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Abstract. We consider the ^-component quantum Potts model on a d-
dimensional cubic lattice with symmetry breaking and transverse fields. The
model is solved exactly in two special limiting cases: 1) the infinite lattice-
dimensionality (d->oo) limit and 2) the limit of infinitely-weak, long-range
interactions of Kac type. In each case the resulting free energy and its first
partial derivatives (order parameters) are shown to be identical to the
corresponding mean-field expressions.

1. Introduction

The Potts model is a model of central interest in statistical mechanics as is
evidenced by the recent and extensive review article by Wu [1]. Although this
model is a simple generalization of the 2-component Ising model to a
^-component model, it exhibits much richer critical behaviour. Of particular
interest is the order of the phase transition as one varies the lattice dimension d
and the number of components q, regarded as continuous parameters. Mean-field
theory [2] predicts a continuous transition for q rg 2 and a first-order transition for
all q>2, independent of the lattice dimension d. However, Baxter's exact result [3]
in two dimensions shows a continuous transition for q^4 and a first-order
transition for q > 4. In general, it is now believed that there exists a critical value
qc(d), with a non-trivial dependence on the dimension d (see Fig. 2 in [1]), such that
the mean-field prediction is correct for q>qc(d). In addition, renormalization-
group arguments [4] indicate that the mean-field predictions are correct for d>4.
It is thus known that qc(2) = 4 and qc(d) = 2 for d > 4. An obvious question is what is
the value of qc(d) for d = 3, in particular, is qc(3) greater than or less than 3? For
some time the usual series expansions [5] and renormalization-group analyses [6]
gave conflicting answers, but the weight of opinion now seems to be that qc(3) < 3,
that is, in three dimensions the 3-component Potts model undergoes a first-order
transition.

Recently, a new attack has been made on these problems by looking at the
quantum Hamiltonian (field theory) version [7] of the Potts model. Mean-field
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theory of the quantum Potts model [8] again predicts a continuous phase
transition for q^2 and a first-order transition for q>2, independent of the lattice
dimension d. Indeed, the initial motivation for studying the quantum model was
the underlying belief that d-dimensional classical models and their (d— 1)-
dimensional quantum Hamiltonian counterparts have the same phase diagrams
and lie in the same universality class [9]. This is certainly true for the d = 2 Potts
case, where Baxter's results [3] can be carried over [10] to the one-dimensional
quantum Potts model, and is borne out in higher dimensions by approximate
calculations. In particular, by using 1/g-expansions for the (d— l)-dimensional
quantum Potts model, Kogut and co-workers [11] have obtained the remarkable
results gc(3) = 2.6±0.1 and qc(d) = 2.00 ±0.05 for all d^4. The quantum Potts
model has thus clearly emerged as a model worthy of study in its own right.

For many lattice spin systems, it is known [12-15] that mean-field theory
becomes exact in certain special limiting cases. Here we shall prove analogous
results for a general g-component quantum Potts model. This model includes both
the classical and the usual (transverse) quantum Potts models as special cases.
More specifically, we shall show that the mean-field theory of the general quantum
Potts model becomes exact in the following limits : 1) the infinite lattice-
dimensionality (d-»oo) limit and 2) the limit of infinitely weak, long-range
interactions of Kac type.

We also expect that the mean-field theory becomes exact in the many-
component (q-^oo) limit. This was proved by graphical methods in [15] for the
classical Potts model. However, we are not able to prove it for the general
quantum model by the methods used here. Although we shall not be concerned
with the lattice gauge Potts model here, it is interesting to note that recently this
model has been solved exactly [16] in the q^-co limit, yielding mean-field results
for the thermodynamic functions.

The rest of this section is devoted to giving a precise statement of our results.
For convenience, we describe the classical Potts model before introducing the full
quantum model.

The Hamiltonian of the classical Potts model is

where δ( - , ) is the Kronecker delta, ξ ̂  0 is an external symmetry-breaking field
and the parameters Jjk = Jkj^Q are pair interaction strengths (with J.7. = 0). For
simplicity, we shall always take sums on 7 and fc to be over the N = vd lattice vectors
in TLά of a d-dimensional cube of side v. At each lattice site j, the spin σ is restricted
to one of q distinct values : in order to make contact with the quantum model, we
shall assume that σj. = l, ω, ω2, ...,ωq~l, with ω = exp(2πi/q) a qth root of unity.
The partition function for the classical model can then be written as

a>ι- ί ω<ι- i

ZN= Σ ••• Σ exp(-)8/ί), (1.2)
σ i = 1 σN = 1

where β=l/kBT is the inverse temperature and the sums extend over all values of
the spins.
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The quantum Potts model is a generalization of the classical Potts model. The
Hamiltonian we shall consider is

Σ Σ
j, k α = 1

!, Σ flj-
j α = 1

! Σ
j α = 1

(i.s)

where the lattice structure and interactions are as described previously, with η Ξ> 0
an additional (transverse) field. The spin operators (matrices) Ωj and M commute
at different sites. At the same site, however, they do not commute but obey the TL^
algebra :

M]Ωj = ω~ lΩjM], Ω] = M] = I, (1.4)

where / is the identity and the dagger denotes the Hermitian conjugate. In
particular, these operators can be represented as direct products of N q x q
matrices

(1.5)

where the matrices Ω and M, occuring in the /h positions, are given by

Ω =

"l 0 ..

0 ω ..

0 0 . .

0

0

ω'-1

M =

Ό 1 0 ..."

0 0 1 . . .

1 0 0 ...

(1.6)

We shall work only in this representation, in which the Ωj are simultaneously
diagonal. The partition function is now

ZN = Trexp( — /?//), (1.7)

where H is the quantum Hamiltonian and Tr denotes the matrix trace. The free
energy per spin ψ in the thermodynamic limit is given by

βψ(β)=— lim Λf" 1 lnZN. (1.8)
JV-»oo

The quantum Potts model reduces to the classical model when the transverse
field η is set to zero: in this case the Hamiltonian (1.3) is diagonal and the partition
function (1.7) reduces to (1.2) after repeated use of the identity

«
C/ /\ — 1 \ Λ /— /\β / -f Q\

α= 1

where σ and σ' are qth roots of unity and the bar denotes complex conjugate. The
transverse Ising model is also obtained as a special case by setting q = 2. In this
case Ω and M are familiar Pauli matrices.

In the sequel we shall always assume that the interactions are ferromagnetic
and translationally invariant, i.e.

(UOa)
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and impose periodic boundary conditions so that

j

does not depend on k. In addition, we shall also assume

J = lim J ] V<oo, (l.lOc)
JV-> oo v

so that the limiting free energy (1.8) exists [17].
Under these assumptions the result we prove can be stated in two parts as

follows:

Theorem. 1) Let ψd(β) be the free energy (1.8) for the quantum Potts model (1.3)
with nearest-neighbor interactions given by

j = ίJ/2d \j-k\ = ί
jk \0 otherwise.

Then

V>MFθM)» (! 12)

where φMF is the mean- field free energy given by

(1.13)

2) Let ψy(β) be the free energy (1.8) for Kac type interactions

Jjk = J(i-k) = ydQ(y\j-k\], 'Φ/c, (

where it is assumed that ρ(r) is everywhere bounded and that

J = lim lim JN = j ρ(\r\)dr (
y->0 + JV-> oo j^d

exists as a Riemann integral Then

). (1.15)

An immediate corollary to this theorem is that, in the two limits considered,
the order parameters for the quantum Potts model (1.3) are also given by their
corresponding mean-field expressions. To see this, we observe that the free
energies ψd(β) and ψy(β) are concave functions [17] of the fields ξ and r\\ it
therefore follows, by a result of Griffiths [18], that taking the limit commutes with
the operation of taking the first partial derivative with respect to ξ or η, so that, for
example

). (1.16)
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We shall not enter here into the details of the order parameters or phase
transitions of the general mean-field model given by (1.13). Instead, we refer the
reader to the discussions given in [2] for the classical Potts model (77 = 0) and [8]
for the transverse Potts model (£ = 0, Jη = l). It is worth pointing out, however,
that for the classical Potts model (η = 0), the mean-field free energy (1.13) becomes

(1.17)
which differs from the expression given by Mittag and Stephen [2] but can easily
be shown to be equivalent using the common stationary condition

To prove the theorem we shall use the methods of [12] and [14] to obtain
upper and lower bounds on the free energy ψ(β) which coalesce in the stated limits.
In Sect. 2, we use the Bogoliubov variational principle to show that the mean-field
free energy always gives an upper bound. In Sect. 3, the lower bound is obtained
via a functional integral representation of the Trotter approximation to the
partition function.

2. Upper Bound on the Free Energy

In this section we shall use Bogoliubov's variational principle [19] to show that

(β,JJ. (2.1)

Before proceeding, however, it is convenient to introduce a vector notation. We
define the following (q — l)-dimensional vectors :

(2.2)

Given two (q— l)-dimensional vectors A and B, whose elements are either scalars
or q x q matrices, we define their dot product to be the Hermitian operator

A B = iβ£u:Bβ + Bμβ). (2.3)
α = l

Note that, when A, Be (C9~ 1, the dot product is just the usual real inner product in
C9"1 regarded as the vector space IR2^"1^

Using this compact notation, we can decompose the Hamiltonian (1.3) as

(2.4)

where

j
(2.5)
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#ι = - i <Γ * Σ Jjk(xl - Ω;) (*1 - «*) > (2-6)
λ f c

and xeIR is arbitrary. Bogoliubov's variational principle [19] now states that

^H0); (2.7)

where

<...>o=Tr[...exp(-j8H0)]/Trexp(-j8fί0). (2.8)

In this case we find

<H1>0=-i^ ιχj. f c(xl-<Ω j>0) (xl-<Ωk>0)
j,k

= -^q'1(q-ί)ΣJjk(x-<ΩJ>oHx-<Ωk>o)' (2 9)
j,k

Since «//_,- = 0, this follows because the expectation <...>0 factors over the sites and

(2.10)

To obtain the desired bound we now choose x to be a solution of

Since <ΩJ >0 is independent of 7, x will also be independent of 7. With this choice of
x, we see that </f1>0 = 0 and hence, from (2.7),

j8H0). (2.12)

From (1.8), (2.5), and (2.11) we therefore conclude that

, (2.13)

where J^ is given by (l.lOc) and x is any solution of the equation

M)]
( >

But this equation is precisely the condition for the right side of (2.13) to be
stationary with respect to variations in x. Thus it follows that (2.1) holds with

xeIR

— β~l lnTrexp[/?g~1((Jx-f £)1 Ώ + T/l M)]}. (2.15)

In Appendix A we evaluate the matrix trace which appears in (2.15). Using this
result then gives the explicit expression (1.13) for the mean-field free energy

3. Lower Bound on the Free Energy

In this section we derive a lower bound on the free energy (1.8). We begin by
writing the Hamiltonian (1.3) in vector notation as
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j,k j j

(3.1)

Let us now regard the interactions Jjk as the entries of a matrix J. Since J is a cyclic
matrix it is readily diagonalized [20]. Defining

Sjk = N-V2flexp(2πijμkμ/v), (3.2)
μ = l

where N = vd and jμ denotes the components of the lattice vector j9 we have

S"1JS = diag(λ</), (3.3)

where

(3.4)
3 \ V V V /

and
e. (3.5)

To proceed with the derivation of the lower bound we wish to replace the
matrix J with a suitable positive definite matrix K. This matrix has to be defined
differently for the two limits considered in the theorem. For the y-»0+ limit
[Part 2) of the theorem], it is sufficient to set

κjk = Jjk + /<?(θ)δjfc = ydQ(y I/ - *l) , (3.6)
where ρ(0) is chosen sufficiently large to make K positive definite. The additional
diagonal term of course will not contribute in the limit y — >0 + . For the d-> oo limit
[Part 1) of the theorem], we define the cyclic matrix K by

(3.7)

where the non-negative definite matrix |J| is given by

Uμsdiagfl^DS-1. (3.8)

Since Σ(Kjk — Jjk)Ωj Ω,k is a positive definite matrix, it follows immediately
j,k

from the Peierls theorem [17] that

(3.9)

For Hermitian matrices A and B, a straightforward generalization of the
Golden-Thompson inequality [21] states that TτeA + B^Tτ(eAlneB/n)n

9 for all
positive integers n. By Trotter's formula [22], equality is actually achieved in the
limit n-»oo. Applying this inequality to the right side of (3.9) we obtain

(3.10)
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j,k

We are now in a position to use the identity

1 f \[d2

Zj

(3.11)

J,k

•expί-^Σ^^Λ + ̂ Σ^A + ̂ P ' (3 12)
I j,k j J

where d2z means d(Rez)d(Imz). This identity is valid for an arbitrary set of
diagonal operators Ωj and any real symmetric positive definite matrix K. Applying
it to each such term in the product of 2n ordered exponentials in (3.11) gives

Zw „ = (β/2πqn)N^- " (DetK)"(1 -«> j fl Π <*%
-

j, k ί = 1

(3.13)

Next we need to estimate the trace in (3.13). This we do in three stages. Firstly,
in Appendix B, we show that, for even n and arbitrary z1 ?z2, . . . j Z ^

Tr Π [expfa^n-VΩ)e xP(tf~ l n~ V M)]
ί=l

^ Π

Secondly, in Appendix C, we show that, for ze(Cg 1 and ?/^

(3.14)

(3.15)

Lastly, in Appendix D, we prove the monotonicity property

— Tr exp(xl Ω + ηί M) ̂  0
dx

(3.16)

for x^O and >j^0. Combining these inequalities with the triangle inequality
||z + £l|l ̂  ||z|| +(q- 1)1/2^ ||z|| +qξ, we obtain

Tr

^ Π
(3.17)
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If we now factor out the direct product over j appearing in (3.13) and apply the
inequality (3.17) at each site we find

(<>-ί} J Π lΐ <*%
-

• exp 'n-'Σ Σ

(3.18)

where, in anticipation of the next step, we have added and subtracted a term in the
exponent with ζ > 0 arbitrary.

To obtain the required upper bound on ZN>n, our strategy now is to replace
each term in the product over y, t in (3.18) by the common maximum. This
maximum occurs for ||z7J = ||z|| satisfying the stationary condition

ζ-1 \\z\\ =F(\\z\\), (3.19)

where

(X'~

-1 ( ' J

After the maximization of the product over y, t in (3.18), we perform the
remaining Gaussian integrals. Setting

x = («-lΓ 1 / 2Γ 1llz | l, (3.21)

we obtain

. (3.22)

The manipulation leading to (3.22) clearly requires the matrix / — ζ~1K to be
positive definite. This will certainly be true if we choose ζ to be greater than the
maximum eigenvalue of K, i.e., either

ζ>JN + ε or C>J00+/ρ(0) (3.23)

as appropriate. We now take the thermodynamic limit N-»oo. From (3.9), (3.10),
and (3.22), it then follows that
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ιp(β)=- lim
N-+ao

where, by Szegδ's theorem [23], the remainder term R(β,ζ) is
(3.24)

(3.25)

Here A(θ) is given by (3.5) with either J(0) = 0 or J(0) = /ρ(0) as appropriate.
In each of the two limits <2-»oo, y->0 + the remainder term (3.25) vanishes. For

the d-»oo limit, this was proved in [12]. For the long-range y-»0+ limit it has
been proved in [13]. Evaluating the trace in (3.24) (Appendix A) and taking the
limits n->oo, (-»J+ [see (3.23)] after all other limits, we conclude that

and

(3.26)

(3.27)

where ψMF(β,J) is the mean-field free energy given by (1.13). These inequalities,
along with the reverse inequality (2.1), prove the theorem stated in Sect. 1.

Appendix A

In this appendix we prove the following :

Lemma. For arbitrary x and η,

Tr exp(xl Ω + if l M) = exp [f (q - 2) (x + η)~]

- {2 cosh [i(4 V - 2q(q -2)xη + g V)1/2]
(A.1)

Proof. We wish to find the eigenvalues of the q x q matrix

\q-ί)x

η

η

η

η

-x ..

η

η

. η
η

— x

η

η

η

η

— x

(A.2)

Such a matrix has been studied in [8]: it has two eigenvectors of the form
(α, 1,1,..., 1) with eigenvalues

'2]1/2, (A.3)
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and (q — 2) eigenvectors of the form (0, 1 , w, w2, . . . , wq ~ 2), where w φ 1 is a (q — 1 )th

root of unity, with degenerate eigenvalues

(A.4)

Hence

ΎrQXp(xl Ω + ηl'M) = eλί + eλ2 + (q-2)eλ3 (A.5)

from which (A.I) follows.

Appendix B

Our aim here is to prove the inequality (3.14). To do this we first prove the
following :

Lemma. // A and B are q x q matrices and n a positive integer, then

|Tr[exp(π"M)exp(π~15)]"|^{l+2^~1exp[3(M|| + ||5||)]}|TrexpU + 5)|,

(B.I)
where the norm \\A\\ is given by

N l l = sup |Mv|| (B.2)
INI = ι

with | |v| |2 = v v for veC9.

Proof. Let us set

T = exp(w~1,4)exp(n~1B), (B.3)

S = exp[n~1(^ + 5)] (B.4)

then

Tr(T")

Tr(S")

Ύr(TnS~nSn)

Tr(S")
(B.5)

where ρ(A) denotes the spectral radius of A. Using the elementary properties of the
norm (B.2), i.e.

\\A + B\\ ̂  \\A\\ + \\B\\, \\AB\\ ^ \\A\\ \\B\\ , ||/|| = 1 , (B.6)

we further estimate that

sn)s-n\\^ι + \\τn-sn\\ \\s~n\\. (B.i)
The required result (B.I) thus follows from the estimates (see, for example, Reed
and Simon [22, p. 295]):

(B.8)

1 exp[2(M|| + ||B||)] . (B.9)

To obtain the inequality (3.14), we can now use the Holder inequality [24]
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(B.ll)

Since At and Bt are Hermitian we find

In this last step we have assumed that n is even and used the cyclic property of the
trace. Applying the preceding lemma to (B.10) now gives

T r Π
ί = l

Recalling the definitions (B.12) of At and Bt, we see that (B.14) gives the desired
inequality (3.14), once ||^4 f | | and \\Bt\\ have been replaced by the simple estimates:

\\M\\* = q~1(q-l)ηί

Appendix C

In this appendix we prove the inequality (3.15). This inequality follows immediate-
ly from the following stronger result :

Lemma. Let A, B, C be the q x q Hermitian matrices given by

Then, for any positive integer n,

Proof. We first show that

For n = l, equality holds, i.e. Tr^ = TrJ5, because

TrΩ = 0.

(C.I)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)
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For n = 2, a straightforward calculation gives

β

(C.7)

where the last equality is easily obtained by noting that

l Ω + / = diagte,0,0,...,0). (C.8)

For π^3, we have

(C.9)

Here the first inequality is a generalization of a standard inequality for lp norms
and the second inequality follows from (C.7).

To prove (C.4) we now observe that the entries of the matrix C are all equal to
η. Because it is of this special form, the matrix C can be eliminated from the trace
of any product, formed with a diagonal qxq matrix D, by using the cyclic property
of the trace and the following identities :

Using (C.7) it follows, for example, that

2. (C.ll)

Since this argument holds for any such product, (C.4) can be obtained by using the
binomial expansion for non-commuting operators and comparing the traces term-
by-term. Likewise, by expanding the exponentials, we can prove

This inequality is equivalent to (3.15).

Appendix D

In this appendix we prove the following:

Lemma. Suppose x ̂  0 and η ̂  0. Then

fi
(D.I)

ox

Proof. Let C and D be the q x q Hermitian matrices given by

(D.2)

..,-!). (D.3)

Then to prove (D.I), i.e.

(D.4)
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we expand the exponential, take the trace term-by-term using (C.10), and use the
inequalities

(D.5)

References

1. Wu, F.Y.: The Potts model. Rev. Mod. Phys. 54, 235-268 (1982)
2. Kihara, T., Midzuno, Y., Shizume, J.: Statistics of two-dimensional lattices with many components.

J. Phys. Soc. Jpn. 9, 681-687 (1954)
Straley, J.P., Fisher, M.E.: Three-state Potts model and anomalous tricritical points. J. Phys. A 6,
1310-1326 (1973)
Mittag, L., Stephen, M.J.: Mean-field theory of the many component Potts model. J. Phys. A 7,
L109-112(1974)

3. Baxter, R.J.: Potts model at the critical temperature. J. Phys. C6, L445-448 (1973)
4. Aharony, A., Pytte, E.: First- and second-order transitions in the Potts model near four

dimensions. Phys. Rev. B23, 362-367 (1981)
5. Ditzian, R.V., Oitmaa, J.: Tricritical behaviour in an Ising system and the Potts model. J. Phys. A 7,

L61-64 (1974)
Straley, J.P.: Three dimensional Potts model. J. Phys. A7, 2173-2180 (1974)
Enting, I.G.: Series expansions for the Potts model: high-field expansions. J. Phys. A 7, 1617-1626
(1974)
Kim, D., Joseph, R.I.: High temperature series study of the q component Potts model in two and
three dimensions. J. Phys. A 8, 891-904 (1975)
Miyashita, S., Betts, D.D., Elliott, C.J.: High-field series expansions and critical properties for the
three-state Potts model. J. Phys. A12, 1605-1622 (1979)

6. Golner, G.R.: Investigation of the Potts model using renormalization group techniques. Phys. Rev.
B8, 3419-3422(1973)
Rudnik, J.: ε expansion for the free energy of the continuous three-state Potts model: evidence for a
first-order phase transition. J. Phys. A 8, 1125-1129 (1975)
Zia, R.K.P., Wallace, D.J.: Critical behaviour of the continuous ^-component Potts model. J. Phys.
A 8, 1495-1507(1975)
Burkhardt, T.W., Knops, H.J.F., den Nijs, M.: Renormalization-group results for the three-state
Potts model. J. Phys. A 9, L179-181 (1976)
Southern, B.W.: Kadanoff renormalization for the s-state Potts model in three dimensions. J. Phys.
A10, L253-255 (1977)
Nienhuis, B., Riedel, E.K., Schick, M.: g-state Potts model in general dimension. Phys. Rev. B 23,
6055-6060 (1981)

7. Fradkin, E., Susskind, L.: Order and disorder in gauge systems and magnets. Phys. Rev. D 17,
2637-2658 (1978)
Solyόm, J., Pfeuty, P.: Renormalization-group study of the Hamiltonian version of the Potts
model. Phys. Rev. B24, 218-229 (1981)

8. Goldschmidt, Y.Y., Shigemitsu, J.: Quantum Potts gauge-matter systems at finite temperature.
Nucl. Phys. B200 [FS4], 149-210 (1982)
Masperi, L., Omero, C.: Variational approach for the N-state spin and gauge Potts model. Nucl.
Phys. B200 [FS4], 121-134 (1982)

9. Kogut, J.B.: An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51,
659-713 (1979)

10. Hamer, C.J.: Q-state Potts models in Hamiltonian field theory for ζ)^4 in (1 +l)-dimensions. J.
Phys. A14, 2981-3003(1981)

11. Kogut, J.B., Sinclair, D.K.: 1/ζ) expansions and the first-order phase transition of the three-state
Potts model in three-dimensions. Phys. Lett 81 A, 149-152 (1981) 1/Q expansions for Potts models
in all dimensions. Phys. Lett. 86 A, 38-42 (1981)
Kogut, J.B., Pearson, R.B., Shigemitsu, J.: Hamiltonian Potts model. Institute for Theoretical
Physics (University of California) (preprint) (1982)



Mean-Field Limits of the Quantum Potts Model 387

12. Pearce, P. A., Thompson, C.J.: The high density limit for lattice spin models. Commun. Math. Phys.
58, 131-138 (1978)

13. Thompson, C.J., Silver, H.: The classical limit of n-vector spin models. Commun. Math. Phys. 33,
53-60 (1973)

14. Pearce, P.A., Thompson, C.J.: The anisotropic Heisenberg model in the long-range interaction
limit. Commun. Math. Phys. 41, 191-201 (1975)

15. Pearce, P.A., Griffiths, R.B.: Potts model in the many-component limit. J. Phys. A13, 2143-2148
(1980)

16. Kotecky, R.: Mean-field approximation is exact in the many-component limit of Potts lattice
gauge model. Commun. Math. Phys. 82, 391-397 (1981)

17. Ruelle, D.: Statistical mechanics. New York: Benjamin 1969
18. Griffiths, R.B.: A proof that the free energy of a spin system is extensive. J. Math. Phys. 5,

1215-1222 (1964)
19. Girardeau, M.: Variational method for the quantum statistics of interacting particles. J. Math.

Phys. 3, 131-139 (1962)
Huber, A.: Methods and problems of theoretical physics. Bowcock. J.F (ed.). Amsterdam: North-
Holland 1970

20. Montroll, E.W.: Applied combinatorial mathematics. Beckenbach, F F. (ed.). New York: Wiley
1964

21. Golden, S.: Lower bounds for the Helmholtz function. Phys. Rev. 137B, 1127-1128 (1965)
Thompson, C.J.: Inequality with applications in statistical mechanics. J. Math. Phys. 6, 1812-1813
(1965)

22. Trotter, H.F.: Approximation of semi-groups of operators. Pacific J. Math. 8, 887-919 (1958)
Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. 1. New York: Academic
Press 1972

23. Grenander, U., Szego, G.: Toeplitz forms and their applications. Berkeley, CA: University of
California Press 1958

24. Mehta, C.L.: Some inequalities involving traces of operators. J. Math. Phys. 9, 693-697 (1968)

Communicated by J. Frohlich

Received September 24, 1982; in revised form April 20, 1983

Note added in proof. One of the authors (P.A.P.) has now shown that the mean-field theory for the
for the quantum Potts model becomes exact in the g->oo limit. The details will appear elsewhere.






