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Abstract. For quantum fields with trigonometric interaction in arbitrary space
dimension we construct a representation of the Lorentz group by automor-
phisms on a Banach space generated by the Weyl algebra.

1. Introduction

It is well known that for systems with infinitely many degrees of freedom the
problem of the formulation of the dynamics is intimately connected with the
"kinematical problem" of finding a suitable representation of the basic operators
of the theory. The problem as stated above has been discussed both in physical
and mathematical works, see e.g. the basic early work [20, 21, 23, 24, 29, 34]. From
a mathematical point of view the problem has been seen as the one connected with
the phenomenon of equivalence versus singularity of measures on function space,
and has been discussed extensively in this way, see e.g. [26, 45, 48]. Nevertheless,
despite this basic physical and mathematical problem, since the very beginnings of
quantum field theory, the canonical formalism has been for a long time the most
fascinating point of reference (see e.g. Dirac [18] and especially Heisenberg and
Pauli [28] but also Wentzel [46]). It is certainly the most ambitious program for
field quantization in as much as it is an attempt to give a direct extension of the
quantum mechanics of finitely many degrees of freedom to the case of systems of
infinitely many degrees of freedom. The canonical program was pursued further in
the late fifties especially by Coester and Haag [12], Araki [8], Klauder [31],
Streater [42], and Segal [38]. The difficulties of the canonical formalism (Haag's
theorem [27, 43], which prevents the free and interacting fields to be in the same
representation of the canonical commutation relations) are well known and have
to be bypassed, when starting in Fock space, by suitable limit procedures. Only in
the sixties and in the last decade models satisfying the basic postulates of locality
and relativistic in variance have been constructed (see any of an excellent series of
surveys on constructive quantum field e.g. [41,25]), and indeed the basic
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postulates of the canonical formalism have been verified in some of these two
space-time dimensional models starting with the one with trigonometric in-
teraction [3]. On the other hand nothing of this kind is at the present time
available in higher dimensions, although Wightman models have been constructed
for space-time dimension three (see e.g. [19, 32] and references therein). For other
approachs see e.g. [9, 35, 38, 40]. The construction of canonical operators in the
Weyl form is the problem of finding unitary operators which commute up to a
factor of modulus one, hence suggests connection with the representation theory of
abelian groups [47, 8, 10].

In the present paper, our approach to the construction of quantum fields is
based on the following observation. Let Hκj defined by :

Hκι=$dμκ(g)Wζ(g) (1.1)

be an interaction Hamiltonian, where Wζ(g) is a measurable projective unitary
representation of a group G, on a Hubert space ffl . Here dμκ(g) is a bounded
measure on G which depends on a positive parameter K (the "cut-off"). Let H0 be
the infinitesimal generator of a strongly continuous group of unitaries, which
implements on &C the one parameter group of automorphisms t-»αf° of G

f-» W^(g)) = exp {itH0} Wζ(g) exp { - itH0] . (1.2)

We assume, and this is satisfied in the applications, that in the presence of the cut-
off the interaction picture is valid in the sense that one has for all Φ and Ψ in H :

(Φ, exp {iHκt} Wζ(g) exp { - ϊHκΐ} Ψ)

= (Φ, exp {itH*} exp {itHΌ} Wζ(^(g)}

(1.3)

where Hκ = H0 + Hκj is the total Hamiltonian. The special form (1.1) of the
interaction H1} allows to rewrite the matrix element (1.3) as the expectation value
of a functional of the time zero matrix elements with respect to a Poisson measure
through a Feynman path formula. Furthermore this expression extends quite
naturally to a suitable linear space of bounded functionals on G, which are no
longer necessarily of the form (1.3), i.e. they are not necessarily matrix elements of a
unitary projective representation of G on a Hubert space J^ and defines a one
parameter group of automorphisms (flow) α* associated with the interaction Hκ.

A central result of this paper is that the limit for /c->oo of the flow α* exists, in
the case where H" stands for an ultraviolet cut-off relat ivist ic local interaction, on
a dense subset of bounded functionals. More precisely we construct a simul-
taneous representation on a Banach space of the Weyl canonical commutation
relations and of the Poincare group in all space dimensions for models in which
the interaction (like in the sine-Gordon model) is of the type

v(α) cos (α,φ(χ) + θ) , 0 ̂  θ ̂  2π , (1.4)

where s is the number of space dimensions, dv is an arbitrary bounded measure on
1R and λ a real constant. Hence we get time zero fields and canonical conjugate
momenta as well as a natural dynamics acting on them in the sense of



Invariant Flows for Quantum Fields 331

automorphisms. This theory is a nontrivial partial solution of both the kinematical
and dynamical problems alluded above. Introducing the usual renormalization
procedure, it is possible to show that for s= 1, m = Q and λ sufficiently small, our
construction coincides with the one obtained before by other means (see e.g.
[16, 22]), when interpreted in the underlying Hubert space. We also give a solution
of the Schrodinger equation, first discussed by Symanzik (see e.g. [44]) for
trigonometric models. Interactions of the above form with ultra-violet cut-off have
been discussed before in [1, 2, 5, 15, 30]. A Schrodinger equation for them was
shortly pointed out in [6], but in a different form from the present one, using the
definitions of Feynman path integral by normalized oscillatory integrals given in
[5].

This paper is organized as follows: in Sect. 2, we study both left and right
regular projective representations of a group G by isometric operators on the
Banach space B(G) of bounded functionals on G (Proposition 2.1). This space
contains the subspace of matrix elements (1.3) of unitary projective representations
of the group G as well as the dense subset generated by the characters of G. It is a
natural space for looking at solutions of Schrodinger-like equations for the time
translated matrix elements of exponentials of the field operators, which for
trigonometric interactions can be expressed as Poisson expectation values
(Theorem 2.5). We then define a flow on the Banach space B(G) which represents
the perturbed evolution in the Schrodinger picture.

In Sect. 3 we give the definition of the trigonometric interaction [30] and we
derive the Schrodinger equation satisfied by the time translated functionals. We
then remove the ultraviolet cut-off and the space cut-off from the solution of these
equations for any space time dimension. Let us observe finally that if there existed
relativistic quantum field models in higher dimensions satisfying all the Wightman
axioms, and in addition some suitable technical assumptions, they would appear
in our representation. For smooth initial conditions with compact support, i.e. in

(̂IRS), we then get a relativistic flow on a dense set of functionals in the infinite
volume limit, associated with time translations. We also discuss the case of initial
conditions in ^(IRS), using methods of classical statistical mechanics (see [1, 2]),
obtaining the existence of the infinite volume limit for small times. We also discuss
the asymptotic behaviour in time.

2. Time Translation Automorphisms Associated
with Projective Representations of a Group

Let G be a (topological) group and ζ a multiplier on G, i.e. a (continuous) function
from G x G to the one dimensional torus such that

Let B(G) be the Banach space of complex-valued bounded Borel functions on G
equipped with the sup-norm. We define jRζ and l} to be the isometric projective
representations of G on B(G) given by
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(Lζ(g)F) (ft) = ζ(g-\ h)F(g~1h\ g,heG. (2.2)

These representations commute and moreover they allow us to implement
automorphisms of G

U^R^HU^Γ^R^g)), (2.3)
where

(U°σF)(h) = F(σ-1(h))9 (2.4)

for any automorphism σ of G which leaves ζ invariant. Similar formulas hold for
zA

Let B^G) be the subspace of B(G) generated by the finite linear combinations
of the functions

(2.5)

where Wζ is a projective unitary representation of G in a Hubert space $C with
scalar product ( , ) and Φ, Ψ are vectors in 2tf. B^G) is stable with respect to both Rζ

and ZA Let £-»αf be a one parameter group of automorphisms of G leaving ζ
invariant (this is going to represent the free evolution, in the application below).
We define £αw(G) to be the subspace of B(G) of those functions F such that

tε^-+F(gΛ(g2)g,), g^G, i=l,2,3.

is Lebesgue measurable. It is clear that B, B19 and Bam are invariant subspaces with
respect to both Rζ and ZA

Given any bounded complex measure μ on G we define on B(G) the following
operators

H*=λ\dμ(g)R^g), (2.6)
G

fί» = XJ«L%), (2.7)
G

where λ is a complex parameter and μ denotes the complex conjugate measure to
μ, i.e. μ(/) = μ(/) for any function / To the one parameter group ί-»αf there
corresponds an isometric operator [/£ = L/^0 on 5(G), defined by
(ί/fFHftjΞFίαΓ1^)), and we want to find in B(G) two functions F*(g) and Ff(f )
solutions of the differential equations

geG, (2.8)

with the initial condition

limF*(0) = F0(0), (2.9)
ί|0

and similar equations for Fb

t.
In what follows we shall discuss F*, the considerations for Fb

t being entirely
similar. This Cauchy problem uniquely defines F* as a one cocycle

F^VL^F*),, ί,seIR, see [8]. (2.10)
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Note that U®Ft+s is the solution of (2.8) with ί replaced by s and with initial
condition U°Ft + sls = Q=U?Ft. It is very useful to describe the solution F* in a
compact way with the help of a Feynman path integral using a Poisson measure
Pμ, along the lines of e.g. [12, 14, 16]. We recall here only that Pμ is the Poisson
measure for a Poisson process running in time t on G with intensity measure the
positive bounded measure dμ on G i.e., for any / bounded Borel on [0, ί] x G

jexp/i j f(t,g)dNω(t9g)\dPμ(ω) = exp( f (eif(τ β)-l)dτdμ(g)}9 (2.11)
V [0, ί]xG / \ [ 0 , f ] x G /

where TV is the counting measure on countable subsets of [0, ί] x G. A realisation
of Pμ(ω) is as follows. Let Ω be the disjoint union of Ωn, where n runs over the
integers {0}uN, Ω0 being an arbitrary one element set Ω0 = {ω0}, and Ωn for rceN
being the set of all ^-tuples ω of the form

ω={(n,tί9gl),...,(n,tn,gn)}, with 0<ί1< ... <ίπ<ί, g.eG, ίeN.

Let ai be Lebesgue measurable subsets of [0, t] with air^aj = 0, Bt be Borel subsets
of G, zeN, and define

For any positive bounded measure μ on G, Pμ is then characterized by

Pμ(Ω0) = l, Pμ(V^B)=l\\

where |α.| is the Lebesgue measure of α . Equivalently, for any FeL1(Pμ), we have
the following interpretation of above formula (2.11):

\F(ω)dPμ(ω}= Σ \dtn,...]dt,
Ω n^O 0 0 G

We refer to the papers quoted above for more details. Thus we have the theorem :

Theorem 2.1. Let μ be a complex measure on a topological group G. The solution of
the evolution equation (2.8), with initial condition F0εBam(G) and with Hj given by
(2.6) is given by

Ff(g} = lPM(dω) exp {iΦ(ω)} exp {iSr

0(ω)}F0(gGr

0(ω)) ,

and similarly the solution of the evolution equation (2.8) with initial condition
FoEBam(Gϊ is given by

^(g) = ί P\w(dco) exp { - iΦ*(ω)} exp {iS°0(ω)} F 0(G*0(ω)g) ,

where

7=1

φ being defined by

) = QXp(iφ(g))d\μ\(g).
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Moreover n

exp{iSr

0(n,*,.,&)}= f] ζ(α_J^)...α_J^),α_ ίk^(^.J)
fc=2

fc=l

The solutions are entire functions of λ. [The suffixes r and a stand for retarded
(respectively, advanced)].

Corollary 2.2. Let Ω* be defined by

where F* is the solution of (2.8) given by Theorem 2Λ. Then Ω* is a linear map of
Bam(G) into itself, with norm bounded as follows

\ \ Ω * \ \ ^ Q χ p { t \ λ \ \ μ \ ( G ) } .

Define correspondly Ωb by ΩbFQ = Fb, then ΩbΩ* = Ω*Ω? for all ΐ and t'. One has

and U* = U?Ω*, Ub

t = UQ

tΩ
b

t are groups of bounded operators on Bam(G\

Proof. For the bounds one uses the boundedness of H*. The group property
follows easily from the cocyle relation (2.10). Π

We make now a remark concerning the ordering problem for Weyl
quantization.

Lemma 2.3. Let ζ and ξ be two equivalent multipliers on G, i.e. such that there exists
a function λ from G to the one dimensional torus such that :

0ι> 9 2) '

Then we have

π <
k=2

= Π <
k=2
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Remark. It follows from this that the functions Sr

0, SQ defined in Theorem 2.1
depend trivially on ζ within a cohomology class. The following lemma is
immediate

Lemma 2.4. // ζ is an ^-invariant bίcharacter of G, i.e.

ί(0ι> 92' 9*) = ί(0ι» 02K(02> 9 3 ) > #ι> 02

and

ζ(9ι'92> 93) = ί(0ι> 02)£(02> 93) '

then

n

Π £(α-J0J α-J0»)> «-,*-, (Λ-

Remark. Let g-*Wζ(g) be a unitary projective representation of the canonical
commutation relations on a Hubert space Jjf, where f->α, is unitari ly implemen-
ted by a strongly continuous unitary group f-»exp(z7/0f). Let j f f j be the bounded
operator on Jf given by

with v a complex bounded measure on G. Then for any Φ, ΨE^, with F^%, defined
by (2.5),

) = (*, Wζ(ί/) exp(iίH0) exp(- ί(H0

is not a group operation with respect to ί, but a one cocyle. On the other hand

(U?F%Ψ) (g) = (Φ, exp(/ίfl0) W^) exp( - i(H0 + H,)t)Ψ)

is a group operation with respect to t. Similar formulae hold for Ωb

t and Ub

t.
Now we are in position to state a theorem which gives the perturbed free

evolution in the Schrodinger picture [see formula (1.1) in the introduction]. We
call Σ the cone consisting of functions FeBam(G) of C-positive type, i.e. such that

for any choice of Λ.eC, g^G, zj = l, . . . ,JV,

Theorem 2.5. Lei α^ be defined by

where U^(h) = F(^~l(h)\ FεB(G), αf bezngf α one-parameter automorphism and
Ω*,Ω*l being defined in Corollary 2.2. Then αf is a one parameter continuous
subgroup of bounded operators on Bam(G) leaving invariant the cone Σ.

Proof. The proof follows easily from Theorem 2.1 and Corollary 2.2. Π
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Remark, αf can be explicitly computed. We give its expression in the most useful
case where λ is real and μ = μ*, which corresponds to a real potential

n,n^0 0 0 0

\dμ(gm)...\dμ(g,)\dμ(hn)...\dμ(hl)
G G G G

m — 1

fc=l

The next proposition gives a Schrodinger equation for αf, in the sense that it gives
an affine, one parameter group of transformations of the set of states. This
equation will enter as an essential tool in Sect. 4 to prove the existence of a
thermodynamical limit for relativistic quantum field models. Let H0 be the
infinitesimal generator of Uf defined on a dense domain D(H0) in jBαm(G).

Theorem 2.6. // G is an abelίan group Jor any F in D(H0) the following equation
holds:

i 2- (of F) (g) = (H0αf F) (g) + λ J dμ(h) (ζ(g, h) - ζ(h, g)) (of F) (gh).
ot G

Proof. This follows easily from Theorem 2.1. Π

3. Field Theory with Trigonometric Interaction and Cut-Offs

This section is an application of the previous results to a model for quantum field
theory, the trigonometric interaction in s-hi dimensional space time, with
ultraviolet and space cut-offs.

Let ^K(IRS)ΞΞ^ (respectively, ^R(]^S)=^R) be the Schwartz space of real
C°°-functions of rapid decrease (respectively with compact support). They are
abelian groups under pointwise addition. We look at:

G = &>Rχ#>R, (respectively, Q)R x 0Λ), (3.1)

as the space of initial conditions of a relativistic neutral scalar Bose field in s +1
space-time dimensions.

Corresponding to the equal time commutation relations of such a field there is
a central extension of G which is given, choosing units such that fi = l, by a
multiplier ζ, where
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ll- j dx{f'(x)g(x)-f(x)g'(x)}\, (3.2)

ϊθΐa\\(f,g),(f',g')eG.
Consider a projective representation of the C.C.R. in a Hubert space Jf with

multiplier £, and let (/>(/) be the field operator (at time zero) and Π(g) its canonical
conjugate momentum with f,ge^R. Provided that λeΉt-+W^f g and μeJ5ί-+Wfίμg

are continuous, the Weyl operators are defined as the unitary operators

Wϊf = exp{i(Π(g)-φ(f))}, (33)
on 3f. We have :

, (3-4)

for all (f,g), (f',g')eG. For all Φ in Jf the map

(3.5)

belongs to the space B(G) of bounded complex functionals on G.
As discussed in Sect. 2, B(G) carries two isometric projective representations

and ύ of G given by (2.2), i.e.

, (3.6)

J ^{/W^W-^/z.W}^,-/,^-^), (3.7)

for a l l / , s f ,Λ 1 ,
Now we shall define a group of automorphisms α, of G, leaving ζ invariant, and

consider as in Sect. 2 the fourtuple (#, αf, R
ζ, L^). αt corresponds to the free field

time evolution, usually defined for free quantum fields in Fock space. We define αf

as the map of G in itself given by

(/,,&)> (3-8)

where ft and gt are defined by their Fourier transform as follows :

ft(p) = cos(ω(p)t)f(p) + ω(pΓ { sm(ω(p)t)g(p) , (3.9)

g,(p)=sjt(p), (3.ιo)

with ω(p) Ξ ]/p2 + m2. Thus for t > 0,

/t(x) = (dtΔ?*f) (ί, x) + ( J7*ff) (ί, x) , (3.11)

flf((x) = δ,/t(x), (3.12)

where Δ™ is the retarded relativistic propagator :

Δ?(t,x)= J - s i n ( ω ( p ) t X ^ , (3.13)
with (2π)s ^s ω(p)

: ;::.
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α, extends to a group of isometric transformations U®t of B(G), defined by :

(3.15)

U°t is continuous and isometric on the Banach space Bam(G).
Also Bam(G) carries an isometric representation of the Poincare group in IRS+ \

which leaves the multiplier ζ invariant. The infinitesimal generators of the
Poincare group are given in [7].

Now we want to give the corresponding representation for interacting fields
with trigonometric interaction. This type of interaction has been studied, e.g. in
[30]. They are defined in a bounded domain A of IRS, which we take for
convenience to be a symmetric cubic box,

(3.16)

by a Hamiltonian HAκ = H0 + V with :

- iotφκ(x)} , (3.17)

defined in the Fock representation of the C.C.R. Now H0 is the free relativistic
Hamiltonian and φκ(x) = (φ*χκ)(x) is the time zero free field regularized by an
ultraviolet cut-off function χκ (x) = κsχ(κx\ τc>0, where χ is a positive symmetric
C°° -function with support in the unit ball of IRS and such that J χ(x)dx = 1. Here v

Rs

is a complex measure on IR and λ is a positive constant. As in Sect. 2 we denote by
φ the phase which appears in the polar decomposition of v :

(a)}d\v\(<x). (3.18)

In order to have a self-adjoint Hamiltonian, we require that

v(α) = v(-α). (3.19)

We remark that (3.19) implies that (3.17) can be written as

00

V=2λ$dx I d\v\(ot)cos(uφκ(x)-φ(ot)).
Λ 0

A particular case of interaction of the form (3.17) is the sine-Gordon model, see e.g.
[22], which corresponds to the Bernoulli measure:

dv(α) = i{Sαo + δ_ α o } . (3.20)

To define the Poisson measure entering in Theorem 2.1 in our present case, we
shall rewrite (3.17) in term of the Weyl operators ΐ/Fjι/2,/jE^(IRs) associated with
the Fock representation of the C.C.R. We have for the interaction V with
ultraviolet and space cut-offs

V=λ$dx\dv(a)W^κ, (3.21)
Λ R

with χx(y) = χ(x — y). Here Wj0^ stands for the Weyl operator in the Fock
representation, with the usual multiplier given by (3.2).
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For any two vectors Φ and Ψ in the Fock representation we then get :

(Φ, W*°*VΨ) = (V*F*$)(f9g), (Φ, VWj^Ψ} = (VbFl°$}(ίg}, (3.22)

where F^(f, g) = (Φ, Wj°* Ψ\V*=λ$dx$ dv(oc)R^ αχ,, and similarly for V\ with
_ A R

R^ replaced by ZΛ
Furthermore αf [from (3.8)], is unitarily implemented in the Fock repre-

sentation by the weakly continuous unitary group U^ = Qxp(—iH0t). We have the
perturbation series :

°/k exp { - ίtH0} exp {ίt(H0 + 7)} Ψ)

0 0

J A, JX ί dρ(fn, ft,) ... J dρ(f1,
0 0 G G

. (3.23)

where F(t)= L/^C/0.,, (f,g\ = at(f,g) = (ft,gt) [cf. (3.8)], and

the (5 being the evaluation measures on ^K(IRS). A similar formula holds for the
matrix elements (Φ,exp(-i(#0 + V)exp(ίH0t)Wj°g

ckΨ). We remark that the oper-
ators V* and Vb in (3.22) can be written as

V* = λ j dρ(g)Rl [respectively, Vb =
G

(3.24)

As in Sect. 2, Theorem 2.1, it is useful to express the solution of the Schrodinger
equation associated with H0 + V, by a Poisson measure associated with the group
G.

In the present situation we can also characterize this measure as the measure
Pρ defined by

j exp {i</; ξy}dPρ(ξ) = exp /1 ί dτ j dx f d|v| (α)

• exp - iα J ^σ j j dudvf(σ, u)Δ?(τ -σ,u- v)χx

κ(v) - l ,
\ \ o I n

(3.25)

the integration on the left hand side being over «9^(IRS) x ^(Rs) x (̂[0 ]̂'), where

hence / is indefinitely differentiable and of compact support with respect to the
variable τ. In fact PQ has support on elements of

^(IRS) x ^(IR5) x C£(05 1}'
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of the form : (<50, δaχy δt,\ where αe Support(v) and t'e [0, ί]. Let Pμ be the measure
image of Pρ under the transformation of ̂  x ^'R x C^(0, t)' into (0, ί) x A x IR
induced by the inverse of the mapping (s,x,α)-»αχ*®<5s. Then PM is the measure
introduced in Sect. 2, Theorem 2.1, with G replaced by /I x IR and dμ by dx x dv(α).
Since Pμ depends on A, ί, λ\v\ we shall denote it from now on by P .̂

Let us recall the essential definitions needed to state the basic result of this
section. Let U° = t/° be the isometric operator given by the free evolution at

defined by (3.8). Let Ω* be the linear bounded operator on Bam(G) given,
corresponding to Theorem 2.1, by

(Ωff) (g) = j P#,(<M exp (ίΦ(ω) + iS»}F(gr + Gr

0(ω)) , (3.26)

where geG;FeBam(G\

exp {iΦ(n, ί . x . α .̂} = exp - ί- n + i X ^(α^ , (3.27)
\ ^ 7=1 /

with (/> given by (3.18) and

n

exp{ίSr

0(nJί ί;x ί,α ί)}= Π C(α_ f n(^Λ)+ ... +α_j^ κ ),α_ ί κ _ ι fe f c _ 1 ))
κ = 2

^α-JfifJ+. . +α- ί lfe1))' (3 28)

where ζ is the multiplier defined in (3.2), and gί = (0, a$£°). Moreover

Correspondingly as in Sect. 2, we have a similar expression for Ωb

t.
Finally we recall the definition of the automorphism group αf of Sect. 2, where

here H = HA>K = H0 + V:

α?=l7f°β*Ωf

6, (3.29)

with the right hand side defined correspondingly to Theorem 2.5. We have the
following theorem :

Theorem 3.1. The automorphism group αf associated with the Hamiltonian HΛ'K

with trigonometric interaction V given by (3.17) maps linearly and boundedly
£αm(5^(IRs) x «5^(IRS)) into itself and gives a solution of the Schrodinger equation on
the Banach space 5αm(^(Rs) x ̂ Λ(RS)):

ί |- (off) to) - tf Oα? Ffe) + λ I dρ(g) {ζ(g, h) - ζ(h, g)}^F(g + h) ,
ί7Γ G

wίί/i initial conditions F in

We have:

^ΐ(hv, A2) = J PtiftdωJPΐMdωJ exp {/Φ(ωp ω2)}F Kf .(A^ Λ2) ((ϋ^ ω2) ,



Invariant Flows for Quantum Fields 341

where writing (m, s , x , α.) for ω1 and (n, tj9 yj9 βj) for ω2 :

^*^*Xκ)(ί;-ί/>yj -)V)

i _ 1
\ ty β (y sk/ί^^y ^ fs t ' "V v ^ V

2i ;J ί j » κ i j » ,-j

ϊ ί ΐ ί

f = l 7 = 1

m «

ί/zβ phase Φ(ω1?ω2) is e^ft/a/ ίo:

π m n

Φ((m,si9xi9<*J,(n9tj9yj,βj))=-(m-n)+ Σ 0(a»)+ Σ W,

feί _t are defined as in (3.9). Moreover A™, A™, and A™ are the invariant distributions
given by (3.13) and respectively by

<C(ί>*)= :7T1̂  ί Φeί

Δm(t,x)= -- J dpe"«s
(zπj ^

Remark. In the case of nonrelativistίc one dimensional quantum mechanics for a
system with Hamiltonian H given by

with F(g) = J exp(— ΐαg)dv(α), the group G is IR2 and the corresponding
R

Schrodinger equation can be written from Theorem 2.1 as

d
i — oLtF(q, p) = H0atF(q, p) + 2i J dv(α) sin (- aq/2)atF(q9 p-a)

01 R

(cf. [33]).
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4. Removal of the Cut-Offs

As we shall see the removal of the cut-off K in the formulas of Theorem 3.1 is only
possible on some but not all functionals F on 5^(IRS) x ^(IRS). For instance if F is
the well known vacuum functional associated with the Fock representation, then
the argument of F in the formulas of Theorem 3.1 become singular as κ-»oo for all
s^l. For s=l, w = 0, one can come over this difficulty by the usual re-
normalization procedure [16].

In this section, we shall prove that both limits κ-+co and Λ^ΊR8 exist for a large
subset of functionals F. We consider first the functionals £ f c l j f c 2 defined as follows,
for any pairs ki9k2e&"R(Rs) and hί9h2e^R(JR.s):

i f
Z IRS

where the integral on the right hand side is interpreted in the sense of distributions.
Obviously one has :

Ekltk2(090) = E0f0(h19h2)=l9 for all /c1?/c2e^(IRs), and all Λ^e^ίR*).

Remark. These functionals are not states however in some cases they can be used
to express states. Let us first look at the case of nonrelativistic quantum mechanics
with one degree of freedom. Here we have for instance the formula :

where Ω is the ground state of the harmonic oscillator. Since Qxp-(pxί —

plays the role in this case of the functionals Ekι k2, this formula shows that we can
describe the fundamental state of quantum mechanics by a superposition of
functionals of the form £, . .

K j. , K2

This integral representation extends also to the Fock vacuum state of
relativistic free fields (see e.g. [41]), hence in the free field case one recovers the
vacuum from the functionals Ekί kz.

We shall call <£ the linear subspace of B(^R(TΆS) x 5 (̂1RS)) consisting of all finite
linear combinations of Ekί >k2, i.e.

f N
?ΞΞ Σ α

l i = l

(4.2)

We remark that £P is invariant under the action of the Poincare group associated
with the free fields. Below we shall consider a subspace j£?0 of & defined as & with
fe1,fe2 taken to be such that, in the sense of generalized functions, <k*., T> are well
defined, where Tis either Δm or <30zΓ.

It is also interesting to introduce another subspace of bounded functionals on
£(G), namely the linear subspace $R consisting of finitely based functionals which
are linear combinations of functionals Ff

H2n described as follows: Let {</>„}„<= N be a
family of functions in 5^(IRS) which is separating in L2(IRs,d;x). Let H2n be the
subspace of Z^(IR5, dx) generated by {0J/= 1,2 >...,2» Let /be an arbitrary function
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on IR2", which is the Fourier transform of a bounded complex measure on IR2n. The
functional Ff

H2n evaluated on (hvh2}e^R x^R is by definition:

Φ^2,Φ2l ^Φ2n-^(h2>Φ2n}), if hvh2eH2n,
otherwise.

(4.3)

By definition 93Ϊ is the complex linear space of the F{j2n for all n and all possible /
We remark that Ft, can be written in the form:n 2n

(4 4)

with

where ρf is the measure on 1R2", whose Fourier transform is / and

P = (Pι>P2> ~>P2r) Note tnat dμ(kί9k2) is the measure on ̂ (1RS) x 5^(RS) defined
by:

J g(kl,k2)dμ(kί,k2)= J gf 2 Σ P2jΦ2j>2 Σ P2j+ιΦ2j-ι)dQf(P)> (4 6)
^KX^Λ R2" \ 7=1 7=0 /

for any bounded continuous gf and one has

l l μ | | ^ £ / Ί I , with H μ l l the total variation of μ . (4.7)

We remark that the subspace 50Ϊ contains a subset of states (cf. [11]).
We shall now show that the ultraviolet cut-off K in αf'κ can be removed on

. We have:

Theorem 4.1. The limit:

l imαf' κ -αf (4.8)

exists on ^0uSCR and defines an application of ^0uSDΐ into 5αm(^(Rs) x ̂ (Rs).
all hv

{« fX. f c 2}(A1,A2)= J P^^ωJP^
Ω x β

•expliΦίω^ω^lε^^^ω^ωj), (4.9)

βJβJ.Δ?(tJ-tf,yJ-yf
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fe Σ ^0zΓ^ι) (St -1, X;) ~ (Am*h2) (s. - t, x,.))}

ί * v

m n

\ i =1 7=1

m n \

2,-t+ Σ Mm(^^)+ Σ jMm(ί7 ,j>A (4.ιo)

where A™, A™, and Δm are the invariant distributions previously defined and d0 means
the time derivative, ocf is a group of transformations on o£?0u$R, i.e.

Moreover for any Fe«^f0uSOΪ and /ι e^Λ(IRs), α^1 is a solution of the Schrόdinger
equation :

-2αjdxjdv(α)sin(-ft 1 (x;
yl R \2

Ui

(4.12)

with initial condition:

h2) = F(hl,h2). (4.13)

Remark. On right hand side of (4.12) the notation ( u f F ) ( h ί , h 2 + otδx) is of course
only symbolic, since d^y^IR'). The interpretation of the notation follows from the
fact that £

Proof. The properties on elements in J2f0u9ft follow easily from those on elements
of the form Ekl k2. We shall now discuss the proof for these elements. From the
support properties of A™, Δ™, and Δm, we have (χκ*zΓ*χJ(0,;c) = 0, where A' stands
for A™, Δ™, and Δm.

Hence :

Σ α/α/%κ*^C*Xκ) (si - sj> χt - *j) = Σ ^J(^A^IK) (sί - sj> *i - Xj) >
i, j i Φ 7

and the same for α. replaced by β. and A™ replaced by Δ™. Moreover χκ*A'*χκ(s, x)
converges pointwise to A'(s,x) outside of the cone |x| = 5. Hence by the Lebesgue
dominated convergence theorem we have that the expression for
{α f

y l κ£ f c i 5 / C 2}(/z1,/z2) of Theorem 3.1 converges as κ;-»oo to the expression given by
the present theorem, which we can express as a Poisson integral with respect to the
measure Pχ^\®P^ using Theorem 2.1. The group property is proven using the

group property of afκ and the fact that ocfF is defined as the lim ocf'KF and ̂ +tF
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by lim α^α^'T, which exist as seen from the fact that af'κ is defined on all

and using the explicit expression for α^G, with G = oc^F (and once more the
support properties of A' and the Lebesgue dominated convergence theorem).

The Schrodinger equation is obtained using the fact that (af'KF) (h19h2) as well

as — (af'KF)(hvh2) are uniformly bounded in κ9 together with the convergence of

both (α^1'κ)(/z1,/z2) and — af'KF(h1,h2) as TC— »oo, the compactness of the support of

/z.'s and their smoothness which allows us to interchange the time derivative and
the limit κ-»oo. The explicit form of the right hand side of (4.12) is obtained using
Theorem 3.1, (3.23) and the fact that E fc ι>k2eJS?0. Π

The next step is to remove the space cut-off A. First we consider the case where
the initial conditions are smooth and of compact support. In this case we can
prove the following theorem.

Theorem 4.2. Let £ be the restriction of the function in J^0u9Jί to @R(^S) x ^R(^s)
Then lim afF = aF exists for all FeS and defines a relativistic flow on $ in the

*Λ = *s + t, for all s,t>0.

Proof. The theorem follows immediately from the fact that the Schrodinger
equation (Theorem 4.1) implies afF(h1,h2) = (x,fF(hί,h2) for all A and A' contain-
ing the support of hί. Π

Remark. It follows from the proof of the theorem that αf satisfies the Schrodinger
equation :

, (4.14)

with initial condition Fkι k2(h19h2\ for any ^1?/z2e^κ(lRs).
The right hand side of (4.14) is equal to PfatFk^k2(h1,h2), where PJ is the

infinitesimal generator of time translations on <^9 given by the trigonometric
interaction. The first term in (4.14) corresponds to the free evolution. The other
generators P* and M*u ((ij) = 1,2,3) of the Poincare group associated with the
same interaction are the same as in the free case [7] whereas M*0ί is given by:

(M*0iF)(h19h2)

-2iλ J dx ldv(oc)xίsm(h1(x)F(h1,h2 + ocδx). (4.15)
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We shall now extend the existence of the infinite volume limit /L|IRS to initial
conditions in the larger class j£?0uSDΪ, under the assumption of small coupling
constant.

Theorem 4.3. The limit

exists on =^0uSOΪ for \λ\<e 2c(t) 2, where c(f) is a positive function of t (which
tends to infinity for t-+ cc ).

Proof. The proof is based on the following observations
i) Formula (4.9) can be looked upon as the grand partition function of the

grand canonical ensemble of a gas of two types of particles α and β with the same
charge distribution dv(α) and interacting in s + 1 dimensions through a two-body
potential iA™ (interaction of two α-particles), iA™ (interaction of two ^-particles)
and izΓ (interaction of an α-particle and a β-particle) respectively, and with a
purely imaginary magnetic field.

ii) The group property for all finite A

α^V = α^+/, for all s , f > 0

olds.
iii) For all k^

on the Ekί k2 holds.
all k^k2e

{α^kifk2}(0,0) = l, for all ί>0. (4.16)

This follows from the Schrδdinger equation.
In addition the proof uses an application of the method of Kirkwood-Salzburg

equations of statistical mechanics, see e.g. [36], along the lines used for ultraviolet
cut-off interactions in [1]. Here we shall indicate how to define the relevant objects
for the proof.

Again we remark that the convergence on arbitrary elements in j£f0u9[R follows
easily from the one on elements of the form Ekι k2 and we discuss the proof for
these elements.

Let Rv

ξ be the Banach vector space of double sequences of functions :

Ψm>n(s1,x1,a1,...,sm,xm^m,t1,y1,β1...tn,yn,βn), (4.17)

m, n^ 1, s , t^O, xί? y.eIRs, α ,/?.eIR, which are bounded measurable with respect to
the measure :

dXdΫdv(A)dv(B) = [] ds^dv^) f] dtjdy^βj), (4.18)
ί=l j=l

and such that there exists a ξ > 0 such that :

^'"(^a^,^,)!, (4.19)
m, n Xi.yj J

is finite, where 3c = (s, x) and y = (t, y).
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We define two projections in Rv

ξ, viz. ΠΛ and Πt on ΨeRv

ξ by:

(ΠΛ Ψ)m> n(X, A,Ϋ,B) = Q, if at least one χ.φA,

or at least one yfiΛ

= Ψm> n(X, A,Ϋ,B), otherwise . (4.20)

(Πt Ψ)m' "(X, A,Ϋ,B) = Q, if at least one sf ̂  t ,

or at least one ί . Ξ> t

= Ψm>n(X,A,Ϋ,B), otherwise, (42i)

where for shortness X (respectively, Ϋ) stands for {x j f = 1 > _ > m (respectively,

{3>Jί= !,...,„)> ^ (respectively, 5) for {αj.= l j ? m (respectively, {j8.}_.'= l s J.
Using these definitions we can rewrite the expression for ( a f E k ί ί k 2 ) (hv h2) given

by formulas (4.9) and (4.10) as:

where

9A9 Ϋ,B)

(/«,») Φ(0, 0)

Π (/>!(*,•, «*)-!) Π (4.22)

r,^o r l s l

'^^dYf\dv(Af)^dv(B')GΛίt(XuX\AuA\Ϋ^Ϋ\B^B'),(4.23)

and

z z "
k Σ «^β

m(^ - ̂  + ̂  Σ ΛMΓσ* - JV) (4.24)
l Z i , J Z / c X J

if all x^j/jEyl and all 5 , ί7 e[0, ί] and zero otherwise. Furthermore

• exp <j - a((d0A
m*k2) (s, x) — (Jm*fe1) (s19 x)) [ , (4.25)

and

D2(3c, α) - exp - - α(30 J
m*h1) (5 - ί, x) - (Zlm*/z2) (s - ί, x))

• exp α((δ0J
m*fc2) (s, x) - (^"HC/C,) (5, x)) . (4.26)
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As an statistical mechanics we can define an operator K on Rv

ξ by :

\l- Σ *ιV^ι-*;H^ Σ βA^(y,-y)
(Zj=2 ^k=2

ί̂  Σ «ιMw(*ι-Λ)+7 Σ αA^'-ίi)

Σ

• Π
j= i

(4.27)

where as previously X' (respectively, Ϋ') stands for {3ζ}ί=1 r (respectively,
{ y f i } i = 1 5) and A' (respectively, Bf) for {<.}ί== x r (respectively, {jg;.}.= x s), and

f

The norm of the operator ΠtKΠt can be readily estimated :

||/7ίK/7ί||^Γ2exp{2ξC(ί)}, (4.28)

where

Sup . (4.29)

Obviously one has

(4.29)

This expression is finite since for a given j; it is the integral of a function bounded
by 2|v|(IR) over a domain which is contained in Vs(t)

(4.30)

This follows from the support properties of Δm, A™, and A™.
The best choice of ξ in view of Eq. (4.28) is

(4.31)

corresponding to the estimate for the norm of ΠtKΠt :

\\ΠtKΠt\\^C(t)2e2. (4.32)

Furthermore the operator K allows us to write an integral equation for RΛ t :

t, (4.33)
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where

Sy = 0, (U)=KU), Sn = l . (4.34)

Equation (4.33) can be solved by the Neumann series provided that:

λ2<C(tΓ2e~2. (4.35)

With these elements the rest of the proof follows the line of [1]. Π
We shall now give a result which shows that, at least for A bounded, an

asymptotics in time to a free evolution holds.

Theorem 4.4. // m>0, for any bounded /lClRs, for λ<λ0, which depends on A, the
limit

lim 0^ = 0^
ί^±oo

exists on JS?0u2R. Moreover with F+tΛ(h19h2) = lim (Ω*Ω^)(hί9h2) and
t-+ + oo

FejS?0u2R, /z1?/z2e^(IRs), we have: a*F+>Λ=U?F+'Λ, where [7° is the free
evolution defined in (3.15). The limit α+F+ '^ is invariant under af.
Proof. In a quite similar way as in the proof of Theorem 4.3 one can estimate the
norm of ΠΛKΠΛ:

\\ΠΛKΠΛ\\^c'(Λ)2e\ (4.36)

where

c'(A) = sup sup j dx') d\v\(o
a> $ yeΛ x IR + Λ * IR + IR

(4.37)

is finite, due to the exponential decrease of Δ™ and Δm for large time. Consequently
for λ<λ0 = c'(A)~1e~1 the Kirkwood-Salzburg equation has a solution. The rest
follows immediately. Π
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