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Abstract. Let G be a compact group of transformation (global symmetry
group) of a manifold E (multidimensional universe) with all orbits of the same
type (one stratum). We study G invariant metrics on E and show that there is
one-to-one correspondence between those metrics and triples (gμv, Aά

μ, haβ),
where gμv is a (pseudo-) Riemannian metric on the space of orbits (space-time),
Aμ is a Yang-Mills field for the gauge group N\H, where N is the normalizer of
the isotropy group H in G, and haβ are certain scalar fields characterizing
geometry of the orbits (internal spaces). The scalar curvature of E is expressed
in terms of the component fields on M. Examples and model building recipes
are also given. The results generalize those of non-abelian Kaluza-Klein
theories to the case where internal spaces are not necessarily group manifolds.

1. Introduction

First special, and later general, theories of relativity invoked a picture of the
universe as being modelled on a four-dimensional space-time manifold. On the
other hand, in order to describe regularities of discrete quantum numbers
characterizing elementary particles, a concept of "internal" (as opposed to
"external", i.e., space-time) symmetry, and with it that of internal space, was
introduced. The idea behind what we call a "multidimensional universe" (denote it
by E) is that external and internal spaces are nothing but two aspects of one
geometrical entity E, and all elementary forces in nature should be but a reflection
of a unique geometry. By some, not yet fully understood, mechanism, certain
configurations of a simple, multidimensional field theory are distinguished, and
give rise to a "spontaneous compactification" of extra dimensions (see [1] and
references therein). This idea is at the root of the so-called "dimensional
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reduction." As a result, the multidimensional universe splits into a four-
dimensional space-time M and a compact internal space S. At the same time, the
original simple field(s) on E split(s) into components which are identified with the
conventional fields on M, like scalars, tensors, Yang-Mills fields (in supergravity,
also spinors), etc. In theories of the Kaluza-Klein type, the "simple theory" is a
multidimensional gravitation, and the "distinguished configurations" are those
Riemannian metrics on E which admit a given compact group G of isometries. The
case where the internal space S is a group manifold itself has been studied in many
papers (see, e.g., [2-8]) and the geometrical structure of this kind of dimensional
reduction is by now well understood. A G-invariant metric gAB splits into a
gravitational field gμv on M, Yang-Mills field Aμ with G as the gauge group, and
scalar fields htj{x) describing the metric in the internal space (these are generali-
zations of Jordan-Thierry-Brans-Dicke scalars (see [4, 6, 7]). Recently, attempts
have been made [9-13] to generalize these results to a case where S is not
necessarily a group manifold, but rather a homogeneous space of the type G/H. No
straightforward generalization of the original Kaluza-Klein idea has, however,
been obtained (in particular, E of [12] is the associated bundle so that it hardly
even makes sense to consider G invariance) and the construction given in the
present paper may be thought of as an alternative to those of [12, 13].
Homogeneous spaces have also been used (see [14] and references therein) to
provide solutions to supergravity theories (where there are matter fields besides
the metric) however, the so-called "Kaluza-Klein ansatz" used in these papers is
not, in general, G invariant.

In the present paper we solve the following general problem: what are the most
general algebraic and geometric properties of an extended universe E under the
only requirement that G (a compact group) be a group of internal (global)
symmetries? In Sect. 2 we show that E can be written locally as the product M x S
with S = G\H, and that a local symmetry group K = N\H arises in a natural way,
N being the normalizer of H in G. In Sect. 3, we characterize all G invariant
metrics on E and show that the local symmetry group K is at the same time the
gauge group; we prove that there is one-to-one correspondence between G
invariant metrics on E and triples (gμv, Aά

μ, haβ), where gμv is a metric on M, Aά

μ are
Yang-Mills fields corresponding to the gauge group K = N\H, and haβ are scalar
fields. We also express the scalar curvature of E in terms of these fields [formulae
(3.5.7) and (3.5.8)]. Examples (see Tables 1 and 2) are given in Sect. 4. We want to
stress the fact that a principal bundle structure, so characteristic in mathematical
descriptions of gauge fields, arises automatically and naturally in the present
approach - the principal bundle emerges as a specific submanifold of the extended
universe E (see Fig. 2).

Besides its physical aspects and motivations this paper contains, uses, or refers
to quite a number of mathematical techniques and results. Most of them are either
standard or are simple exercises in differential geometry. However, we believe that
the main results of Sect. 3 are new. The reader who is not interested in a
"mathematical balast" may get the idea of the present paper by reading the
summaries in Sects. 2.6 and 3.6, and also Sect. 4, where examples and model
building recipes are discussed.
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2. Bundle Structure of the Extended Space-Time

2.1. Bundle Structure of E

Let G be a compact group of transformations of a manifold E. For each ueE, let
G(u) denote the orbit of G through u:

G(u) = {ua\aeG}>

Then G(u) is a compact submanifold of E, called also a fibre or an "internal space."
When u1 and u2 belong to the same orbit, then their isotropy groups ("little
groups"), denoted by HUί and HU2 respectively, are conjugate. But isotropy groups
associated to points in different orbits need not be conjugate - then E decomposes
into "strata." By the "principal orbit theorem" [15, 16] the stratum consisting of
orbits with maximal dimension is an open dense submanifold of E. In our case it is
natural to assume from the very beginning that E, being a model of an extended
space-time, consists of one stratum only, i.e., that all isotropy groups Hu (ueE) are
mutually conjugate. With the above in mind, we state a theorem that we will
comment on and explain later in this section:

Let E be a manifold with a right action of a compact Lie group G, and suppose
that all isotropy groups Hu (ueE) are conjugate to a standard one, say HUo = H. Let
M be the set of all orbits, G\H the coset space of right classes Ha along H, and let N
be the normalizer of H in G. Then M is a manifold and E(M, G\H) is an associated
bundle with base M, fibre G\H and group N\H.

This statement can be found, without proof, in [17, p. 276, Excercise 4.1 ]
(see also [18, Chap. XII] and [19, p. 93]). Because of its importance for us we shall
give some more information about several ingredients of the above result.

2.2. The Normalizer and the Local Symmetry Group

First of all we shall comment on the definition and meaning of JV, the normalizer
of H in G. It is defined as the largest subgroup of G in which H is normal [or
invariant, or distingue (in French)] or, equivalently,

N = {aeG\aH = Ha}.

Since H is normal in N, it is clear that N\H is a group (right and left cosets
coincide). What is relevant for us it is that N\H can be identified with the
automorphism group of the homogeneous space G\H. Here by an automorphism
of G\H we mean an invertible mapping α : G\H^G\H, which commutes with the
right action of G:

α([α]&) = α([α])6,

where [a]=HaeG\H and beG.
To see the relation between N\H and the automorphism group of G\H,

observe that for every neN the mapping (xn: G\H^G\H, defined by

commutes with the right action of G on G\H, and depends on the equivalence class
[n] of n in N\H only. Conversely, given an automorphism α of G\H, let neG be
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N/H G\H

Fig. 1 x M x M

such that a(H) = Hn. Then <x(Ha) = a(H)a = Hna for all aeG. In particular for
a = heH we get Hnh = Hn, i.e., rce N. It follows that α is of the form αn, as above. It
is precisely because of this identification of elements of N\H with automorphism of
G\H that iV|iϊ plays the role of local symmetry group (local gauge group) in our
framework.

23. Construction of an Associated Bundle E(G\H, M)

Let us consider a principle bundle P(N\H,M) with a base M and structure group
N\H. We shall discuss here the geometry involved in the constructions of the
associated bundle E{G\H, M). The procedure described is nothing but a particular
case of the standard construction of an associated bundle from a principal one (see,
e.g., [20, Chap. XVI. 14]).

In the direct product P x G\H, define the following relation

(P,lά])~{p',lar\) o 3[_ή]eN\H so that p '=p[w], [α/] = [ n " 1 ] M ,

where p[n\ is obtained from p by using the right action of \_ri]eN\H on the
principal bundle P, and [n~ι~][a\ = \n~xά\. In other words, JV|H acts on the
typical fibre G\H by automorphisms, those discussed above: [α]=αΛ([α/]). It is
easy to see that the above relation is an equivalence relation. We shall denote an
equivalence class by the symbol p [α]. Let us recall what is the intuitive meaning
of this: writing u = p-[a] means that the "geometrical object" u has "co-ordinate"
[α] in the "frame" p. Of course, u = p [_ά]=(p\_n~1~\)'([n]\_a~]\ so that the group
N\H plays the role of the group of transformations of "frames". The space of
equivalence classes [quotient of (P x G\H) by the equivalence relation] is, by
definition, the associated fibre bundle E = E(M, G\H) with "geometrical objects" u
in the fibre, M in the basis and transition functions valued in N \ H. The situation is
schematically described in Fig. 1.
In a local trivialization determined by a local cross-section σ (gauge), the element p
of P can be represented as p = (x, [n]) (i.e., p = σ(x)[n\\ where xeM and [n]eN\H.
The element ueE can be written as (x,y), where y = [ά]eG\H and u = σ(x) \_ά\.

2.4. Global Action of G on E(G\H, M)

Let us ask what are the transformations β: G\H->G\H of the typical fibre which
pass through the equivalence relation defining E to induce transformations of E
itself. If u = (x, y) and we want to define β(u) as (x, β(y)), we must check that this
definition is gauge independent, i.e., that p-β[a] =p[w" 1 ] j8([n][α]) or /?([«] [α])
= M β ( M ) In other words, the left action of the structure group must commute
with β. Since the structure group is, in general, non-abelian, it is clear that β
cannot be the left multiplication by N\H. But it can well be the right multiplication
by an element of G so that ug = (p [ά])g = (p'[ag']), since we have shown in
Sect. 2.2 that N\H is precisely the set of all transformations of G\H which
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commute with such β — s. The situation is now the following: we have a (non-
principal) fibre bundle E(G\H,M) with structure group N\H, with G acting on E
from the right and operating transitively on each fibre, so that the fibres of E
coincide with the orbits of G. However, this action is not free indeed, if
u = p'[ά]eE, then the isotropy group of u is Hu = a~1 Ha. In particular, all isotropy
subgroups are mutually conjugate. Here and below e denotes the identity of G.

We will now show how P can be identified with a submanifold of E. For each p e P,
let u{p)eE be defined by u{p) = p \_e], i.e., u(p) is the geometrical object uniquely
defined by the requirement that it has "co-ordinates" \_e\ in the "frame" p. It is easy
to see that the mapping p^u(p) from P into E is an embedding, which also satisfies
u(p[n"]) = u(p)'[ri] for all peP, neN. In particular ueE is of the form u = u{p) for
some peP if and only if the isotropy group Hu of u is precisely H.

2.5. Bundle Structure of E (cont.)

Let us summarize the discussion given in Sects. 2.2-2.4: given a compact Lie
group, G and a subgroup HCG, we started with a principal bundle P(N\H,M),
N being the normalizer of H in G, and showed that on the associated bundle
E(G\H,M) the group G operates from the right in a natural way. All isotropy
groups of G in E are mutually conjugate and P can be identified with a subset
(immersed submanifold) of £ on which all isotropy groups are exactly H. With the
above construction in mind, it is now easy to understand why the theorem stated
in Sect. 2.1 holds true. Suppose that E is a manifold with right action of G, and in
such a way that all the isotropy groups Hu are conjugate to a standard one H = HU .
Let M be the space of all orbits, and let P be defined as the set of all ueE such that
HU = H: P={peE\pH = p}. Observe that if peP, aeG, then paeP if and only if
aeN and, since H acts trivially on the points of P, it is the quotient group N\H
which freely acts on the fibres of P. Therefore P has the algebraic structure of the
principal bundle with base M and structure group N\H. It is also clear that E can
be identified with the bundle associated to P via the natural action of N\H on
G\H. Indeed, we have a natural surjection P x G\H-^E given by

(p,[α])ι->p [α]=pα, pePcE, aeG.

Analytically one needs the so-called "slice theorem" [18, Chap. VIII] (see also [21]
for the non-compact case).

The resulting structure is represented in Fig. 2.

2.6. Summary

We shall now summarize the main ideas of this section in plain terms. We started
with an extended space-time E with a fixed, global, compact, internal symmetry
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(classification) group G. The orbits of G are internal spaces of E. They are
homogeneous spaces of G and, under very mild assumptions, one can locally
represent £ as a product M x G\H. The group G operates on E just by right
translations: if p = (x,[j/]) is a point in MxG\H, then a group element aeG
transforms p into (x,\_ya\). Here [y] denotes the right coset [y~\—Hy, yeG. We
have also introduced local transformations (x, [y])-+(x, f(x, [y]) characterized by
the fact that they commute with the global ones. We have shown that every local
transformation is described by a function x-»n(x), where n(x) belong to the group
N\H, N being the normalizer (see the definition in Sect. 2.2) of H in G. In a
particular, well understood, case where the internal space is a group manifold (i.e.,
H = {e} and G\H = G) the global and local symmetry groups happen to be
isomorphic, the first acting on the internal space from the right and the second
from the left. If the internal space is a homogeneous space G\H with a non-trivial
isotropy group H, then the situation becomes more complicated and the resulting
local symmetry group is no longer isomorphic to the global one. Examples are
given in Sect. 4. It will be seen in the next section that the local symmetry group,
identified here as N\H for geometrical reasons, will play the role of a gauge group,
both kinematically and dynamically.

3. Metric and Curvature

3J. Decomposition of &

We first introduce convenient decompositions of the Lie algebra ^ = Lie(G). To
make the discussion simple, both H and G are assumed to be compact, connected
Lie groups, with HCG. Since G is compact, we can choose a bi-invariant
Riemannian metric on G or, equivalently, an AdG invariant p-definite scalar
product < ,̂ ̂  in ^ (if G is simple then « , >̂ is unique up to a multiplication by a
positive constant). Let J^ = Lie (H) and denote by 9* the orthogonal complement
of 2tf in ^. Since <̂ ,̂ > is, in particular, AdH invariant, we get what is called a
reductive pair [22, Vol. II, Chap. X.2]

y. (3.1.1)

It is then possible to identify Sf, endowed with the above linear action of H, with
the vector space tangent to the homogeneous space S=G\H at the origin. For a
given homogeneous space, the above reductive decomposition need not be unique,
however, this non-uniqueness will not cause any trouble in the following.

With Jί = Lie (N) being the Lie algebra of the normalizer JV of H in G, we
decompose Jί into

Jf tf tf (3.1.2)

w h e r e Jf^jTn^ (3.1.3)

is the orthogonal complement of #P in Jί. Again we have a reductive pair
(Adff)(Jf) = Jf, but now, since H is normal in N, we also have [Jf, Jί~\ C Jf, what
implies [Jf, J Γ ] C ^ . Since Jf n J f = 0, we get

0. (3.1.4)
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It is useful at this point to introduce the centralizer (or commutant) of 2tf in ^ :

i F H = { x e ^ | [ x , J f ] = 0 } . (3.1.5)

The centralizer contains, in particular, the centre %?H of Jf:

(3.1.6)

It follows from (3.1.3) and (3.1.4) that JfC^n££H, and it is easy to see (compare
also [23, Sect. 3.2.44, Theorem 2]) that in fact

Jt = 5fn&H. (3.1.7)

In other words Jf is composed of those vectors which are tangent to G\H at the
origin and are invariant under H. (This remark will be important in Sect. 4, when
we shall count the scalar fields.) Actually Jf, being an orthogonal complement
(with respect to a bi-invariant metric) of the ideal Jf, is itself an ideal and,
a fortiori, Lie subalgebra of Jf. We can therefore identify, Jf with the Lie algebra
Lie (N\H), and for obvious notational reasons we call

K = N\H. (3.1.8)

Finally, we observe that

(3.1.9)

Indeed, it follows from (3.1.1)—(3.1.7) that Jf + ̂ C ^ , so that it is enough to
show that £^HC^ + ̂ H. Let xe^H and decompose x = xH + xs with x H eJ f and
xse £f. Then, for every ye Jf, we have [xH, y] = [x, y] - [xs, y], where the first term
vanishes (since xe££H\ and, by (3.1.1), the second term is in <9P. On the other hand,
since Jf is an algebra, [xH, y] is in <#, and so [x#,.y]eJf 0 ^ = 0. It follows that
xHe^H a n ( ^ therefore xs = x — xHe6fn3fH = JΓ. In a particular case, if H is
semisimple [i.e., if H contains no direct U(l) factors] then the Lie algebras of
K = N\H and of the centralizer of H are isomorphic.

Finally, we introduce if, the orthogonal complement of Jf in ^ :

^. (3.1.10)

In particular,

J2\ (3.1.11)

and it should be noticed [compare also the discussion in 3.3 Adz)] that, in fact,
if is orthogonal to JΓ with respect to any AάH invariant scalar product on Sf.
This follows from the fact, that according to (3.1.7), the representation of H on if
does not contain the trivial representation.

In practice, in particular in model-building as discussed in Sect. 4, one often
starts with a direct product H K of two subgroups H and K of G and the question
arises whether H K is the normalizer N of H in G or not. From Eqs. (3.1.7) and
(3.1.2) one can deduce the following criterion: Λ^ = J f + JT, [Jf,Jf]=O, is the
normalizer of Jf in ^ if and only if

= 0, (3.1.12)
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where ££ is defined as the orthogonal complement of Jί in ^. In particular, if the
present representation of HK on JS? is faithful and irreducible, then
Jί = Lie(H K) is the normalizer of ^f in ^ the normalizer JV of H in G is in that
case equal to HK modulo a discrete group (indeed N is very often not connected).

The whole story can be visualized and summarized as follows:

Jf

\Jsέ, CfC J C tΛ

Fig. 3

ΛΓ is locally a direct product of two
normal subgroups: N ^ HK (it may be
disconnected)

centralizer of ^ in
centre of Jf

3.2. Adapted Basis

We fix once and for all a basis Tt in 0, with [η,7}] = Cj/Γk, adapted to the
decompositions

^ = J f 0 ^ and ^ = JΓ®if, (3.2.1)

and introduce notation

7;. = {ΓseJf,TαeS} and Tα = {T,eJf, Γ a € ^ } , (3.2.2)

distinguishing between basis vectors in the different components of'S. For each
asG, let Λ(άf} denote the matrix of the adjoint representation of G:

(Ada)Ti = aTia'1=Λ(a)iTj. (3.2.3)

It should be noticed that for nsN the matrix Λ(n) has the following structure

Λ(n) =
Λ%n)

0

0

Λ'M
(3.2.4)

Indeed, if neN, then nHn 1=H and, infinitesimally nTάn
 1 =Λ(n)lTβ, in particu-

lar Λ(n)£=0.
This implies that the submatrices

(3.2.5)

form a representation of N in £f = JΓ + JSf.
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3.3. Vertical Moving Frame

Let ε be the fundamental vector fields on E corresponding to infinitesimal
transformations of E generated by Tt:

ueE. (3.3.1)

(These vectors are Killing vector fields of every G invariant metric.) Since G acts on
E from the right, we have

ueE. (3.3.2)

It should be noticed that, at any given ueE, the family ε.(w) is overcomplete in the
vertical tangent space at u. Something special happens, however, on the sub-
manifold PcE: the vector fields εά, inclueded in the family {εj, vanish on P,
whereas the εα — s are linearly independent at every point of P. (We remind the
reader that the principal bundle P was defined in Sect. 2.5 as the set of all points
invariant under H.)

Fig. 4

Now, since the vector fields εα are linearly independent on P, they are also
independent in some neighbourhood U of P in E. In particular, the commutator of
two vertical fields being again vertical, we have

[εa,εβ](u)—fjβ(u)εγ(u), ueU, (3.3.3)

where the fjβ are the structure functions of the vertical moving frame εα notice
that they depend generally on the point u at which they are calculated. However,
they are constant on P :

fyβ(p) = dβ for peP. (3.3.4)

Notice also that the property for εα to constitute a moving frame in the vertical
space fails if one goes too far from P : the vectors εα may become linearly
dependent there.

From the Definition (3.3.1), and taking into account that εά(z) = 0 for zeP, we
get the relation

/ x n/ λβ- / x " Ό , neN, (3.3.5)

which will be used in (3.4.4).
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For calculation purposes, one also needs the expression of εjjjly) in terms of
the structure constants Ck

tj of the group G. Indeed, when one wants to compute
geometrical quantities [such as, e.g., scalar curvature of a homogeneous space
(3.5.8)], one performs the calculation at a point zeP, but what is needed are the
values of the structure functions and their derivatives in the directions transversal
to P. To obtain such a formula we first observe that, from (3.3.2) and (3.3.3), we

y p A (3.3.6)

Then, taking the commutator of both sides with εα and using (3.3.4), we get

δ S δ (3.3.7)

In particular, owing to (3.1.4), we get £ά(fβγ)(p) = 0 in agreement with (3.3.4).

3.4. Characterization of G Invariant Metrics on E

Let g now be a G invariant metric on E. We are going to show that it determines
and is determined by

i) a G invariant metric hx on every fibre Ex of E
ii) a G invariant horizontal distribution (Zu)ueE on E(G\H, M) or, equivalently,

a principal connection in P(N\H,M);
iii) a metric γ on M.
A given manifold may not always admit a non-degenerate pseudo-Riemannian

metric of given signature. In the following we shall always assume that problems of
this type do not arise.

In subparagraphs Ad i)-Ad iii) we prove the direct proposition, while in Ad iv)
we will show the converse.

Ad i) g being a metric on E, we know, a fortiori, how to compute the scalar
product of two vertical vectors. Since g is G invariant, we obtain a G invariant
metric hx on every fibre Ex of E.

Notice that a co-ordinate representation of hx is obtained as follows: choose a
local cross-section (gauge) of P, σ: M-^P - such a section "marks the origin" on
each fibre- then define haβ{x) = gaβ(σ(x)\ where gaβ{p) = gp(εu(p),εβ(p))9 peP, are
numerical functions on P. The matrix h = {hΛβ), being associated with a G
invariant metric on a space isomorphic to G\H is automatically AάH invariant
[22, Vol. II, Chap. X, Proposition 3.1], and therefore satisfies the constraints.

lR(α)ΓlhIR(α) = lh, aeH, (3.4.1)

where IR(α), aeHcN, is given by (3.2.5).
According to (3.4.1) the matrix lh(x) defines an AάH invariant scalar product

in £f. In (3.1.11) we have defined a splitting of £f into the direct sum of two
subspaces JΓ and J£f, using an auxiliary bi-invariant metric on G. We now realize
that C/f and ££ are also orthogonal with respect to the scalar product induced by
haβ(x). Indeed, JΓ and i f carry disjoint representations of H and therefore they are
orthogonal with respect to every AdH invariant scalar product (see, e.g., [24,
Chap. VIII, Sect. 3]) fh- 0

). (3.4.2,
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Owing to the formulae (3.2.5) and (3.1.4), we also have

so that the constraints (3.4.1) are effective on hab only.
The field x-+hx of G invariant metrics on fibres of E can be identified with a

cross-section of a bundle associated to P. Actually, by (3.3.5) we find

β ήa.f.(p), neN, (3.4.4)

and

ξ,fi.(p), heH, (3.4.5)

so that the numerical functions gaβ(z) on P can indeed be identified with sections of
an appropriate associated bundle [22, Vol. I, Chap. II, Example 5.2]. The relations
(3.4.4) and (3.4.5) define the type of transformations of these scalar fields under
N\H gauge transformations.

Notice that it is enough to know the functions hΛβ(x) = gΛβ(σ(x)), where
σ: M-+P is a local gauge. Using G invariance and the constraints (3.4.1), haβ can
be then unambiguously propagated all over the bundle E.

Ad ii) For every ueE, let Vu denote the internal, or vertical, tangent space, i.e.,
subspace of TU(E) consisting of all vectors tangent to the fibre at u. Let Zu be the
orthogonal complement of Vu in TU(E) with respect to our given G invariant
metric #. Since g is G invariant, we have (Zu)a = Zua, aeG, i.e., we have a G
invariant horizontal distribution on E. In order to show that the distribution
determines a principal connection, we must prove that, at peP, Zp is tangent to P.
This follows by observing that Zp is orthogonal to the vectors εa(p) which span the
orthogonal complement to P at p. Now, (Zp)peP is an N, and therefore also an
N\H invariant horizontal distribution on P, i.e., a principal connection [22, Vol. I,
Chap. I I I ] .

Ad iii) The scalar product yx(v, w) of two vectors, tangent to M at a point x, is
obtained as follows: choose an arbitrary point u in the orbit labelled by x, and let
v* and w* be the vectors in Zu which project onto v and w respectively. Then define
yjy, w) = gM(v*, w*). The result is independent of the choice u on the orbit because
of G invariance of the metric g.

Ad iv) Conversely, it is easy to see that given a metric γ on M, principal
connection (Zp)peP, and G invariant metrics hx on the fibres of E, one constructs a
G invariant metric on E. Indeed, given ξ,ηeTuE, let peP be such that u = pa for
some ae G, and let π(ξ) and π(η) denote the projections of ξ and η on M. Denote by
ξ* and η* the horizontal lifts of π(ξ) and π(η) to Zp. Then the vectors ξ- £*a and
η — η*a are vertical, and the scalar product of ξ and η in E can be defined as

gu(ξ, n)=y>(& <n))+K(ξ - ξ*a, η~n*a). (3.4.6)

3.5. Curvature

Let xμ be a co-ordinate system on M, and let β̂  be the horizontal lift of the vector
fields dμ from M to E. The vectors eA = {eμ, εα) then form a basis at every point
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ueU, where U is an appropriate neighbourhood of P. By their very definition the
vector fields eμ are orthogonal to εα, and the metric takes the form

_(gμM o
[ 0, g^χ,

where (x,y)eM xG\H is a local product representation of £ in a given gauge
σ: M->P. For p = (x,σ(x) = ̂ )eP, the connection form can be written

ίdg with Aμ{x) = Aά

μ{x)Tά,

and the horizontal lift eμ(p) can be written

^(P) = ( ^ p - 4 ( x , ^ t o ) , (3.5.2)

where

^μtetfHtf"1^*^ a n d ^μ(*>0)=4!(*Λ.
Therefore the inverse metric in P can be written as

g ~ i = / v ( χ ) ( ^ _ ̂  g)eά(g))®(dv - Ah

v(x, g)εh(g)) + ήfl*(x, g)(εΔ(g)®εh{g)).

It is enlightening - although unnecessary - to express g~ι in P in terms of the
vector fields eά(g) = g~ιεά(g)g (which are only defined through the choice of a
gauge, and satisfy \βά,e{\{g) = Qi). These vector fields eά can be thought of as right
invariant vector fields in the copy of K = N\H above x. Then one obtains on P

Q~'= 7μv(x)(dμ - A%x)eά{g))®{dv - Ah

v(x)eh(g)) + hά\x)(eά(g)®eh{g)).

This writing clearly exhibits the G invariance (but destroys the explicit gauge
invariance).

The commutation relations of the basis eA are

(3.5.3)

(3.5.4)

with

(3-5.6)

where Fa

μv are the components of the curvature two-form of the connection Dμ.
Information about the structure functions fjβ on P is given by (3.3.4) and (3.3.7).
These are the necessary ingredients for calculation of the scalar curvature JR of the
Levi-Civita connection of gAB. Taking also into account the fact that εα are Killing
vector fields for gaβ, the result is

R(E) = R(M) + R(G\H) - \Fά

μvF^ - \hΛβh?\D μhaγD"hβδ

+ DμhaβD"hγδ) - Vμ{h«βDμhaβ). (3.5.7)

Here R(M) is the scalar curvature of the Levi-Civita connection Vμ of gμv, Dμ and
Fa

μv are, respectively, the covariant derivative and the curvature of the principal
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connection Aa

μ, and R(G\H) is given by

^ f i 1 n f i f t β . Λ - σ a t σ y l l . ) . (3.5.8)
The indices μ, v are lowered with the metric gμv, while the indices α, β (respectively
α, b) are lowered with the help of the matrix hαβ (respectively hαb) given by (3.4.2).
When G is unimodular (in particular when G is compact), the last term in (3.5.8)
vanishes. If H is trivial (H = {e}\ the third term of (3.5.8) vanishes and if G\H is a
symmetric space ( [ ^ , ^ ] CJΊf), the first two terms of (3.5.8) vanish. The last term in
(3.5.7) gives rise to a total derivative in the Lagrangian R ]/g{M) and can be
neglected. While varying this Lagrangian the constraints (3.4.1) are to be taken
into account.

Expression (3.5.4) agrees with the scalar curvature given in [4], where the
group case is treated (H trivial) although it is not written in the same way
however, we believe that there is an erroneous sign inside the kinetic term of the
scalar fields in [13].

3.6. Summary

We summarize the results given in this section. We have considered an extended
space-time E having a local product structure E^M x G\H, with global symmetry
group G acting on E from the right. We have shown that there is one-to-one
correspondence between G invariant Riemannian metrics gAB on E and triples
(gμv, Aa

μ, haβ), where gμv is a Riemannian metric on M, Aa

μ are gauge potentials
corresponding to the local symmetry group N\H, and haβ are certain scalar fields
determining an AάH invariant metric on @\JΊf. The curvature R(E) of the metric
gAB splits into

a) R(M) - the curvature of space-time metric gμv,
b) R(G\H) - the curvature of the G invariant metric on G\H which gives the

potential term for scalars haβ,
c) Yang-Mills Lagrangian of Aά

μ,
d) kinetic term for the scalars haβ,

[see the formulae (3.5.7) and (3.5.8)]. When varying the scalars haβ, the constraints
(3.4.1) have to be taken into account. To make the discussion given in this paper as
simple as possible, we have considered Riemannian metrics instead of vielbeins. In
many cases, especially when spinors are taken into account, the vielbein formalism
is a necessity. In such a case we would have h(x) = δaβψ

cc(x)(g)ψβ(x), with ψa(x) being
the soldering forms (vielbein) on the internal space at x. Taking into account the
fact that εa can be thought of as an orthogonal basis on G\H with respect to a fixed
metric < ,̂ ̂ >, induced by a bi-invariant metric on G, it is natural to write tpα(x)
= θa(x) + φa(x), where θa are the duals ofεα. The {ψa} constitute a set of
s = dim(G\/f) one-forms, orthogonal with respect to h, and their deviations φa play
the role of Higgs fields.

4. Comments and Examples

4.1. Counting the Number of Scalar Fields

The set of all G invariant metrics which can be defined on a given homogeneous
space S = G\H is itself a (connected) manifold, which we shall call R(G;S). The
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reader should be aware of the fact that a given manifold S may admit several
homogeneous structures [for example, the homogeneous spaces SO(8)/SO(7),
SU(4)/SU(3), Spin7/G2, USp(4)/USp(2) are all diffeomorphic to the standard
seven-sphere SΊ~] therefore we stress the fact that, in the following, we will
consider a manifold S with a given homogeneous structure G\H, and we shall
consider those metrics on S which are invariant with respect to the action of G
on S. Both G and H are assumed to be compact and connected.

It is well known [22] that G invariant metrics on G\H are in one-to-one
correspondence with AdH invariant bilinear symmetric forms on the tangent
space y at the origin of S = G\H. Indeed, owing to the transitivity of G action, one
can transport such a scalar product from the origin to any point of S, and the
transport is unambiguous because of the assumed AάH in variance. In order to
find the dimension d of the manifold R(G, S), one has therefore to decompose the
representation AdH on the vector space £f into irreducible ones:

( ^ ® , (4.1.1)

where the index ί runs over inequivalent irreducible representations of H on Vt,
and r is the multiplicity with which Vt occurs in S. Since the dimension d of R(G S)
is equal to the dimension of the space of symmetric operators on 9 commuting
with the representation AdH, it follows that

^ Σ ^ (4-1.2)

From the formula (3.1.7) it follows that the dimension k of the gauge group K
coincides with r0, where i = 0 denotes the trivial representation of H

r0. (4.1.3)

It is sometimes natural to restrict the attention to G invariant metrics on S with a
fixed volume element. We shall denote by d0 the dimension of the manifold of
conformal equivalence classes of G invariant metrics on G\H (do = d—l).

In order to find out the decomposition (4.1.1), one can use tables [25] - in
practice one looks at the branching rule of AdG into N = HK. However, one has
to remember that what we need are decompositions into real-irreducible repre-
sentations, while the tables (and most papers on the subject) give the branching
rules in terms of compfex-irreducible ones. Special care has to be taken if H or K is
one of the groups SU(w), Spin(4rc + 2) or E6. Indeed, these groups admit some
representations (ρ) which are not self-conjugate. In such cases ρ and ρ will appear
simultaneously in the reduction of the adjoint representation of G, and one has to
collect together such pairs to build jR-irreducible representations.

4.2. A Class of Almost Trivial Examples

a) S = G/{e}, i. e., H = {e}. Now S itself is a group, and the number of scalars is
the number of right invariant metrics on G. The isotropy group H = {e} is trivial
and its irreducible representations are one-dimensional. We have £p = (g = J^ = Jf
and J"f = JSf = 0. The number of gauge potentials (i.e., the dimension of the gauge
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group) is k = g = dim(G). The number of scalars is d — g(g+l)/2. In that case
d0=dϊmSL(g)/SO(g).

b) G = GίxGv H = dmgG = {(a,a)\aeGJ. The homogeneous space S = G\H
can be naturally identified with Gv the action of G on S being given by x->α~ 1χh,
(a,b)eG1 x G r In particular H acts on S by x-^a~ιxa, so that the number of
scalars is equal to the number of bi-invariant metrics on G1. This can be
determined by decomposing the adjoint representation of G into irreducible
representations and applying the formula (4.1.2). The gauge group K = N\H is
easily seen to be isomorphic to the centre of Gv In particular if Gί is simple, then
d=ί and fc = 0.

c) S = G\H is an irreducible symmetric space. In that case we have a reductive
decomposition (g = 3tf? + <9? with [ 5 ^ ^ ] C ^ , and the adjoint representation of
Ad H on £f is irreducible. It follows that Jf = 0 and Sf = S£,so that the gauge
group is at most discrete (7c = 0) and only one scalar field is present (d=l). All
irreducible symmetric spaces have been thoroughly studied and classified [26].
Example: SΊ = SO(8)\SO(7) is a symmetric space admitting, up to a scale, only one
SO(8) invariant metric.

d) S = G\H is an isotropy-irreducible homogeneous space. The cases discussed
in c) fall into this category but there are many isotropy-irreducible homogeneous
spaces which are not symmetric. They are classified in [27]. Here again d= 1 and
N\H are discrete. Example: S7 = Spin7\G2 is a simply connected isotropy-
irreducible, but non-symmetric space. It admits, up to a scale, only one Spin 7
invariant metric (n.b. the same as the one in b) [28]).

Another example of this type: G = Spin8, H = SU(3)/Z3, S = G\H is isotropy
irreducible (not symmetric) with N^H and a discrete gauge group K. The
decomposition of AdG into real irreducible representations of H reads:
28 = 8Θ[10 + ΪU]. Notice (see the end remark of Sect. 4.1) that 10 + Ϊ0 is to be
understood as R-irreducible and therefore the number of scalars (i.e., Spin8
invariant metrics on S) is d = 1 (and not 1 +1). The 8 in the decomposition is of
course Jf7 itself.

e) S = G\H is normal space. Any metric on S which is induced by a bi-invariant
metric on G is G-invariant. Such metrics on S are called normal. In a sense normal
metrics are the "most natural" G-invariant metrics on S. A homogeneous space
S = G\H is called normal if every G invariant metric on S is normal. Notice that
isotropy irreducible spaces are normal, but they are not the only spaces of normal
type [29].

4.2. Model Building

To build a model one has to choose a global group G together with two subgroups
H and K so that N = Hx K is the normalizer of H in G. Then S = G\H is the
internal space and K = N\H is the gauge group. We can notice that S itself admits
a principal bundle structure with basis L = G\N and structure group K = N\ H [18,
Chap. XII] schematically.

5=G\H

Fig. 5 L=G\N
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Table 1. Simply connected irreducible symmetric spaces L = G\N, where N is not a simple Lie
group. In column J?\ the real irreducible representation Ad(/V) on & is expressed in terms of reducible
complex representations. Decompositions not appearing in this column should be computed for given
values of p, q (or n)

N Remarks se

SU(4)

SO(2n)

Eη

EΊ

SO(4)

SO(p) xSO(ςf)
SO(4) xSO(g)
O(n)

USp(2p)xUSp(2<2)
SU(6) xSU(2)
so(io)χυd)
SO(12) xSU(2)

3 0 3

EΊ xSU(2)
USp(6) xSU(2)
SO(4) (2 cases)

2002
4501+(_l_6+ί6)01-
3202 + 3202
2701+2701
5602
1402
402

In this table, USp(2n) denotes υSp(2n,<Γ) = (7(π, H) and S(U(p) xU(g)) = (U(p) xU(g))nSU(p + g).
Notice the following local isomorphism SO(4)~SU(2) xSU(2) S(U/; xU^)~SU(p) xSV(q) xU(l)

Table 2. Same as in 1 but L — G\N are simply connected irreducible and isotropy-irreducible (but not
symmetric) spaces where N is not a simple Lie group

G N Remarks .¥

Sυ(pqf)/ZIH
{SU(p)/Zp}x{SU(i)/Zq}

F 4

F 4

EJZ3

3

EΊ/Z2

E-,/Z2

EΊ/Z2

£ 8

E*

SO(3)xG2

{SU(3) xSU(3)}/Z3

{SU(3)/Z3} xG2

SU(3) xSU(3)xSU(3)

Z3XZ3

{USp(6)/Z2} xG2

SO(3)xF4

(SU(3) xSU(6)}/Z6

G 2 x F 4

{SU(3)x£6}/Z3

m = l.c. m(p. q)
5 0 7

306 x306
8014

30303+30303

14014
3026
3015 + 3015
14052
3027 + 3027

Given //" and K it is natural to restrict oneself to those cases where the

representation of N = HK on ^jJί is faithful and irreducible. As it was

mentioned in Sect. 3.1, N is then, modulo a discrete group, the normalizer of H

in G. Symmetric irreducible spaces are listed in [26, 30] and the non-symmetric

ones can be found in [27]. When one goes through these lists one realizes that Â  is

often a simple Lie group. In such a case either H = N (in which case the gauge

group K is trivial) or H = {e} (modulo discrete groups), so that S is a group

manifold itself, S = N = K = G. The G\N simply connected with non-simple N are

very rare and are all listed in Tables 1 and 2. Table 1 is extracted from [30] and
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Table 3. In order to simplify the reading of Tables 1 and 2. Table 3 recalls the usual Cartan classifi-
cation of Lie groups

G Dimension Centre Complex extension

Γ) m(m + 2) Z H I + 1

B H 1 =Spin(2m+l.R) m(2m + l) Z 2 Spin(2m + 1 . <Γ)
Cm = V{m. H) m(2m+l) Z 2 Sp(2m, C)
D;/1=:spin(2m,IR.) m(2m —1) Z 4 i f m = 2/+1 Spin(2m. C)

G2 14 1
F 4 52 1
Eb 78 Z 3

£ 7 133 Z 2

E 8 248 1

G: simple, compact, simply connected real Lie group.
The usual isomorphisms are:

Usual notations are:
U(m, 1H) = USp(2m. <Γ) = Sp(2m, <Γ) n SU(2m, <Γ).
Notice that Spin(rc) is the two-fold covering of SO{n)

Table 2 is extracted from [27]. We also give the reduction χ (over the reals) of
Ad G with respect to N = H K. Examples with reducible representations of N on 5£
can be obtained by taking products of irreducible ones. Table 3, recalling the usual
Cartan classification, is also given in order to ease the reading of Tables 1 and 2.

Let us now analyze in some detail several cases from the tables.
a) G - £ 8 , N = (E6 x SU(3))/Z3, H = E6.
S = G\H is of dimension 170, L = G\N is isotropy irreducible but not sym-

metric. The connected component of the identity of the gauge group is K = N\H
= SU(3)/Z3. The reduction of AdG with respect to real irreducible representations
oίN = H Kis _

[248] = [78® 1] + [1 ®8] + [27®3 + 27®3] .

The reduction of the subspace £f = K + if with respect to H is

The dimension of the space of G invariant metrics on S is therefore

Ί 8 x 9 3 x 4 ^
d= — + — = 42.

b) G = SO(10), N = SU(5) x U(l), H = U(l).
iS = G\H is of dimension 20, L = G\N is a Hermitian symmetric space. The

gauge group is SU(5), and the reduction of AdG with respect to N = H K reads

The reduction of £f with respect to H is
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(Observe that in the real domain an Abelian group may have two-dimensional
irreducible representations.) Therefore

d = 24x25 + 10x11 ^

c) G = υ{q +1, H), N = U(q, H) x SU(2), H = Ufa, H) (= USp(2^, C)).
S = G\H = S4rq + 3 (spheres), L = G\N = MPq is a quaternionic projective space

(G\N is symmetric). The gauge group is SU(2). The reduction of AdG with respect
to H - K reads

and the reduction of 9* with respect to H is

Therefore ^ 3 χ 4 l χ 2 ^

2 + 2

Notice that for q = ί (U(2, H) ̂  SO(5)) we obtain the SU(2) foliation of S7 over
H P 1 ^ 4 , i.e., the usual k=ί instanton bundle [31, 32].

d) G = SU(4), N = SU(3) x U(l), H = SU(3).
S = G\H = S\ L = SU(4)\SU(3)xU(l) is an irreducible Hermitian symmetric

space. The gauge group is U(l) and the reduction of AdG with respect to HK is

The //-reduction of £f reads,

and therefore

4.3. Comments

Here we collect various comments, remarks and information which are not used in
the present paper but are closely related to the subject:

On the Sign of Scalar Curvature r in the Internal Space S. If S is a compact, non-
Abelian group G then, according to [33]:

there exist right invariant metrics on S so that r<0, r = 0, r>0;
for a bi-invariant metric on G, r is positive.
If S is a homogeneous space G\H with G compact non- Abelian then, according

to [34]:
if S is of normal type, then every G invariant metric on S has r > 0
if S is not normal, then there exist G invariant metrics on S with r <0, r = 0, and

r>0.

On the (Unjboundedness of the Scalar Curvature of the Internal Space. If the scalar
curvature of E is considered as a possible Lagrangian then, writing formally
"Lagrangian = kinetic term — potential," it is clear that the scalar curvature r(x) of
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the internal space at x is to be interpreted as "minus the potential." It is natural to
freeze the volume of the internal space and to allow only for squashing
deformations of S. The space of all G invariant metrics on S with a fixed volume is
denoted by R0(G S), and has the dimension do = d—l. Except in very special cases
[for example G = SO(3) or G = SL(2,R) non-compact] the scalar curvature r
considered as a function on Ro is still unbounded from above [35]. For
homogeneous spaces little is known, see however [36]. An interesting possibility is
to allow for solvable (non-compact) groups, in which case r as a function on JR0 is
always non-positive [35] (Sect. 6) (see also Ref. [6] for a discussion of "flat"
groups).

On the Critical Points of the Scalar Curvature in S. Consider the space of
Riemannian metrics of a given fixed volume form dv on a compact manifold S. It is
known [37] that the critical points of the functional

are precisely the Einstein metrics on S. If S = G\H is a homogeneous space, then
r\_g~\ is constant on S and A\_g] = r[g~\ Vo. It is shown in [35] that every compact
simple Lie group G, except for SO(3) and possibly G2 and USp(4n + 2) admits at
least two conformally inequivalent right invariant Einstein metrics. Notice that
these critical points are usually saddle points of the functional A on Ro, and not
always local extrema. The results of [35] have been extended to a class of
homogeneous spaces in [38]. A classification of homogeneous spaces admitting
Einstein metrics and the structure of moduli of such metrics is a difficult problem,
still unsolved. For a recent account see [39,40]. (Notice that an isotropy
irreducible homogeneous space is always an Einstein space with respect to its
unique invariant metric [27].) It is clear that these problems are relevant for a
semi-classical approximation of a quantum theory containing the scalars haβ.
Notice that making an expansion of haβ around some non-trivial critical point
(Einstein metric on S) amounts to give a "non-zero expectation value" to the Higgs
fields Φa(x) so that, because of the minimal coupling of the gauge fields of N\H to
the scalars, we have a spontaneous symmetry breaking and some of the gauge
fields may acquire masses.

The Case when L is an Irreducible Symmetric Space. The scalar curvature R(G\H)
can be computed using (3.5.8), but it can be also obtained via the standard Kaluza-
Klein construction applied to S considered as a principal bundle over L with

structure group K (Fig. 5). If L is isotropy irreducible, the 1H——^—-j parameter

family of G invariant metrics on S is given by

where — ηtj is the Killing form on G. In particular, when L = G\N is symmetric,
μ2 = l and ψά

ά=tδά

ά, then (3.5.7) gives
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where R(L) = 1/2, R(K) = ck/At2 and C£

ab can be considered as the curvature of the
canonical connection on S. In the above formula k = dimK, / = dimL and c is
defined by — ηά*b = c~1x(the Killing form of K) or, equivalently
c = index(Adi^)/index(Ad(j). Notice that by replacing haβ by (t2)~k/shaβ, s = dimS,
we obtain a one-parameter family of metrics with a fixed volume, the scalar
curvature being given by

In particular for 5 7 = USp(4)\SU(2), we get, using c = 2/3

R(S7;ή = ι

R(S7;t)=-^Γ15n(t2-2)(t2-2/5).

The condition R = 0 is a necessary condition for obtaining an Einstein metric. The
two Einstein metrics on SΊ corresponding to t2 = 2 and t2 = 2/5 have been found in
[38] by computing the Ricci tensor. Notice that t2 = 2 is the SO(8) invariant metric
and t2 = 2/5 has symmetry USp(4) x SU(2). Notice finally that t2 = l~ the normal
metric on USp(4)\SU(2) - is not Einstein [which should not be surprising since
USp(4)\SU(2) is not isotropy irreducible]. The scalar curvature R(SΊ;t) as a
function of t is given in Fig. 6. The t2 = 2/5 Einstein metric on SΊ have recently
been used for providing a new vacuum for d=ll supergravitity [41].

RU7, n Γ

0 2/5

Fig. 6

Spίnors. Introducing spinor fields in the extended space-time E is an obvious
necessity (and can be achieved, for example, by replacing multidimensional
gravitation by supergravity). By studying the Dirac equation on E, one would be
led naturally to a system of spinor fields coupled to gauge fields and to the scalar
fields. To make a link with the previous comment, notice that zero modes of the
Dirac operator on the typical compact internal space S (endowed with a G
invariant metric) exist only if the scalar curvature in negative.
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