to the Kac-Moody algebra

^'1]- It can be also verified that3

(59)
k= 1

satisfies the following relation

1 } (60)

the same as given in [7].
Similar to the situation in Sect. Ill, we can easily obtain the commutation

relations for ^k)'s (fceZ) by making use of the explicit expressions (52) and (55) (or
(60)) for T>MW. It turns out that

[£<m), ?£>] W = aaβbCc

ab$
(™ + n) W, (m, neZ). (61)

This is another Kac-Moody algebra G (x) C[/, ̂  ~1]. But as we have warned before,
££fc) W with k < 0 does not give a nontrivial symmetry transformation for the basic
field g(x) in the theory.

In ref. [7], the group structure for those "nontrivial" transformations was shown
to be G ® C[/, /~ *] too by working with their action on the configuration space of
g(x). However, as we will see in the next section, we can obtain the same result when
working exclusively in the framework of the RH transform.

V. General Group Theoretical Aspects of Infinitesimal RH Transforms

Most parts of the discussion in the above two sections are actually quite general,
independent of the 2-d principal chiral model. Both the expressions (e.g., Eqs. (21)
and (50)) for infinitesimal RH transforms obtained there and the discussion of their
Lie algebras (31) and (61) are generally true, provided that C/(/)eG and W(S)eG
analytic around / = 0, and the kernal is formed according to Eqs. (6) and (39) with
u(£\ ύ(/)eG. The special nonlinear model comes in only when the connection
between U(f) or W(t) and the basic fields in the model is specified through the
linearization equations supposed to be satisfied by U(f) or W(f\ Further
discussion of the group properties for transformations in nonlinear theories is better
to be done exclusively within the framework of RH transforms, as the conclusions
obtained in this way should be rather universal.

First let us discuss the commutators between the two infinite sets of RH

3 Note that in our previous approach in [7], we have <%0) W(/) = 0, but in the present RH approach
(%0) W(f) is a global right-multiplication as given by Eq (52) This is because the boundary condition we
adopted for W(f) in [7], i e W(f\ x = oo) = 1, is not respected by the RH transform. However, $(®g is the
same in both approaches
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transforms {δ(™}} and {^m)}. Since W(f) satisfies the same linearization system as
Uψ) does but with < replaced by I//, so we can view W(f) as the analytic
continuation of U(f) (this is allowable when the linearization equations for £/(/) do
not have singularities at £ = 0 and £ = oo). With this continuation we can transfer
any action on W(f) to one on U(f) and vice versa. Thus, we obtain

Γα) for fc^O
(62)

t-nT£+k\x)U(f) for fc^l,

(W(f)(-Γ « Γα) for fc<0,
= J oo (63)

V Σ t~"T(;+k)(x)W(f) for *£0.
I « ι

Also from Eqs. (30) and (60) we have

1}, (64)

(65)

From these expressions one can see that SΛ

(k) U(f), (k ̂  1), and δ(^W(^) (k ̂  0) are
really analytic around £ = 0.

Using these expressions, it is straightforward to compute the commutators. For
example, we have

ί/ + ̂  I/} . (66)
1 V V

Expanding both sides in powers of {' and /", we obtain

, (67)

k l )

Furthermore,4

(69)
(70)

It is very interesting that in the Lie algebra formed by <5<;) and &? (j, /cεZ), there
are two more Kac-Moody algebras, in addition to Eqs. (31) and (61): if we define

(71)

4 In evaluating these commutators one should keep in mind that both δ(

a

 j) W and S(

a

 j) U(j^l) are not
analytic around <f = 0
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and

( m ) f < r , »*o,
Q° -U-), m<0, (?2)

then both of them form the Kac-Moody algebra G®^/,/"1] respectively:

(73)

However, these two subalgebras do not commute. The RH transformations seem
to have richer group-structure than the Kac-Moody algebra.

In this regard, it seems to me that the group structure of RH transforms depends
on the homotopy of the closed loop C on which the kernal is defined. We can
examine the RH transforms acting on ί/(/). The analytic properties (the singula-
rities) of U(ί) are (at least partially) determined by the singularities of the
linearization equations in /. The small circles C in Sect III were chosen such that
there are no singularities of U(f} inside and for the circle C in Sect. IV there are no
singularities of l/(/) outside. We have found that the two families of RH
transformations with the kernal defined on C and C respectively are not the same
and they do not commute.

In summary, generally speaking, RH transforms can form an infinite-
dimensional group. It has a Kac-Moody algebra GφClY,/"1] as its subalgebra,
where G is a finite dimensional group associated with the linearization system for the
nonlinear theory under consideration, and may have richer structure. Because the
RH transform method has been widely used in many nonlinear problems (see [6, 10,
13, 16] and references in [14]), on the grounds of the generality of our present
discussion we can make the assertion that at least one Kac-Moody algebra will
appear in those nonlinear models which can be solved by the RH transform method,
although the details for the hidden symmetry transformations for the basic fields in
each case has to be worked out individually. Especially, we would like to point out
that our discussion in this paper can be applied to 4-d self-dual Yang-Mills systems,
as the so-called J-formulation of it is formally very similar to 2-d principal chiral
models.

Finally, the results of this paper also suggest that we can use the finite RH
transformations to exponentiate the infinitesimal hidden symmetry transformations
proposed by us previously (see, e.g., [7] and [12]), as Hauser, Ernst did for the
infinitesimal Kinnersley-Chitre transformations [17] in the case of axial symmetric
vacuum gravity.

Acknowledgements. It is my pleasure to thank Prof. S. Adler and the Institute for Advanced Study Prof.
W. Zimmermann and the Max-Planck Institute for Physics and Astrophysics for the warm hospitality I
received during my visit when this work began and continued. Especially, I am very grateful to Prof. J. M.
Souriau and A. Rouet and the Center for Theoretical Physics at Marseille for the warm hospitality
extended to me. I would like to thank Dr B. Julia for interesting discussions.

Note added. After submitting this paper I learned that F. A. Bais and R. Sasaki have reached similar
conclusions based on their previous work, "On the complete integrability of the static axially symmetric
self-dual gauge field equations for an arbitrary group," Nucl. Phys. B195 (1982) 522 and "Solution
generation techniques for static axially symmetric self-dual gauge field equations," Phys. Lett. 113B
(1982)
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35 and "Algebraic construction of static axially symmetric self-dual gauge fields for an arbitrary group,"
Phys. Lett. 113B (1982) 39
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