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Abstract. We have found the number of invariant operators for the in-
homogeneous groups IGL(n,R), lSL(n,R), ISO(p,q), IU(p,q)9 ISU(p,g),
ISp(2rc), i.e. the inhomogeneous groups with the classical homogeneous
subgroups, and also for the Weyl group W(p, q). For some special cases explicit
forms of the invariant operators are obtained. We also discuss the methods
applied, together with problems in some cases, possible further developments
and relevance for the supersymmetric theories.

1. Introduction

One of the main characteristics of a group and the corresponding Lie algebra is the
set of invariant operators, i.e. operators which have polynomial structure and are
usually called the Casimir operators. Their construction is the first step in finding
the representations of the group. In addition, algebraic invariants have immediate
significance for constructing invariant equations, derivation of mass formulas and
so on.

For the inhomogeneous groups the problem of searching for the Casimir
operators and their eigenvalues has been solved in a whole series of works (see, e.g.,
[1, 2]). Less studied is the question of invariants for the inhomogeneous groups.
The Casimir operators for the Poincare group are well known and the Casimir
operators for some other inhomogeneous groups have been found: ISL(6,C) [3]
and IU(rc) with different subgroups of translation [4].

Inhomogeneous groups find important application in the gauge theory of
gravitation. Kibble [5] generalized the gauge theory for the gravitational field
using as the gauge group the (inhomogeneous) Poincare group instead of the
(homogeneous) Lorentz group which had been introduced by Utiyama [6]. This
allowed, in contrast with Utiyama's theory, to introduce within the framework of
only principle of local in variance a set of inhomogeneous quantities (vierbeins and
relations among them) in a natural way. There exist analogous theories based on
the inhomogeneous version of GL(rc) and also the Weyl and the conformal groups.
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Proceeding from the gauge field theories, one can presume that for unified theories
inhomogeneous groups in the spaces of higher dimensions can be important (see,
e.g., [7, 8]). For the sake of generality, we shall consider all the inhomogeneous
groups.

In the case of inhomogeneous groups even the question of existence and the
number of invariant operators is rather complicated. We devote this paper to this
question in the case of inhomogeneous Lie groups of arbitrary dimension with
classical homogeneous subgroups. For some concrete groups of low dimension the
explicit forms of the invariant operators are found. For this purpose, we limit our
consideration to the most natural inhomogeneous groups, in which translations
transform according to the vector representation of the homogeneous subgroup.

As we shall see, from the point of view of invariant operators the cases of
homogeneous and inhomogeneous groups differ from each other markedly. We
know that for the homogeneous groups all the invariants are polynomial and their
number is simply related to the rank of the group. In the case of inhomogeneous
groups the invariant operators can be rational (Weyl group), or even not exist at
all [IGL(n,R) group], and the number of invariants is not always related to the
dimensionality of the group, for instance, ISL(n,R) group has only one Casimir
operator for any n.

There exist two methods for finding the invariant operators. We shall use the
first method [9-11] for the study of the IGL(n,R\ ISL(n,R)9 ISp(2n), and W(p,g)
groups. For the study of the ISO(p, q\ IU(p, q), and ISU(p, q) groups it will become
necessary to use the second method [12-14].

Section 2 describes the essence of the first method.
In Sect. 3 the group lGL(n,R) of real inhomogeneous general linear transfor-

mations is analyzed. It is shown that the Lie algebra of this group has no invariant
operator.

Section 4 deals with the study of the group of unimodular real inhomogeneous
linear transformations, ISL(π, R), which is shown to have only one invariant
operator for any n. The explicit form of the Casimir operator is given for the case
ofISL(2,Λ).

The group of inhomogeneous pseudo-orthogonal transformations, lSO(p9q), is
considered in Sect. 5, in which also the second method [12-14] is described and
used. It is shown that the number of Casimir operators for this group is equal to

p + q+1]
2

In Sect. 6 the inhomogeneous full unitary group ΐU(p,q) and the unimodular
(or special) unitary group ISU(p,g) are studied. It is shown that the invariant
operators of these groups are polynomial and their numbers are (p + q) and
(p + q—l\ respectively.

Section 7 deals with the inhomogeneous symplectic group ISp(2n). Its Casimir
operators are shown to be polynomial and for their number τ we have succeeded
in obtaining only the inequality 1 ̂  τ ̂  n.

In Sect. 8 the Weyl group W(p, g), i.e. the group of motions in pseudo-
Euclidean space and uniform dilatations in all the coordinate axes, is considered.
The invariant operators of this group are shown to be rational and their number is

p + g-
equal to
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2. Basic Definitions and the Method

Let us first recall some definitions and introduce the necessary notation:
(i) The semi-direct product of some group of transformations G and an

abelian group (of translations) T, G g) Γ, is called the inhomogeneous group.
(ii) The infinite-dimensional associative algebra A, which consists of all

possible polynomials made out of the generators is called the universal enveloping
(or covering) algebra [14, 15] of the given Lie algebra. The product in this algebra
is the usual associative product of operators. Note that two polynomials are to be
considered equal if one can be reduced to the other using the given commutation
relations of the Lie algebra.

(iii) Let S be the algebra of usual polynomials of n commuting variables.
(iv) Introduce the adjoint representations of the Lie algebra for the universal

enveloping algebra A and for the algebra of polynomials 5.
In the case of A, each generator Fj of the Lie algebra acts on an element u of A

via the usual Commutator:

In the case of S, each generator Fj acts on a polynomial p from S as a
differential operator:

PT / \ V""1 f^k L if} f\\

where the Ck

 f are the structure constants of the group.
(v) The centres A1 and S1 of the algebras A and S consist of the elements

which become zero if any operator from the adjoint representation acts on them.
The set of algebraically independent elements of the centre of the universal

enveloping algebra A1 is called the set of Casimir operators.
The idea of the method for finding the invariant operators reduces to the

following [9-11]. We are given the Lie algebra of the inhomogeneous group. Thus
its universal enveloping algebra is defined. The necessity for introducing the
universal enveloping algebra can be explained by the fact that the invariant
operators which belong to this algebra form its centre. It would be possible to look
for the invariant operators of the given Lie algebra by determining the A1 directly.

However, it is easier to use an indirect method: together with the universal
enveloping algebra, introduce the algebra of usual polynomials by defining its ad-
joint representation and the centre in a specific way. As it turns out, it is easier to
find the S1 than the centre of the universal enveloping algebra. The condition that
the polynomials belong to the centre of their algebra is formulated, as seen from
the definition, in the form of a system of partial differential equations:

V r^k J c\ i Λ ,-\ /•*> o\

Further, one establishes a linear isomorphism between the centre of the algebra
of polynomials and the centre of the universal enveloping algebra:

φ(«A «J=i Σ ^ - . (2.4)
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where Y[r is the group of permutations of r objects. One can prove [16] that the
total number of solutions (polynomial as well as nonpolynomial) of the system
(2.3) is given by the formula

τ = dimG-r(G), (2.5)

where dimG is the dimension of the group; Γ(G)ΞΞ sup rank M is the exact upper
(αι,...,αn)

limit of the rank of the matrix M with respect to the values of the variables
aί9...,an, and

From here it follows that the number τ of polynomial solutions is determined by
the inequality

τ^dimG-r(G). (2.7)

For practical calculations it is convenient to use a criterion [11] which allows
us to determine immediately the type of invariants of a given group. According to
this criterion, if one can represent any generator of the Lie algebra in the form of a
commutator of two others,

[G,G] = G, (2.8)

then the group has only polynomial invariants. Obviously, for such groups the
inequality (2.7) turns out to be an equality. The system (2.3) corresponding to the
groups which do not satisfy the condition (2.8) can also have nonpolynomial
solutions (rational and even irrational). For such groups one can obtain only the
upper bound for the number of polynomial Casimir operators [17].

Thus, the main steps for finding the invariant operators of a given group are
the following : 1) one writes down the Lie algebra of the group 2) with the help of
criterion (2.8) one determines the possible type(s) of invariants 3) one finds the
exact upper limit for the rank of the matrix M and obtains the number of invariant
operators; 4) for concrete groups one solves the system (2.3) and obtains the
explicit form of the invariant operators.

3. The Group

Consider the group of inhomogeneous general real linear transformations
IGL(n,R). Its Lie algebra is given by [18]

We prove that this group has no invariant operators. For this purpose, we show
that for some values of the variables (a119 ...,ann9 flΛ + l f l , •••»«„+!,„)» tne de-
terminant of the matrix M, defined in (2.6), is different from zero :

ρAτΦθ (3.1)
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(for convenience we use double indices). From here it follows that sup rank M
( α ι ι , . . . , α n + ι,n)

= dimG. Hence according to (2.5) there exists no solution for the system (2.3). We
present a proof by induction with respect to the dimension of the group.

First we notice that if we write the coordinate transformations in the form

*n b12 ...

bnl bn2 ...

bln 0\

bn2 0

n + l n

and if we introduce the notation Pl = In+1J, then the generators of the translations
can be considered on the same footing as the generators of the homogeneous
transformations. In this way the structure constants of the group and the matrix M
look like:

Cμv, Qσ = μδτa ~ <^ A AV '

σaλτ = δVQaμσ - δμσaρ

(3.2)

Consider the group IGL(15JR). Its Lie algebra consists of two generators I ί l L

and P = I2ι and is defined by the relations

detM(1) =
0 -α2

0'21

i.e., the determinant is indeed different from zero.
Let us illustrate the idea of the proof for the IGL(2,#) group. Using (3.2), we

obtain the determinant of M(2):

0

-fl!2

α21

0

fl31

0

β12

0

- f l l l+ f l22

-a12

«32

0

42ί 0

α12

-°21

0

0

α32

- f l31

~«32

0

0

0

0

0

0

-β31

-α32

0

0

detM(2) =

Once can see that: a) this determinant is obtained from the previous determinant
M(1) if one adds to the latter, rows and columns with new numbers (12), (22), (31),
and (32); b) the rows and the columns (31) and (32) contain only the variables a319

a32 and only once; c) one of these variables, in this case α32, stands in the
intersection of the new rows and columns. Therefore if we put α31 =0, then the
determinant of M(2) will be equal, up to a nonzero factor, to the determinant
ofM ( 1 ):

0

*21

-α2

0
= αt,detM(1)φO.
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Let us generalize this result to the case of IGL(n,R). Suppose that
detM("~υφO. One can see from (3.2) that in passing from IGL(n-l,R) to
lGL(n,R) new columns and rows with numbers (ln),(2n), ...,(wn),
(n + 1, 1), ...,(n+ l,n) simply appear, but otherwise the structure of the matrix M
remains unchanged. In the rows and the columns with numbers (n+l,k) the
variables an+1 l stand, corresponding to the generators of translations and each of
such rows and columns contains all the an+1 l only once. Indeed, from (3.2) it
follows that, for instance for the row, one has

since there is no column with the number (ρ,n+l), and for any of the v and σ
(v, σ = 1, . . ., n) a corresponding column (ρ = v, σ) exists. One can see from (3.2) that
an+ 1 n stands in tne intersection of the rows and columns for which either μ = n + 1,
<7 = w o r ρ = n+l, v = n, i.e. in the intersection of those rows and columns which are
added in passing from IGL(rc— 19R) to IGL(π,Λ). This means

Consequently the full linear inhomogeneous real group IGL(n,R) has no
invariants.

4. The Group ISL(w,fl)

We show that the group of unimodular (or special) real linear inhomogeneous
transformations, ISL(rc?JR), has only one invariant operator for any n.

1) The generators of the homogeneous transformations Hί9 / (i, μ, v = 1, . . ., n
μΦv) and translations Pτ (τ = l, ...,n) of the ISL(n?JR) group satisfy the following
commutation relations :

2) As can be seen, the Lie algebra of the ISL(n, R) group satisfies the criterion
(2.8) which means that its invariants are polynomial.

3) We pass to the determination of the number of Casimir operators. The
number of parameters of the ISL(n,Λ) group is n2— l + n = n(n+l)— 1 which is
odd. The antisymmetry of the structure constants of the group entails that the
matrix M is also antisymmetric. But the determinant of an antisymmetric matrix
of odd order is always equal to zero. This means that this group has at least one
Casimir operator.
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Let us show that there is exactly one invariant. For this purpose, according to
(2.7), it is necessary to prove that the determinant of the matrix M, defined in (2.6),
has at least one nonzero minor of order (dimG— 1).

In order to write the matrix elements in a similar way, we use the fact that the
generator of the Cartan subgroup of SL(n,R) can be expressed in terms of the
generators of GL(n,R): Hi = Iii — Ii+1 ί+1. Then for the matrix M we obtain

M

μv,ρσ = cλ

μl,Qσaλτ = δvQaμσ-δμσaρv , (μ, ρ = 1, . . ., n + 1 v, σ = 1, . . ., n) .

In order to make the form of the matrix simple (in analogy with Sect. 3), we put
equal to zero all the variables aλτ with the exception of those which correspond to
the Cartan subalgebra and to the subalgebra of translations an+lfk = pk. In the
determinant thus obtained we choose the minor of order (dimG— 1) by crossing
out the row and the column with the number (n+ 1, 1). This minor is as follows:

-t (12) (2π) •

1
2

*
(12)

/ 1 \(Ίn)

(21)

(2π)

ί nΊ \

( Πj/7-1)

(n+1,2)

(n+1,3)

0

0

o -P3

I o

0 0 ;

i M O i

: •• A '*
: alΓann

I

nn 11

P2 0 0

-p2 p3 0 •••• 0

0

The elements of the minors in the upper left and the lower right corners are zero
because of commutativity of both the generators H and Pμ.

In the rows and columns of the middle minor, surrounded by dashed lines,
there is only one element each, since the generator (/..— / f + 1 > ί + 1 ) is obtained only
in the commutation of [/. / + 1 ? /.+1 .]. This means that this minor is different from
zero. The elements of the minors which are disposed on the left and above this
latter minor are equal to zero because we have put equal to zero all the variables
aλτ which they consist of. The elements of the two remaining minors are
determined by the relation: [_Hi,Pj] = δ j t i + 1Pj — δίjPj. Expansion of the minor M
with respect to the first row results in a minor which contains as before one
element in the first row. By continuing this procedure, we arrive at the minor in the
middle, which we have shown to be nonzero.

Thus the whole minor M is indeed different from zero and consequently the
group ISL(rc,.R) has exactly one Casimir operator.

4) As an illustration we compute the Casimir operator of the ISL(2,.R) group.
The Lie algebra of this group consists of the operators H^ =(/11 — /22), /12, 721,
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Pt =/31, and P2 = I32. We denote their corresponding variables in the algebra of
polynomials by α1,...,α5. According to (2.3) we obtain the following system of
equations:

2 3 4 5

df df df
2 da^ 1 dα3

 5 <9α4

3da1

 Ida2

 4 da5

a4^r- + a5—- = °> (4-4)

_ f l 5_^_+ <34_^=0. (4.5)
daι daτ

Λ r

In order to solve this system, we express all the partial derivatives in terms of -—

and ^—. Equations (4.3), (4.4), and (4.5) give
oa4

df^ = _a±Sf_
da2 a5 da1'

^Γ = ?^Γ' (4 6)
4

8f_ = i2a,+^\Sf_
da5 \ a4 a5/ da1

By substituting these expressions into (4.1) and (4.2) we obtain two equivalent
equations. Let us consider, for instance, Eq. (4.1) which gives

aί-2a2-

The solution of this question is the function

r ff \ U2alf = f(g, a29 α3, α5), g= α^4.
<25

By differentiating the / as a compound function and using the expressions (4.6), we
obtain the form of all partial derivatives up to a factor h = h(a2,a3,a5). For its
determination, we express the partial derivatives in the system of Eqs. (4.1)-(4.5) in

Λ r ~\Γ

terms of and , and again we find expressions for all the partial derivatives
oa1 ca5

which contain another factor. Comparing both expressions for the partial
derivatives we find h = h(av α3, α5). After integrating the expressions for the partial
derivatives and comparing them with each other, we obtain the solution for the
system of Eqs. (4.1)-(4.5) in the form f = a1a4a5 + a3a^ — «2α4. Therefore, in
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accordance with (2.4) we obtain for the Casimir operator of the ISL(2, R) group
the expression

c=dίl-ι22)P1P2+ι21P
2

2-ιί2P
2

1,
where for passing to a more compact form, as compared with the symmetric form,
we have used the commutation relations.

5. The Group ISO (/>,?)

Consider the group of inhomogeneous pseudo-orthogonal transformations
faq).

1) Its Lie algebra has the form

£/ vρ μσ * v μσ vρ c/μρ vσ £/ vσ μρ '

f = diag(-l, -!,...,-!, 1,...,

(5.1)

2) From (5.1), according to the criterion (2.8), it follows that the group ISO(p, q)
can only have invariant operators of polynomial form.

3) We now come to the determination of the number of Casimir operators.
First we determine the upper limit using the method described in Sect. 2. The
elements of the matrix M defined in Sect. 2 for the group ISO(p, q) have the form

= (ί-δvίn+ιδσtn+ι)(9veaμσ + 9βσavβ-- gμeavσ- gvσaμe). (5.2)

In (5.2) we put all the variables aλτ equal to zero, except for the variables

corresponding to translations and to the generators I2i 2i_1 ( 1 = 1,2, . . . , - . Then

the matrix can be written in the following form (for definiteness consider the case
of even n the analysis for odd n will be analogous) :

(21)
(43)

(31)
(32)
(41)
(42)

(αn-2)

(n+1,1)
(n+1,2)
(m1,3)

(n+1/7-1)

(π+1,π)

I P2
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The upper left and the lower right minors have zero elements because of
commutativity of the corresponding generators. The minors on the left and above
the shaded area are zero because of our choice of values for the variables aλτ. We

cross out the rows and columns with the numbers (w+l,2fc), fc=l, ...,-=

(since n is even) and we show that the leftover minor M' is different from zero. The
expansion of M' with respect to the rows and columns which correspond to
translations gives MΌcp^p^ ... p*M"n, where M"n is the shaded minor in the middle.

We prove by induction that M"n φ 0. For n = 4 one has

Let
the form

0 a21 0

0

0

0

-aΔ

aA

0

0

0

*43 ~a21

I" >> Φθ for n — 2. We show that this is also true for n. The minor M" has

π-Ί, n-2) (n1)(π2)(π3) ..... (n,n-2)

(n-1/i) |~ "•••••;•-a'21 an.n_i j

(n-1,3)

(n-1/7-2)

in?)

(π3)

21 : :

a ' :. o

•5 odn,n-1 ^21

an.n-1

( α - 2 )

Let us put the variable an π _ 1 =0 (one can do this since this element does not
enter into the minor MJJ_2). Then in each row and column which has been added,
only one element is left. The expansion of the minor in terms of these rows and
columns brings us to the minor M"n_ 2, which is different from zero. Thus the upper
limit r(G) for the rank of the matrix M is determined by the inequality

n+l

From here, according to (2.7), we obtain for the number of Casimir operators
of the group ISO(p, q) the inequality

τ<
n+l

(5.3)

In order to obtain the exact value for the number of Casimir operators, we
utilize still another method [12-14] which allows us to find the lower limit for the
number of invariant operators τ. In this method the problem of finding the
Casimir operators of an inhomogeneous group is reduced to the use of the Casimir
operators of the homogeneous group. This can be done if we "expand" the
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inhomogeneous group to the corresponding homogeneous one of higher dimen-
sions. The procedure of expanding the group ISO(p, q) under consideration
amounts to the following.

Denote

(5.4)

An obvious invariant of ISO(p, q) is the operator P2 = gμvP
μPv, where

g = diag( — 1, — 1,..., — 1,1,..., 1) is the metric tensor.
P q

Then, as can be checked, the operator

Mμ n+1=(P2)~1/2Jμ, (5.5)

together with the generators of the homogeneous subgroup of the ISO(p,q) group
constitute the algebra of SO(p,g+l), which is the expansion of ISO (p,q).

By using (5.4) and (5.5) one can prove the theorem [12]: If an element of the
enveloping algebra of ISO(p,#) commutes with aJJ the Mμv and Jμ, then it
commutes also with all p

If we substitute now (5.4) and (5.5) into the expression for the invariant of the
homogeneous group of SO (p, q+l) and multiply it by a sufficiently high power of
P2, then we obtain a polynomial operator which commutes with all Mμv and Jμ,
which means also with all Pμ, i.e. one obtains the invariant operator of the
inhomogeneous group.

From the definition of the expansion, it is seen that the enveloping algebras of
the groups ISO(p,q) and SO(p,g + l), in general, do not coincide. From the
construction it follows that the Casimir operators of the group SO(p,g+l) also
belong to the centre of the universal enveloping algebra of the initial Lie algebra.
The converse, in general, is not true: the Casimir operator of the group ISO(p,q)
may not belong to the enveloping aJgebra of the group SO(p,q +1). Thus, this
method gives for the number of Casimir operators only the lower limit

(5.6)

The comparison of (5.3) and (5.6) gives the exact number of Casimir operators for
the inhomogeneous pseudo-orthogonal group ISO(p,q):

τ = (5.7)

Notice that the method described is not suitable for all the groups, since one
cannot always succeed in constructing the necessary expansion without increasing
the dimension of the subgroup of translations (which takes place, for instance, in
the case of linear and the symplectic groups). The explicit form of the Casimir
operators is determined by the system of Eqs. (2.3). By solving it one can ob-
tain in accordance with (5.7), that the group ISO(1, 1), for example, has one
Casimir operator C = P\-P2

2, and the group ISO(3) has Cx =P2 + P?, + P2, and
C2 = L1P1+L2P2 + L3P3, where L. are the generators of the subgroup of ro-
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tations. The method of expansion also leads to the same form of invariant
operators.

6. The Groups and

In this section we investigate the inhomogeneous full unitary group IU(p9q) and
the inhomogeneous special unitary group ISU(p, q).

1) The Lie algebra of IU(p, q) is given by

[Lμv> Qλ J = 9vλQμσ ~ 9 λμQvσ + θvσQλμ ~ 9σμQλv >

[βμv QλJ = - 9vλLμσ - 9λμLvσ + 9^Lλμ + #σ/Alv >

Γ 7" JO ~| /7 P /Ί Ί-) V ft ϊ? "1 /7 P /7 P

\- ii v' /I J — (j v λ iL c / / i / ί v ' L ^/y v' "^Jl J — Ό MIL n ίy λ // v '

[βμv» ̂  J = ̂ v A + ̂ Aμ^v ' L^μv» ̂ λ] = ̂ v A ~ ̂ Aμ^v >

^μv = ~ ̂ vμ , , .

In the case of ISU(p,^) it is sufficient to consider (Qμμ — βμ+ι,μ+ι) as tne elements
of the basis, instead of Qμμ.

2) From the Lie algebra one can see that ISU(p,#) satisfies the criterion (2.8):
[ISU(p,g),ISU(p,g)] = ISU(p,g), but the Lie algebra ofTU(p,q) does not satisfy
this criterion. This means that the inhomogeneous unimodular unitary group has
only polynomial invariants.

3) We come to the determination of the number of invariant operators. Let us
first consider the group I\J(p,q). The upper limit for the number of invariant
operators is determined by the rank of the matrix M, defined in (2.6), which in our
case has the following form (all the variables except the ones corresponding to Qμμ,
Pμ, and Rμ have been put equal to zero):

(11!
(22)

(πn)
(21)
(31)

(32)

(11)(22) (ππ)(21)(31)(32)Ul)-(απ-1) (21) (31)(32M/V7-1)12 π 1- n

ϋ
(31)

(32)

Π,Π-1)ι__

il5'
.
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By crossings out the rows and the columns corresponding to .R-translations,
one can see that the leftover minor of order (dimG— n) (where dimG is the
dimension of the group) is different from zero since in each row and column, there
is only one element. This means that, according to (2.7), the number of invariant
operators of the group IU(p, q) satisfies the inequality

(6.1)

For the determination of the lower limit for the number of invariants we use
the method of expansion [12-14]. In order to expand the considered in-
homogeneous group up to U(p, q+1) we introduce the following operators
[taking into account the fact that P2 + R2 = PμP

μ + RμR
μ is the invariant of the

IU(p,q) group]:

These operators together with the generators of the homogeneous subalgebra of
the group IU(p, q) constitute, as can be checked, the Lie algebra of U(p,q + l).
Furthermore, in analogy to the case of the orthogonal group, one can separate out
of the known Casimir operators of U(p, q -f- 1) the invariants of the IU(p, q). At the
same time, it is obvious that all the invariant operators obtained by this method
are polynomial [ we can multiply, in case of necessity, by an arbitrary power of

However, in contrast to the pseudo-orthogonal inhomogeneous group, the
number of generators of IU(p,g), which is equal to n2 + 2n, is one less than the
dimension of U(p, q+ 1). Therefore, in reality, not all the generators of expansion
of IU(p, q) are independent, which dictates some relation among the (n+l)
Casimir operators of the expanded group of ϊ\J(p,q).

Thus, by using the second method, we obtain the lower limit for the number of
invariant operators :

(6.2)

Comparison of (6.1) and (6.2) gives the exact number of Casimir operators of the
IU(p,q) group: τιu(p q} = p + q. Notice that, although IU(p,q) does not satisfy the
criterion (2.8), all its invariants are polynomial.

Consider now the unimodular unitary group ISU(p, q). The process of
expansion for this group has not been studied, but one can easily perform it on the
basis of the IU(p, q) group. For this purpose it is enough to consider, in the initial
and in the expanded groups, not the Qμμ as the basic elements of the algebra but
the (Qμμ — Qμ+ i μ+ 1) (the other elements remain unchanged). Since the invariant of
first order for the group SU(p, q + 1) is identically zero, we obtain [analogously to

Let us show that (6.3) is in fact an equality. Crossing out in the usual way the rows
and columns corresponding to R2,...,Rn, and leaving nonzero the variables
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corresponding to (Qμμ- Qμ+ 1>μ+ J, Rv, P1? i.e. αμ, rv, p1? up to a nonzero factor we
arrive at the minor of order (dim G — n -f 1) :

1 (21) (31) (32) -(n,n~1)(21) (31)(32) ...... (n,n-1) 1 1
1

(21)
(31)
(32)

(21)
(31)
(32)

~h

T

0 + /
4— r-

Putting now al =0 and expanding in terms of Q21, L2ί rows and columns, we
obtain a minor in each row and column of which only one element remains
nonzero. Thus, the number of Casimir operators of the ISU(p,q) is equal to

As an example we give expressions for the invariants of the IU(2) group.
Solving the system of partial differential equations (2.3), in analogy to the case of
the ISL(2,,R) group (Sect. 4), we obtain

^21

-2(P1P2 + R1R2)Q21.

One can bring to the same form the invariants of IU(2) obtained in Ref. 12.

1. The Inhomogeneous Symplectίc Group ISp(2κ)

1) The Lie algebra of ISp(2π) is given by

(7.1)

-1
, μ,v,Q,λ= ±1, ±2,..., ±n.
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2) One can see from (7.1) that the Lie algebra of the ISp(2w) group satisfies the
criterion (2.8) and therefore has only polynomial invariants.

3) For the number of Casimir operators of the symplectic group we have
succeeded in obtaining only an interval for its value. For the symplectic group the
method of expansion is not suitable since it increases the dimension of the
subgroup of translations. Therefore, using the method presented in Sect. 2 and
Ref. 11 we shall obtain the upper limit for the number of Casimir operators:

= H' (7.2)

For this purpose, following the usual procedure of Sects. 2-6, we write down the
matrix M, defined by (2.6), leaving nonzero the variables aλτ corresponding to the
Cartan subalgebra (/. _., i=l,.. ., w) and to the translations:

(-11)1-221-(-nn) (11)(-1-Ί)(21) (-nn) (1)(-1)(2)(-2)(3)(-3) (n)(-n)

(-11)
(-22)
(-33)

(-nn}
(11)
(-1-1)
(21)

(-nn)

( 1 )
(-1)
( 2 )
(-2)
( 3 )
(-3)

(n)
(-n)

0

0

-Pi
PI

-P2
P2

\
P,

0

aι.-ι

Py -Pi

2P3-P3.

o

Crossing out n rows and columns, corresponding to the translations with
negative indices we come to the nonzero minor since it has only one element in
each row and column. From this the formula (7.2) follows.

We can show that there exists at least one Casimir operator for the group
ISp(2n), i.e. there exists a lower nonzero limit for the number of Casimir operators,
τ. For this purpose let us first consider the group ISp(2). It is locally isomorphic to
ISL(2, R). Therefore, using the results of Sect. 4, we obtain the Casimir operator of
ISp(2)group:

C

-2

:= Σ (7.3)

But a similar operator is the invariant of the ISp(2π) group for any n. Indeed,

[P σ I σ P ,P~\ = P σ (σ P +σ P )σ P

assuming summation with respect to repeated indices.
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Analogously one can show that the generators Iμv also commute with the
operators C2w, i.e. the C2n are the Casimir operators of the ISp(2n) group.

Let us mention that searching for other Casimir operators of the ISp(2n) group
with the help of tensor analysis is difficult. All contractions with antisymmetric
tensors give zero because of Iμv = Ivμ symmetric tensors do not give contractions
which commute with Pτ. Therefore operators of type (7.3) with a different number
of Iμv are left. However, operators of higher order with an odd number of / do
not commute with Pτ, and operators with an even number are reduced to lower
orders. For instance, by placing the generators in opposite order in the operator

we obtain the sum of commutators (6n + 2)C2n. Then, using the fact that the
quadratic form σ is antisymmetric, we find C'2π = (3nH-l)C2π.

Thus for the number of Casimir operators τ for the ISp(2π) group we obtain
the inequalities 1 ̂  τ ̂  n.

8. Invariant Operators of the (Inhomogeneous) Weyl Group W(p, q)

In Sects. 3-7 we have considered questions concerning invariant operators of
inhomogeneous groups with classical homogeneous subgroups. Here we study the
analogous problem for the Weyl group W(p, g) of arbitrary dimension.

The Weyl group is the group of motions in pseudo-Euclidean space and
uniform expansion with respect to all the coordinate axes :

where the sign g> denotes the semi-direct product.
1) From the structure of this group (direct product) it is obvious that

dilatations commute with rotations. Therefore, compared with the inhomo-
geneous pseudo-orthogonal group ISO(p,q) of Sect. 5, only the commutation
relations of Pv with the generator of dilatations D are new :

2) The Lie algebra of W(p,g) does not satisfy any of the sufficiency conditions
for the existence of only polynomial operators (Sect. 2). In addition, as we shall see
below, W(p, q) is an example of a group which has only rational invariants.
Therefore, we consider briefly the definition of rational invariants of Lie algebra

[11].
Let us introduce the following concepts :
(a) The universal enveloping (or covering) algebra A of a Lie algebra is an

algebra without zero-divisors [20], i.e. from the condition uυ = Q, (u,veA), it
follows that either u = 0 or u = 0. Therefore one can define the quotient field D(A\
i.e. a field whose elements have the form uv~ 1, (u, veA, UΦO). Commutators in the
quotient field can be calculated using the formula

Iu9v~1'] = uv-1-v~1u=-v~1[u9v']v'~1. (8.2)
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(b) Elements of the quotient field D(A) which commute with all the generators
of the group are called rational invariants.

(c) An Element g of the universal enveloping algebra A is called a relative
invariant of the Lie algebra of the group G, if

\_Fpg]=λjg (/=!,..., dim G), (8.3)

where
FJ is a generator of the Lie algebra of G,
dim G is the dimension of the group, and
λj is a numerical factor.
Let us show that u and v being relative invariants with equal λj is the necessary

condition for the in variance of uv'1.
Indeed, using (8.2) we find

\_F pUV~l~\ — [Fy, u\v~l — uv~l[Fj, υ]v~l = λ uυ~l — uυ~lλ vv~^ = 0.

Conversely, from the in variance requirement for uv~l we get [Fy , u] [F7 , v} ~1

is algebraically generated by elements of the form uv~ *, where u and i; are
relative invariants with equal λj [11]. In order to find the number of invariant
operators we can use the method described in Sect. 2 and Ref. 11, with the
difference that in the present case one can establish an isomorphism between the
centre of the quotient field D(A) and the centre of the algebra of rational functions.
However, in the case of the Weyl group another method turns out to be more
convenient. This method is based on the fact that the problem of finding the
number of invariants of the W(p,#) group can be reduced to the problem of
obtaining the number of Casimir operators for its pseudo-orthogonal inhomo-
geneous subgroup ISO(p, g). In fact, according to what has been said, instead of
finding the absolute invariants, we can look for relative ones. As we shall show the
relative invariants of the Weyl group do not include the operators of dilatation
and are the absolute invariants of ISO(p,q) group. Consequently invariant
operators of the Weyl group are presented in the form of the ratio of Casimir
operators of the inhomogeneous pseudo-orthogonal subgroup.

3) Let us now find the number of invariants. The Lie algebra of ISO(p, q) can
not have relative invariants since it is a derived Lie algebra [20], i.e. ISO(p,q)
= [W(p,g),W(p,g)]. Therefore, in order to prove that the generator of dilatation
does not enter into the relative invariants, it is sufficient to show that the following
commutation relations are impossible:

dVcj-o,
[**„,. CJ = 0,

where the element CD of the universal enveloping algebra Aw contains D.
Operator CD can be written in the form

CD= Σ CnD", (8.5)
n = 0
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where CneAw and does not contain the operator D. From (8.4) it follows that
[Mμv, CJ=0 for any n. In other words, Cn is an invariant operator of the
homogeneous pseudo-orthogonal group. The other relation of (8.4) gives

Using (8.1) and putting equal to zero the coefficients of different powers of D, we
obtain

[^CJ='χ"α)ίCn + itPίl, (8.6)
k = l

where ak are some numerical coefficients.
The basis of invariants of the homogeneous subgroup consists of monomials

which are contracted in all the indices (this follows from the GeΓfand theorem [9]).
Let us introduce the notations Y[n

μv = IμσJσίσ2 ... IσnV and ΓΓ^ΓK/r Then an

arbitrary invariant is the sum of terms of the form

ΠnιlT2 TTkΓfmι Πmp P P P P (P2Y11 •'•11 1 Iμivi •'• 1 LμpVp* μί

Λ V ! ••• * μp

λ v^ ) '

By commuting Pμ with []", we get [Pμ, fp] ~ Y["μ~
 1 Pv+ .... Terms with such

factors are not present in the right hand side of (8.6). To compensate such a term
with some other ones is also not possible (the compensating term should have
the same structure with respect to the generators of translations and therefore
there is no such choice). This means that n1 = ... =nk = 0. Analogously [Pμ, [~[̂ σ]

~ΠμτΠ™y " * $ + . . . (w Φ 1). One might try to compensate this term by a term
proportional to Π™ "Πμσ> ^ut as we nave Just seen> ^ *s impossible to include
such terms. Thus (8.5) is possible only in the case of Cn = 0 for n>0. One can
conclude that the rational invariants, if they exist, are constructed only out of the
Casimir operators of the corresponding subgroup ISO(p, q).

Let us show that there exist invariant operators for the Weyl group, i.e. the
Casimir operators Cf of ISO(p,g) group are relative invariants of the dilatation
generator. In order to find commutators of D and Ct we use the fact that the
Casimir operators of ISO (p,q) group are homogeneous functions of P (which can
be proven by constructing C by the method of expansion as in Sect. 5 and Ref. 12).
Therefore, by taking into account (8.1) one can check that

where mt is the power of homogeneity with respect to Pμ.
Thus from any two Casimir operators Cί5 C of the ISO(p, q) group, after taking

them to necessary powers k^k. (so, that kfn^k m^ we can obtain a rational
invariant of the W(p,g) group.

Algebraically independent invariants will be one less than the Casimir
operators C{ of the corresponding ISO(p, q) group. For instance, for C

— 1 one can take as denominator the necessary powers of the
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remaining C[_p+l+ *] and any rational invariant is obtained from this set by a
series of algebraic operations.

Since, according to what has been said above, there are no polynomial
invariants for the Weyl group, the number of invariant operators is equal to

From (8.7) it follows that, for example, the Weyl group in two-dimensional space
does not have any invariants, while the group W(3) has a rational invariant which
can be written as

--
(M P)2

according to Sect. 5.
Finally, we would like to mention that the methods for constructing the

invariant operators of the inhomogeneous groups presented in this paper might be
useful also for the case of supersymmetric models [21] : for the supersymmetric
theories, the part with commutation relations would correspond to the com-
mutation relations of the homogeneous part of an inhomogeneous group, while
the part with anticommutation relations would correspond to the remaining
commutation relations of the inhomogeneous group.
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