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Abstract. In the paper we study a class of lattice, covariant Laplace operators
with external gauge fields. We prove that these operators are positive and that
their Green's functions decay exponentially. They also have regularity proper-
ties similar to continuous space Green's functions. All the bounds are uniform
in the lattice spacing.

1. Introduction. Formulations of Theorems

In this paper we prove some properties of Green's functions for difference Laplace
operators. They imply all the properties of Green's functions (propagators) and
Gaussian actions used in the papers [1-3], thereby completing the proof of
ultraviolet stability of (Higgs)2 3 models. But the range of applicability of these
properties is much wider and a need of them appears in many mathematical
problems of statistical physics and quantum field theory. In fact, the mathematical
estimates have an intrinsic interest of their own, so we present them in a self
contained paper.

The properties of Green's functions we are interested in are regularity properties
and exponential decay. The difference Laplace operators are lattice approxi-
mations to second order elliptic differential operators, so the regularity properties
of lattice Green's functions are similar to the properties of continuous space
Green's functions. For example, if G is a lattice Green's function, then ||G/||2,
||3μG/||2, ||^9vG/||2^c||/||2, where dμ is a difference derivative and || ||2 denotes
ZΛnorm on the lattice. Similar estimates hold for other norms, and we are
especially interested in Holder norms. Exponential decay is interpreted in physics
as the existence of an "effective mass". In mathematical terms this means that there
is a strictly positive lower bound for the inverse Green's operators. The simplest
example is the operator — A + ra2. A Green's function Cm2 = ( — A -fm2)"1 for this
operator, on continuous space and on a lattice, satisfies a bound of the form
\Cm2(x,y)\^0(l)\x — y\~d + 2e~m\x~y\. We are interested in proving similar bounds,
or bounds derived from these, for more general operators.
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Let us formulate some basic definitions. We consider operators on subsets of
the lattice ηZd, η = L~k. Here L is a small positive integer > 1, e.g. L = 2 or 3, and fc
is an arbitrary positive integer. Another common case is to consider operators on
subsets of a torus Tη which we identify with a rectangular parallelepiped in ηZd

with periodic conditions. The lattice ηZd is divided into unit cubes called blocks
and parametrized by points y of the unit lattice Zd :

yμ^xμ<yμ + l,μ=l...,d}, yeZd. (1.1)

We consider also a second division of ηZd into cubes of size M called big blocks.
They are parametrized by points of the lattice MZd and defined in the same way as
unit blocks with M instead of 1 in (1.1). Here M is a large positive integer defined
later in this paper. We consider subsets Ω which are unions of big blocks. In order
to define the class of Laplace operators, the so-called co variant Laplace operators,
we have to introduce a notion of vector fields. These are real-valued functions
defined on pairs <x, x'> of nearest neighbour points of the lattice, called bonds. We
identify them with vector- valued functions defined on points of the lattice by the
identity A<XfX+ηe ^^(x), where eμ is a unit vector of μth axis. The operators we
are going to define depend on A through the function

U(A) = eqeηA, q is an antisymmetric N x N matrix, where e is a real parameter .
(1.2)

Now the co variant Laplace operator — Δn^N

Ω on a domain Ω with Neumann
boundary conditions on dΩ is given by the following quadratic form defined on
functions φ:Ω^RN

bcΩ bcΩ

where the summation is over the set of all bonds b = (b_,b+y with end-points
b_,b+ in Ω.

Next let us define some projection operators in the space of functions φ. At first
we define a covariant averaging operator

(Qk(A)Φ)(y)= Σ 1dU(A(I*tyW(X), yeZd. (1.4)
xeBk(y)

Here Γ^, xεBk(y\ are oriented contours in Bk(y) connecting the initial point y
with a final point x. For an arbitrary contour Γ in the lattice ηZd (considered as a
sum of bonds) we define A(Γ) = Σ Ab, where orientations of the bonds b agree

bcr
with orientation of the contour Γ. The projection operator Pk(A) is given by

Pk(A) = Q*(A)Qk(A). (1.5)

Our fundamental Green's function is a kernel of the operator

l , (1.6)

where m2 g:0 and a is a positive constant close to 1. We consider all these operators
under the assumption that the vector field A is regular on Ω in the sense that

ce?-1, xeΩ, μ=l,...,d, β>0, (1.7)
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and c is some universal constant. [Of course dη

μ is a difference derivative defined by

The operator defining the Green's function (1.6) has a strictly positive lower
bound. More exactly we prove that there exists a positive constant y0 such that for
e sufficiently small and for a regular vector field A

-Δ^0 + aPk(A)^γ0I. (1.8)

The constant y0 is independent of the lattice spacing η, as well as of Ω and of A.
This bound justifies the definition (1.6) and explains exponential decay properties.

Finally for an arbitrary pair of points x, x'eηZd, let us denote by Γx x, a shortest
contour connecting these points. Now we can formulate the fundamental theorem
of the paper.

Theorem (Proposition 2.1 of [1]). For α<l there exist positive constants δ0,c0,R0

independent of A, k, Ω and depending on d, M only, c0 on α also, such that for e
sufficiently small and for an arbitrary function f:Ω-^RN, we have

— (— I U(A(ΓXrXMD"A,μGk(Ω, A)f)(x')-(DlμGk(Ω, A)f)(x)\
|X — X I

gc0exp(-50 dist({x,:»c'}, supp/WIL (1-9)

for x, x'eΩ, and satisfying the condition dist({x, x'},Ωc)^.R0. Similarly

\(D^μGk(Ω,A)f)(X)\,\(Gk(Ω,A)(x)\^c0exp(-δ0dist(x,suppf))\\f\\x (1.10)

for xeΩ, dist(x,Ωc)SϊK0. // ΩcΩ0, then for δGk(Ω,Ω0,A) defined by the equality

δGk(Ω,Ω0,A) = Gk(Ω,A)-Gk(Ω0,A), (1.11)

we have the inequalities (1.5) and (1.6) (with the same restrictions on x, x') with the
additional factor

(1.12)

on the right hand sides. For some simple sets Ω, e.g. for rectangular parallelepipeds,
the inequalities hold without any restrictions on the points x,x', i.e. for all x,xΈΩ.

This theorem implies in particular the Proposition 2.3 of [1]. It concerns unit
lattice Green's functions C^\Ω9 A) of [1]. Let us recall that for operators^ defined
on the unit lattice functions we define the operator X\Λ restricted to a subset A by
X\Λ = AXA, where A also denotes the characteristic function of the set A. We have

(^fc)(0,4) = ((jW(Ω,^) + αL-2PU))|J-1. (1.13)

Here A(k\Ω, A) is an operator of the effective Gaussian action after k re-
normalization transformations and can be defined by

Λ<*>(Ω, A) = akl - a*Qk(A)Gk(Q, A)Q*(A) , (1.14)

where ak is a constant proportional to a. Properties of the propagators C(%\Ω, A)
are described in
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Proposition 2.3 of [1]. There exist positive constants <50, c0, y0, y : dependent on d and
M only and such that for arbitrary A C Ώ(k) = ΩnZd, A being a sum of big blocks and
for e sufficiently small, we have

γ1I, (1.15)

(-δ0\x-x'\)9 x,x'eΛ. (1.16)

In particular the above inequality holds for C(k\Ω, A\ Putting

δC(*\Ω, A) = C(Z\Ω9 A)-C(k\Ω, A) , (1.17)

we have also

|<5C5)(Ω,A;x,xOl^c0

eM-<W x,x'eΛ.
(1.18)

Finally, for ΩcΩ0 and

δC*\Ω, Ω0> A) = C*\Ω, A) - C«(β0, A), (1.19)

we have

\δC%\Ω9Ω09A;x9x')\

^c0exp(-^0(|x-x| + dist(x,ί2(/c)c) + dist(x/,Ω('ί)c))), x,x'eΛ. (1.20)

The last theorem we have to prove is the bound from below for the operator

Proposition 3.1' of [2]. Let Ω be a sum of unit blocks (i.e. Ω(k} is an arbitrary subset
of Zd) and let A satisfies the condition

\(dlA)(x)\ ^ 0(l)p(e) (p(e) = α0(l + log<Γ 1}P) , (1.21)

then there exists a positive constant y0 depending on d only, such that for e
sufficiently small

« Σ |φ(x)|2 (1.22)
xeΩW

for arbitrary α>0 and a constant 0(1) depending on α and the other constants, but
independent of Ω, fc, A, and for an arbitrary function φ.

This theorem implies (3.29) of [2].
The theorems will be proven in Sects. 2-4 in the order in which they were

written above. The fifth section will be devoted to a general theorem concerning
operators on the unit lattice Zd. There we have abstracted some basic features of
our method and we have proven a theorem which, if applied to operators (1.14),
gives another proof of Proposition 2.3.

2. Generalized Random Walk Representation. Proof of the Theorem

The proof will be done in several steps in each step a reduction to a simpler
problem will be achieved. Let us notice only that it is sufficient to prove the
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Proposition for a function / with support in a unit cube A0 = Bk(y0\ y0eΩ(k}; the
general formulation is obtained by taking the decomposition /= ]Γ Δf and
summing the inequalities. AcΩ

In the first step we will introduce a generalization of random walk repre-
sentations of [4], [5]. We have assumed that Ω(k) is a sum of large blocks, i.e.
blocks of the size M on the unit lattice, thus Ω is a sum of the corresponding large
blocks of the size M on //-lattice Tη. For each ;eZd, let us define the set

Πj — Ωn{a sum of large blocks for which the point Mj is one of the vertices} .

Let us observe that if the point Mj is not a boundary point of £2, then Q7 is a cube
of the size 2M and with center in Mj. For Mj lying on the boundary the set Π7 is a
sum of several ( < 2d) large blocks.

Next let us define a partition of unity {hj}jeZd on Tη. For each je Zd, we take
d

hj(x)= Π hj (xμ\ and functions h j ( x ) , j ε Z , of one real variable x are defined as
μ=l

I x \
h.(χ) = hl — -jl HE C$(] - f , f[), h(x) = 1 for XE [ - f , |], and it is chosen in such a

way that Σ A* = 1

jeZ ^

Let us define an operator G0 by the formula

7

where the configurations A are constructed in the following way : if Π j intersects
the boundary of Ω, then Aj = A; if Π7 is an interior cube of Ω, then we take ̂  as
equal to A on the cube {x:\x- M/|^fM}, and changing regularly to a constant
function in a neighbourhood of a boundary of Π7 . For example using the
regularity condition (1.4) we can write the configuration A on Q; as A = A0 + A',
where A0 is a constant configuration, e.g. A0 = A(Mj), and A' is regular and
small, i.e. \A' , Iδ jJX ' l^cV" 1 , with c' depending on c, d, and M, more exactly
c' - dMc. We take a function θe C~(] - 1, 1 [), 0 = 1 on [ - f , f ], and we define 0 .(x)

d ίx \= Π 0 77 ~Λ I Aj = A0 + θjA'. In the sequel we will use this definition of ̂  Of

course it satisfies the regularity condition (1.4) with another constant c.
We will prove that G0 is a very good approximation of the operator Gk(Ω, A).

Let us calculate (-Δη + m + aP)G. We have

, (2.3)

where h is a real valued function

= Σ (^*^)(x)0«x,x + ̂ μ»+ Σ flf«x-^,x»(D^%0)(x), (2.4)
μ=l μ=l
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where g, θ are defined on bonds, g is real valued and θ is a vector valued function.
We assume also that A_b = — Ab for an arbitrary bond b. These formulas imply

( ~ Δ^Jiφ) (*) = (- Δ^h] (x)φ(x) - £ (d"h) (b) (D\φ) (b) + h(x) ( - Δ^Ωφ) (x) .
b<=st(x),bcΩ

(2.5)

Special care has to be taken in considering boundary terms. Let us remark now
that

( - Δ^N

Ω)hjG( Πj, Aj) = ( - Δ^^hjGiΠj, A) , (2.6)

because the function hj can be φ 0 only on the part of the boundary of Π; which is
contained in the boundary of Ω. From (2.5), (2.6) we have

( - ΛJp* GO) (x, x') = Σ [hjix) ( - Δ^ΏGk(Ώf AJ)) (x, x')^ (x')

best(x)

+ (-Δ*hjnx)Gk(ΠJ,AJ;x,x%j(x'y] , (2.7)

where we have used the fact that the normal derivative of hj to the boundary of Π7

is equal to 0.
For the operator Pk(A\ we have

(Pk(A)hφ) (x) = h(x) (Pk(A)φ) (x) + Σ η" U(A(Γ^M_ ,,)) (3"Λ) (Γx

(^(x)> x,)φ(x')
x'eBk(yk(x))

= : h(x) (Pk(A)φ) (x) + (Rk(A, d"h)φ) (x) . (2.8)

Thus we get finally

= Σ W (( - ̂ Ώj + ml + Ptμ,))Gt(Π, Aj)) (x,

best(x)

+ ( - A"hj) (x)Gk(Dj, Aj x, x')hj(x')

+ (Rk(Ap d' h^Πj, Aj)) (x, xWjW

= δ'(x-x')-Σf Σ (d"hj)(b)(D\Gk(nf
j [best(x)

+ (Δ'hj) (x)Gk(ΠP Aj x, x')hj(x') - (Rk(Af d"h:}Gk(ΠP Aj)) (x, x')hj(x')] . (2.9)

Let us define the operators

(Kjφ) (x) = Πj(x) \ Σ (Vhj) (b) (D\Φ} (b) + (Δ'hj) (x)φ(x)
best(x)

- Σ ^(fflhj)(^x^.)u(Aj(r^^x.)m^, (2.ιo)

(2.11)
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In the sequel we will see that R is a small operator in reasonable norms because
\dηhj\^0(M"1\ \Aηhj\^0(M~2\ so we have the representations

Gk(Ω9A) = G0(I-RΓ1= Σ G0R
n. (2.12)

n = 0

They can be written in a very convenient form of "random walk" representation.
Let us consider a space of paths ω, each path is a sequence of points
ω = {ω0,ω15 ...,ωn}, ωieZd, satisfying the following condition: the points ω.,ω f+1

are vertices of a unit cube of the lattice. It can be formulated also that ωi+ ί is of the
d

form ωί+1 =ω.+ ]ζ εA> where εμ is one of the numbers — 1,0,1. We can write
μ = l

Gk(Ω, A) = ΣhωoGk(Πωo, AJhωoKωιGk(Oωί, Aωί)hωι... KωGk(Oωn, AJh^,
CO

(2.13)

and this representation follows from (2.12) and the obvious fact that

if l/~/l= = m a xl/μ"~7μl>l It is a basic representation and all the statements of

Proposition 1.2.1 follow from it and from some properties of the propagators
GfcCDy, Aj). Let us now formulate these properties in separate lemmas. We will need
Holder norms:

I f / I d β=max/sup|/W|,sup|(^>μ/)(x)|, sup -J—\u(A(ΓXιl,))
' [ x x,μ ' x,x',μ \X — X \

(2.14)

where the suprema are taken on a domain of the function / This norm will be
applied to expressions depending on some vector field, e.g. to Gfc(Π7 , AJ), and it will
be understood that the same vector field is in the norm (2.14) as in these
expressions.

Lemma 2.1. Let a set Π be an arbitrary sum of unit blocks, but such that it is a sum
of at most few large blocks, and let A be as in the theorem. Then for e sufficiently
small we have

\\2^c2\\f\\2. (2.15)

Let us notice that Lemma 2.1 implies that the L2-norm of the operator .R given
by (2.11) is small for M large enough, so the series in the representation (2.12) is
convergent in this norm.

Lemma 2.2. Let a rectangular parallelepiped Π be a sum of few large blocks (e.g., as
in the case of the cubes DjΛ and let A be a regular vector field configuration in the
sense of Proposition 1.2.1, constant in a neighbourhood of the boundary of Π Then
for e sufficiently small and α< 1, there exists a constant cl depending on d, α only,
such that

I I Gt(D, ΛL)/ | | l f β g C l 11/11 „, (2.16)
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and a constant c2 depending on d, p l 5 such that

\\Gk(Ώ,A)f\\q, \\DlμGk(Ώ9A)f\\q, \\Gk(Ώ,A)Dfμf\\q^c2\\f\\p (2.17)

for 1 ^p, q^ GO, satisfying the condition --- ^ - ^ - with p<>d.
p pί q p

These two lemmas together with the representation (2.13) imply the theorem.
Let us prove the inequality (1.9). We take an arbitrary pair of points x,x'eί2

with distances to the boundary of Ω greater than R0. If |x' — x|>l, then this
inequality is a simple consequence of the corresponding inequality for the
derivative only, hence we can assume |x' — x| :g 1. If any of the points x, x belongs
to supphj, then both belong to Π; and in the representation (2.13) for each term we
have that either both points belong to Πωι, or none. Of course the first situation
occurs for at most 2d cubes Πj We restrict the summation in (2.13) to paths
starting in the corresponding /s and we will prove the inequality (1.9) using the
representation (2.13):

(the left hand side of (1.9))

^ Σ' IIΛωoGk(Dωo, AJh^K^G^Π^ AJhω2 . . . Kωβ(Πωn, Λ> A/ll ι,« >
ω

(2.18)

where ω0 and ωn are each restricted to 2d possible values of j by the conditions
x,x'e Dωo, supp/C Πωn We do not know yet if the series on the right side of (2.18)
is convergent, and it will be one of the consequences of our estimates. Let us now
take a positive integer n0, we will fix it later, and let us define R0 as

R0 = (diameter of (j (J Q J + 2M . (2.19)
\ ω = (co0,...,ωno) ι = l /

ωo = 0

Here Π j denotes a cube with center Mj and size equal to 2M. From this definition
it follows that R0 depends on M and n0. We divide the sum in (2.18) into two
subsums: one with n^n0 and the other with n>n0. The first is finite and the
condition dist({x,x'}5ί2

c)^.R0, together with the definition (2.19) of .R0 imply that
all Πωι are cubes contained in Ω. The same of course holds for the first n0 elements
of the sequences ω in the second sum. We estimate the first sum using Lemma 2.2

bY Σ' Cll|KωA(O,Aι)Moo ^^^
ω n^no

(2.20)

We apply Lemma 2.2 to the terms of the second sum also, more exactly we apply

(2.17) with — = - and we fix n0 such that p 1 =2n 0 >d+l, e.g. nQ = d. We
Pi 2no

estimate the second sum by

ω:n>n0

Λία^ΛAjL.,, Π IK^π^Ajh
i=2

• Π \\KaιGt(Ώaι,Aωt)hωt\\2<2\\f\\2^ Σ c^OWM-1)"!/^. (2.21)
ω:n> no
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Here || T\\q p denotes a norm of an operator T:Lp->Lq. Let us remark that the basic
reason for the restriction dist({x,x'},Ωc)^RQ is that we do not have the
inequalities (2.16) for the norms other than ZΛnorms if Π; is not a cube (or
rectangular parallelepiped). The summation in (2.18) is restricted to paths ω
satisfying x,x'e Πωo, supp/C Πωn? so the length n satisfies

n ̂  M~ 1 dist({x, x'}, supp/) — 2 .

There are at most 2d(3d)n~12d of such paths, so finally we get the inequality

(the left hand side of (1.9))^ Σ2dc1(3dc2O(l)M"1)π||/||00

2d+1 "< _ --Af- id i s t ί ίx . jc j . supp/) ! ) f\\ /9 99^
= 2 I I J II oo ' \L..L£.)

where n gM"1 dist({x,x'},supp/)-2, and if M is fixed such that
3dc20(l)M~1^e~1. Thus the inequality (1.9) is proved, similarly the inequalities

(1.10).
To prove the corresponding inequalities for δGk(Ω,Ω0,A) = Gk(Ω,A)

— Gk(Ω0,A) with ΩcΩ0, we take the representations (2.13) for both propagators.
The terms with ω such that D are interior cubes of Ω are the same in both
representations, so they cancel in the difference, and for δGk we get a repre-
sentation similar to (2.13) with the additional restriction that at least one Dωι

intersects the boundary dΩ. We estimate the terms of the representation as above
and we get the first inequality in (2.22) with 2d+1 instead of 2d and with the
restriction

rc ^M"1 sup (dist({x,x'},x1) + dist(xvsuppf))-3
jcιeβc

^ (2M)~ Hdisttfx, *'}, supp/) + dist({x, x'}, Ωc) + dist(supp/ Ωc)) - 3 .

It implies all the inequalities we need. Finally let us notice that if Ω is a rectangular
parallelepiped, then all Π7 in the representation (2.13) are cubes and we can apply
Lemma 2.2 to all operators in it, so the restriction dist({x,x'},Ωc)Ξ^.R0 is un-
necessary. Thus we have proved the theorem, or rather reduced it to Lemmas 2.1,
2.2.
Proof of Lemma 2.1. The first part of the proof is the same for Lemma 2.2 and is
based on the ideas of the proof of Lemma 2.4 in [2]. We can write the
configuration A as a sum A0 + A', where A0 is a constant configuration, e.g. it is a
value of A at some point of Π, and A' is a small and regular configuration, i.e. we
have

^ (2.23)

c' depends on c and M. Now we expand the propagator Gk(Π,^4) with respect to
A'. Using formula 1.3.16 we have

, A0) ( - Δ**a + ml + akPk(A)}G^(U, A0)

- akQ*(A0)F2ιk(A', A0)-akF2tk(A', A0)*F2ιk(A', Λ0)]Gt

1/2(D, Λ)

= :I-Gk

l2(a,A0)VkGk

/2(a,A0), (2.24)
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where F^k(A) = η-l(

(F2tk(A',A0)φ)(y) = £
xeBk(y)

and FI k(A) = U(A) — 1. Taking into account the bound (2.23) and the inequalities

l|G,1/2(D,A))ll2 2, IIA4oG* 1 / 2(QΛ)il2 2 > \\Gl!2(ϋ\,AQ}D*

holding for some absolute constant c0, we can easily prove that
(2.25)

with a constant 0(1) depending on M only. For e sufficiently small, we get the
representation

Gk(Q A) = Gfc

1/2(D, A0) (I ~ Gk

/2(Π, A0)VkGk

/2(Π, A0)Γ * G,1/2(D, A0) , (2.26)

and a similar representation for derivatives of Gfc(Π, A), decomposing them on the
right hand side according to the formula D\=U(A'}Dn

Ao + Fl k(A). From these
representations and (2.25) we get easily the inequalities (2.15). Thus we have to
prove the bounds (2.25). Using the same gauge transformation as in the proof of
Lemma 2.4, we reduce them to the case ^o^O. Now these bounds are con-
sequences of quadratic form considerations. At first let us notice that Π is a sum of
unit cubes A and we have

(φ,(-A"ά

N + m2

k+akPk)φy^ Σ <Φ,(-^N + akPk)Φ>. (126)
Δc D

The operator — A%N is bounded from below by π2 on a subspace of functions on A
orthogonal to constant functions, which are its eigenvectors corresponding to
eigenvalue 0. The operator Pk is an orthogonal projection on a subspace of
constant functions, thus

^(-Δ^ + akPk}φ^mm{π\ak}\\φ\\L2(ΔΓ (2.27)

and from this and (2.26) we get

0<G fc(D,0)^c0/, c-

Further we have

hence ||Gk(D,0)/||2^c0 | |/||2.

C")

,1/2(Π,

(2.29)

hence ||^Gfe

1/2(Π,0)||2j2 = ||Gk

1/2(Π,0)^*||2>2^l, and this together with (2.28)
imply the bounds (2.25). Thus the Lemma 2.1 is proved.

Remark. Let us notice that this lemma alone implies a weaker version of
Proposition 1.2.1 with L2-norms. More exactly we have

Corollary 2.3. // Ω and A are as in Proposition 1. 2.1, then there exist positive
constants c0, δ0 such that for arbitrary scalar field configurations fj' defined on Ω,
we have

|</? Gk(Ω, A)f'y\ , |</, D\μGk(Ω, A ) f y \ , !</ Gk(Ω, A)D*J'y\ ,

^
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The same inequalities hold for OGk(Ω,Ω0,A) with the additional factor
e - (50(dist(supp/, Ωc) + dist(supp/', Ωc))

Of course it is enough to prove it for /,/' with supports in unit cubes, and the
proof proceeds as before using only the L2-bounds of Lemma 2.1. Let us notice
also that now there are no restrictions on supports of //', so in this aspect the
Corollary is a little bit stronger than Proposition 1.2.1.

Now we begin a

Proof of Lemma 2.2. It is much longer and will be reduced to some other lemmas
again. We start with the same operations as in the proof of Lemma 2.2 and we
have the representation (2.26) for e sufficiently small, which we can write in the
following form ^

,A0)r. (2.31)

Now we have to choose A0 more carefully. According to our assumptions A is
constant in a neighbourhood of boundary of Π, and we choose A0 equal to this
constant. Thus in the decomposition A = A0 + A', the configuration A' is regular
and has a compact support in Π The series in (2.31) is convergent in L2(Π), but
we will prove that it is in fact convergent in stronger norms appearing in
formulation of Lemma 2.2.

Let us assume that Lemma 2.2 holds for Gk(\Σ\,A0) with constant con-
figurations A0. We will prove it for a general case using (2.31).

At first let us observe that Vk can be interpreted as a first order differential
operator acting on a function on the right hand side of it. The only trouble is with
the term DγQF1 tk( — A'}, for which it is not a natural interpretation. Using the
formula (2.4) and the fact that A' has a compact support in Π, we have

μ=l

μ=l

- Σ Fι,k(-A'μ(x-η
μ = l

(2.32)

Thus it is a first order differential operator with small coefficients. Only here we
needed the assumption that A is constant in a neighbourhood of <?Π

Now using Lemma 2.2 for Gk(Π,A0)
 an<^ the decomposition Dη

A= U(A')Dη

Ao

(A!], we have

71=0 H = 0

(2.33)

The series on the right hand side is convergent for e sufficiently small, and we get
the inequality (2.16). The inequality (2.17) is proved in the same way.

Lemma 2.2 in the case of a constant configuration A0 is equivalent to the case
of configuration A0 = 0 by the same argument with the gauge transformation as
before. Thus we have reduced the proof of this lemma to a proof of the
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corresponding properties for the propagator Gfc(D,0), or to the one-component
propagator Gfc(D) [Gfc(D,0) = Gk(D)l, 1 is identity operator on RN]. This proof is
based on renormalization group equations (2.43) of [1] rescaled to the fj-lattice:

(2.34)
7 = 1

The expressions on the right hand side above are built with the help of the
operators GJ(Π)β*> C0)'L^(n) and we need some of their basic properties. They
are gathered in the following

Lemma 2.4. There exist positive constants c0,δQ, and for α<l, there exists a
constant c1, such that

(2.35)

^c1έΓ<5odist({*'*'}'y), (2.36)

\c^(Π;y9y')\^cQe'δ^-^9 (2.37)

for arbitrary non-negative integer j, arbitrary, rectangular parallelepiped Π CL~jZd

built of large blocks, and x,xΈ Π, y,/e Dω= DnZd.

Using this lemma we will prove Lemma 2.2 for the propagator Gfc(Π). Let us
start with the proof of the inequality (2.16). We use (2.34) with/h term rescaled to
the L~J'-lattice:

lx-x'1

--1 — α

. - _ -! ...
1/7 Λ rj X I

k~l

. γ a2 γ
J

^QJM^
jί&ηΓ1 Ώ)f)(y) , x, x;e D , (2.38)

hence Lemma 2.4 implies

fc-1

y a2(LJη}1~<XC V
J

' D)β,G j

Σ (L^-ΊI/L^C I I / I I ^ , (2.39)
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where the constant cΊ is built of c0,c15 £ e <5oW, £ (L j}1 α. We estimate in the

same way |(G,(D)/)MI, |(^^(D)/)(x)Γand we get\2.16).

Remark. Let us mention here that the above method can be used also to prove
pointwise estimates of Gk(Π)> Gk(Π,^4)5 and even Gk(Ω,A), their derivatives and
"Holder-derivatives".

Now we will prove the inequality (2.17) for Gfc(Q). For q = p= co, it is a special
case of (2.16), but for lack of dependence on α, and was proved above. For q = p= 1
we get it by duality argument, i.e. using the fact that the space L°°(Π) is adjoint to
^(Π)- The Riesz-Thorin Theorem implies it for arbitrary q ~p from [1, oo]. (For
Riesz-Thorin Theorem see Ref. [6].)

Now we will prove that the operators Gk(Π), 3JGfc(Π), Gk(Π)SJ* are bounded
operators from LP1(Π) with ρ1 >d to L°°(Π) We will use again the representation
(2.34). Let us consider for example the operator Gk(\3)dn*'

" J*/)

(2.40)

Hence

k-1

(2.41)

for x where the constant c'2 is built of c0,

Again by the duality argument we get that the operator Gk(D) and its first order
derivatives are bounded operators from L^D) to LP/1(D), p'1~

l+p^ = l. The
Riesz-Thorin Theorem gives us finally (2.17) for Gk(Π) an(i for all p, q described in
the figure

(0,0)

1 1 1 1
<-<-,

P Pι~~<l~P

Thus Lemma 2.2 is proved, or rather reduced to Lemma 2.4.



584 T. Bafeban

Proof of Lemma 2.4. At first let us notice that the inequality (2.37) concerning
C(7)(Π) is a special case of Proposition 2.3. The proof of this proposition will be
given in the next section and is based on Corollary 2.3 only. Thus we can assume
that (2.37) is proved.

The proof of (2.35), (2.36) can be reduced again to a simpler case. This part of
the argument is valid for an arbitrary rectangular parallelepiped Π built of unit
blocks, so the inequalities are valid for all such sets. Let us denote ξ = L~J.
We represent G/Π) with the help of the propagator Gy with free boundary
conditions on ξZd using the multiple reflection method. If D is written as

Ώ = {xeξZd:Q^xμ^Mμ,μ=l,...,d}9 then

μ = l

μ=l

G/x, (x'19 . . , 2Mμ - ξ - χ'μ, . . ., χ'd) (2.42)

Using this representation it is enough to prove (2.35), (2.36) for the propagator Gr

Now we will construct an explicit representation for G .̂ Let us introduce a
Fourier transform on ξZd by the formulas

(2.43)

(2.44)

We apply it to the basic equation

(-AS +

Defining the propagator GJ? φ0 = G f , we get

«»= Π

M/P' + Wo(P' + Π = /(p),

_ y

(2.45)

^ is an integer,
7 — 1 L7 — 1

=m'μ= -

— Z/
μ

Solving this equation we obtain the following formula :

f°r

for L even.

(2.46)
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To calculate GjQJ, we take f^QJg in this formula, g is a function on the unit

lattice, f(p) = Uj(p)g(p'), g(p'} = ^e~ip''yg(y\ and we get
y

From this we obtain finally the following formula for (G;Q*)(x,y),

(GjQJ)(x,y) = (2π)~d J dp'

gίtf + IMx-y) Uίp' + ΐ)

•Σ-

We are now ready to prove the inequalities (2.35), (2.36); for example, let us take
the expression on the left hand side of (2.36):

r-^-7jϊ ((^G,e*)(x, y) - (δfoρ Xx', y)}
[Λ Λ [

-(2π)-rf f dp'

p' + 1) (χr - y)

' ( }

where

^(p')= Σ \e-^-l\2+ml dfo)=?—f±9
μ=l ζ

and we have assumed that \xf — y\ ̂  x — y\. It is easy to prove that the underintegral
expression is bounded because



586 T. Bafeban

hence

(2.50)

and we have

|(the expression under the integral in (2.49))|

the constant depends on α< 1. (2.51)

The expression is a function of p' and can be extended as an analytic function to
some neighbourhood of [ —π, π]d. It is more troublesome, but equally elementary,
to prove that this neighbourhood can be chosen independently of j and that the
expression is bounded also in this neighbourhood. Shifting the domain of
integration in (2.49) into a complex domain in the direction of the vector x' — y, we
can bound the left hand side of (2.49) by a constant depending on α multiplied by
the exponential factor e-*0\x'-y\=e-oodisi({x>x'}>y\ We get the inequality (2.36). The
inequalities (2.35) are proved in the same way and constants depend on d only.

Thus we have proved Lemma 2.4, hence also theTheorem.

3. Proof of Proposition 2.3 of [1]

The proof will be based on explicit representation for the propagators C(%\Ω9 A) in
terms of Gk(Ω, A) or related propagators. We have the following equality

C<Ϊ>(Ω, A y, y'} = ((Δ(k\Ω, A) + aL'2P(A))\AΓ
l(y9 y')

Td-2\~Γ~

2π

\(Q(A}ιp}(z)\2-^Δ*\Ω,A}ιpy ψ(y)ψ*(y')

N\Λ'\

laLά~2\ 2 la \ 2

= (Z(^(Ω, A)}~1\ —— $dψ\Λψ(y)ψ*(yr)(Zk(Ω9 A))~ * \dφ\Ω —
2π / \2π/

•exp 1 Σ \(Q(A)ψ)(z).
zeΛ'

N\Λ'\
d~2\ 2
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\dφ\a jf k(A)φ)(y))(ψ*(y') + (Qk(A)Φny'))
d~2 2

[-X Σ \ψ(y)\2-^aLd-2 Σ \(Q(A)ψ)(z)\
[ yeΛ zeΛ'

zeΛ'

zeΛ

•exp

1 V1

/7 >
2uk LJ (3.1)

The integral in the curly bracket {...} factorizes into integrals with respect to
Ψ\B(zr In these we make a gauge transformation ψ(y)-+U(A(ΓyfZ))ψ(y), and we get
integrals which can be factorized with respect to components of ψ. After this we
have to compute integrals of the form

[-H Σ
L yeB(z)

ψ(z)2 -
yeB(z) yeB(z)

where C is a component of (Qk+ί(A)φ)(z).

We apply the general formula

j = l

N \ 2

Σ
J = 1 J = l

B(NA + B) B

/ 2 exp | (3.3)

and using the recursive relation a 1 f , 1 =
k+l

αα.

aL
, we get

^

χ Σ i(
yzΩW\Λ

-fa+ίL
d~2 Σ i(β

zeΛ'

Z is of course a normalization factor. Denoting
(3.4)

,
(3.5)
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we have finally

(3.6)

A composition of an operator T defined on the ^-lattice with Q*(A) or
Q*+ί(A)Q(A) can be interpreted as the action of the operator T on properly
defined functions on the /^-lattice. More exactly if we define the functions qk(y\
qk+ί(y) by the formulas

qk(y,x) = a column of U(A(Γ™y)) for xeBk(y), 0 otherwise,

qk+1(y,x) = 3i column of L'dυ(A(Γ^l^Γ^y}} for xeBk+1(z),

z such that yεB(z\ 0 otherwise, (3.7)

then we have

,y')+^. (3.8)
k ak

The L2-norms of the functions qk(y\ qk+ί(y) are equal to 1, L~d / 2 and their
supports are in Bk(y), Bk+1(z(y)) respectively, so the inequalities (1.11), (1.12), and
(1.16) are simple consequences of Corollary 2.3. At this moment let us mention
that the corollary was proved for the propagator Gk(Ω, A), not for Gk(Ω, A, A), but
the only difference between these operators is that Gk(Ω, A, A) is, according to (3.5),
defined by L-blocks on unit scale A, i.e. blocks Bk+ :(z), zeΛL', instead of unit blocks
B\y\ ye A, for Gk(Ω9A). This difference is unessential and the whole proof of
Corollary 2.3 goes on with only slight changes, the most important is that in the
inequality (2.27) for A =Bk+1(z), zeA, we have to replace min{π2,αj by
min{π2L~2,ak+1L~2}, but this is also some positive constant only depending
additionally on L. Generally we have to expect that bounds on C^}(Ω, A) will
depend on L.

Now to prove the inequality (1.14) we have to estimate the difference
Gk(Ω,A,A)—Gη

k+ί(Ω,A). This is easy because on the basis of (3.5) we have

Gk(Ω9Λ,A)-Gl+l(Ω9A)

= Gk(Ω, Λ A)ίakPk(A)-ak+1L-2Pk+1(AJ] (Ω\Bk(A))Gl+ί(Ω, A), (3.9)
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and for fJ'eL2(B\Λ}\ we get

• exp[ - <50(dist(supp/, supp/') + dist(supp/, Bk(Λc}} + disφupp/', £fc(Λc)))] .

(3.10)

The function δC(^(Ω9A) is given by (3.8) with the operator (3.9) instead of
Gk(Ω, A, A) and the inequality (3.10) implies (1.14). This ends the proof of
Proposition 1.2.3. Another proof will be given in the last section.

4. Proof of the Lower Bound for the Quadratic Form Δ(k) (Proposition 3.Γ)

We will estimate the quadratic form on the left hand side of (1.18) in several ways,
finally getting all the terms on the right hand side.

At first we have Gk(Ω, A)^((akPk(A) + m2)\Ω)'\ and the left side of (1.18) can be
estimated from below by

Σk> KI<K*)I2- %2</>M (Qk(A)((akPk(A) + m2)\Bk(x}Γ
 lQX(A))(x,x)0(x)]. (4.1)

Each term of the above sum is determined by the integral

Jd(/>'|βk(jc)exp — ̂ ak\φ(x) — (Qk(A)φ')(x)\2 — \m2 Σ nd\Φ'(*)\2 - (4.2)
x'εBk(x)

This means that the integral is equal to const exp[ — |(the term of the sum (4.1)
corresponding to the point x)]. In this integral we make the gauge transformation
φ'(x') = U(A(Γx

k)

x))φ"(x'\ and we integrate over the subspace orthogonal to the
constant functions on Bk(x). Then we get

I f a 2

2
and hence

= const'exp - -\ak ^ \ Φ ( x ) \ 2 , (4.3)

(the left hand side of (1.18))^
+ 0(1} xeΩW

(4.4)

if m2^0(l). Thus a part of the inequality (1.18) is proved.
Now let us consider the set of all positively oriented bonds <x,x />GΩ ( f c ). This

set can be represented as a sum of 2d subsets B{ with the property that each point
of Ω(k) belongs to at most one bond in a given subset £.. For example we can define
B2μ_ 1 as a set of bonds <x, x + eμ> C Ω(k} for which the coordinate xμ of the point x
is an odd number similarly we define B2μ with the difference that xμ is an even
number. For a given B. there may be points which do not belong to any bond of
this set. Let us denote A(x,x') = Bk(x)vBk(x'). Again separating subsets of Ω by the
Neumann* boundary conditions we have
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(the left hand side of (1.18))

^ Σ [^(*)i2+«j0(*oι2^
<X,x '>eBi

+ Σ \_ak\φ(x)\2-alφ(x)
xeΩ^, x does not belong to a bond in Bτ

• (Qk(A}Gk(Bk(x\ A)Q*(A))(x, x)φ(xί] . (4.5)

Each term in the second sum of the right side (4.5) is non-negative, as it follows
from the proof of (4.4), so we can omit these terms. Summing the inequalities (4.5)
over B^ ί= 1, ...,2d, we get the inequality

(the left hand side of (1.18))

^ Σ Lak\φ(x)\2 + ak\φ(x')\2 - al^ Qk(A)Gk(A(x, x'\ A)Q*(A)φy] . (4.6)
Za(x,xrycΩW

Now it is easily seen that to prove (1.18) it is sufficient to prove

<*k\Φ(x)\2 + ak\φ(xf)\2- a2

k<Φ, Qk(A)Gk(A(x, x'\ A)Q*(A)φy

9 x
fy))φ(x') - φ(x)\2- 0(l)e2p2(e)(\φ(x)\2 + \φ(x')\2) , (4.7)

with YQ independent of fe, <x,x'>, and A. Then y 0=^min<— -y'0, - - — ->. We will
[2d ak + O(l))

transform the left hand side of (4.7). Using the regularity condition for A, we write
A = AQ + A' on A(x,x') with A0 constant and A' satisfying the bounds \Af, \dη

μA'\
^0(l)p(e). We expand the expression on the left hand side of (4.7) with respect to
A' using (1.3.15), (1.3.44), and we separate terms of first order in e. Using Lemma 2.1
the remaining terms can be easily estimated by 0(e2p2(e))(\φ(x)\2 + \φ(x'}\2\ Now
let us consider the terms of first order. Formally we could rely on the estimates of
perturbative expansions in the third paper [3], but there they were derived in a
different setting, the interaction terms considered on a domain far from the
boundary of basic domains for propagators, so let us repeat this part of the
argument. Denoting φ(k] = akGk(A(x,xf),A0)Q^(A0)φί we have the following
expression

2 Σ ί(D\0Φ
(k)}(b} qφ(k\b-)-]eA'b

b c Δ ( x , x f )

-\-2ak Σ (βfcC^o^^Hy)' Σ ^d^A\Γ^qU(AQ(Γ^))φ(k\z)
y = x,x' zeBk(y)

y = x,x' zeBk(y)

Now we have to inspect closely the proof of the Lemma Π.2.4. At first let us notice
that we can "gauge away" the configuration A0 using the same gauge transfor-
mation, and we get the expression (4.8) with ^40=0 and φ(x), φ(x'} replaced by
φ(x\ U(A0((x,x'yj)φ(x') respectively. Then using Π.2.75 we have

1
Φ W = i . ^2 ΦW + O(U(A0((x, x'}}}φ(xf)- φ(x}}, zeΔ(x, x'},

(4.9)
c,x')9
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and this implies the following estimate

|(the expression (4.8))|

Σ Σ
) y-χ,χ' zeBk(y)

4/7

* :lφ(x) qΦ(xϊ] Σ Σ ndeηA'(Γy,z)2
= x,x' zeBk(y)

+ 0(\)ep(e)\ l/(Λ0«x, x'»)φ(x') - Φ(x)\(\Φ(x)\

^ δ| l/U0«x, x'»)0(x') - φ(x)\2 + 0(<Γ Vp2(*)(W*)l2 + \φ(x')\2) ,

(φ(x) qφ(x) = Q because q is an antisymmetric matrix),

for arbitrary <5>0. (4.10)

Thus we get

(the left hand side of (4.7))

^(the left hand side of (4.7) with A replaced by AQ)

- δ\ t/G40«x, x'»)0(x') - φ(x)\2- 0(δ-ί)e2p2(e)(\φ(x)\2 + \φ(χ')\2) . (4.1 1)

Now it is sufficient to prove the inequality

(the left hand side of (4.7) with A replaced by A0)^\U(A0((x9x'y))φ(x')-φ(x)\2

9

(4.12)
because this together with (4.11) with δ = ^y"Q and

) - 0(x)|2 έil U(A«x, x'»)Φ(x') - φ(x)\2- 0(\}e2p2(e)\φ(x)\2,

(4.13)

give (4.7) with y'0=^yQ. Let us notice that the second term on the right hand side of
(4.7) does not appear if ,4 = 0.

Now we will prove (4.12). At first we estimate the left side of it from below by
the same expression with m2 = 0. Further we "gauge out" the constant field A from
the expression with the simultaneous gauge transformations of φ : φ(x) = φ"(x\
φ(xf) = U(A((x', xy))φ"(xf), as in the proof of Lemma 11.2 A. Then the inequality
(4.12) is transformed into the inequality

ak\φ^x)\2 + ak\φ\x')\2-al(φ\Q^^^

(4.14)

We use again the fact that const. exp[ — f (the left side of (4.14))] is equal to the
integral

• exp [ - Klφ-M - (Qkφ') (x)| 2 - ±ak\φ "(*') - (

(4.15)

Denoting Δ=Bk(x), Δ' = Bk(x'}, ιp = φ^(xf) — φf^(x), and making the translations
φf(y) = φ(y) + φ"(x) for ye A, φ'(y) = φ(y) + φ"(x) for ye A' in the above integral, we
get
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Mβ*ΦX*)l2-i<<k(-^

— 2 Σ rJd\(^ηΦ)(b) + η'1ψ\2} =const exp( — ̂ A0\ψ\2}, (4.16)

where B((x,x'y) denotes the set of all bonds of the ^-lattice connecting the block
Bk(x) with the block Bk(x'), i.e. B ( ( x , x f y ) = {btTη:b_eBk(x), b+eBk(x')}. Now we
have to show that AQ >0, more exactly A0 ^/Q, y"Q >0, and y"Q depends on d and a
only. It is obvious that the integral on the left hand side and the function on the
right hand side of (4.16) factorizes into the products of the corresponding
expressions for the components of φ and ψ. We can assume that φ and ψ are real
quantities. We will use the following simple formula for the Fourier transform of
the Gaussian function:

Now it is sufficient to prove that 0<^10"
1 ^/ό"1, and y"Q~l depends on d and a

only. Let us calculate the Fourier transform of the integral on the left hand side of
(4.16). At first we transform the last expression in the exponent:

- Σ ^~
b'eB((x,x'y) foejB«x,;c'»

Let us introduce the notation

<<Mφ> - ak\(Qkφ)(x)\2 + <φ,(-A^N)φy + ak\(Qkφ}(x'}\2

+ Σ tfWΦm- Σ nd-\&Φ)(V)\2. (4.19)
6e5«x,jc/» b'eB«x,x'y)

The Fourier transform with respect to ip of the expression on the left hand side of
(4.16) can be written in the form

and we get the formula for AQ 1:

A ^η + U^A-if^y, (4.21)

where

f<XX'y(y}= Σ ηd~l(δ\y~b+)-δ\y-b_}}.
&eβ«x,x'»

Of course both terms on the right side of (4.21) are ^0, and η = L~k, 0<η<l. We
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have to estimate the second term. From (4.19) and the definition of f<x χl> it follows
that

</< '̂>^~%c,,'>>^<^

= 2 Σ 12(d-"Gk(Δ;y9y>), (4.22)
y.y'eJi

where A1 is any face of the block A, e.g. A1 = {ye A :y1=x1 + l — η}.Of course the
expression on the right side of (4.22) is a constant y"Q~1 depending on d and a only.
Thus the inequality (4.14) is proved and the proof of Proposition 3.Γ is completed.

Remark. The argument applied in the proof of (4.14) is an example of an
application of "duality transformations". In our case this is an ordinary Fourier
transform.

5. A General Theorem on Unit Lattice Operators

There is another way of proving Proposition 1.2.3, relying on a general theorem
concerning inverses to some unit lattice operators. This theorem is interesting
enough in itself to devote a separate section to it.

At first let us prove that the bounds (1.11) are consequences of
Proposition II.3.Γ. The upper bound is quite elementary because

Δ(k\Ω9 A) + aL' 2P(A) = akl - a2Qk(A)Gk(Ω, A)Q*(A) + aL~2P(A)

>)J = α-^/. (5.1)

The operators are considered as defined on L2(Ω(k)). To prove the lower bound we
apply Proposition Π.3.1' to A(k\Ω,A):

<0, (A(k\Ω, A) + aL~ 2P(A))φy ^ y0 £ | U(A((x, x'y))φ(xf) - φ(x)\2

+ aLd~2 Σ+i)ί~
d Σ U(A(ΓytX))φ(x)2-0(e2-') ΣJ0MI2- (^

Now we use again the method we have applied so many times: in the expression
on the right hand side above we separate the blocks by Neumann boundary
conditions, in each block we decompose A = A0 + A into a constant field A0 and
small field A and we expand with respect to A' getting the same expression with
A0 instead of A and a bigger constant in the last sum. Next we "gauge away" the
constant field, and we obtain the Laplace operator with Neumann boundary
conditions for each block plus the projection operator on constant functions. This
sum is bounded from below by a positive constant (more precisely by
^0min{π2L~2, aL~2}\ thus we have

^ (5.3)

for e sufficiently small and we get the lower bound. Finally Corollary 2.3 implies
that the considered operator is short-ranged in the sense that for some <50>0

(5.4)
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and a change of the domain Ω implies a change of the operator which can be
estimated in the following way

(5.5)

From these properties it follows that Proposition 1.2.3 is a consequence of the
following

Theorem. Let ΩcZd and let Abe a symmetric operator defined on the space L2(Ω) of
functions φ:Ω->RN and satisfying the following condition: there exist positive
constants y0, c0, <50 such that

A^y0I, \A(x9x')\^c0e-*°lχ-χΊ9 x>x'eβ. (5.6)

Then there exist positive constants c1,δί such that for arbitrary AcΩ and for
CΛ = A^1, AΛ is an operator defined on L2(A) by AΛ = ΛAΛ. We have

'*11*"*'1, x,x'eΛ, (5.7)

|3Cκ(x,xOl^c1e"Λ l ( l*-χ / l + dist(x'^ + dl8t(3C'^e)), δCΛ = CΛ-CΩ. (5.8)

If we perturb the operator A by an operator B such that the condition (5.6) is satisfied
for A + B, and additionally B has the property

\B(x, x'}\ ^c0e-δo(lχ-χ'\ + άist(x> ΩC} + dist(x/ ' βc)) , x, x' e Ω , (5.9)

then we have also

x,x'eΛ.
(5.10)

The rest of the section will be devoted to a

Proof of the Theorem. The proof goes along the lines of the proof of
Proposition 1.2.1. We start with a construction of a "generalized random walk"
representation. We define the sets

(5.11)

and we introduce the same partition of unity hj as before. In the sequel we restrict
ourselves to these /s for which D j Φ ψ Let us define

Cj=cΠj9 C=ΣΛJ.CJΛJ.. (5.12)
j

We will show again that C is a very good approximation of CΛ in the sense that
AΛC is almost an identity. We have

AAC = Σ ΛAhjCjhj = Σ OjAhjCjhj + Σ (1 - ΠjJhjΛhjCjhj
J J JJ'J*f

(5.13)
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where

. d-DJtfAhj. for jΦf.
j, f

(5.14)
It is natural to interpret Rj f as an operator Rj r:L

2(^.^L2(\Σ\), similarly
Rjj'cj'hr We have

^ x9x'enJ9

\RjtJ,(x, x')\ = |(1 - Πj ) (x)h2(x)A(x, x')hr(x')\ £ (

^c0e-iδolx~x'le-*δoM for xeD;, x'eΠ;<,

and these estimates imply that the norms of the operators Rj , have bounds

\\Rjj.\\^e-^j-^ (5.15)

for α depending on M and arbitrarily small if M is sufficiently large, δ2 depending
on (50, e.g. <52^4^o From these bounds it follows that

l l^llgmaxίsupΣll^.^l^upΣll^^lbo" 1^^ 1 Σ e~*M

( J f J' j ' J jeZ<*

is small for M large and oo

CΛ = C(I-RΓl= Σ CR\ (5.16)
« = o

which can be given a random walk form:

A"~2-f^ωo ωo^ωo ωι,ω2 ω2 ω2 * '" ω2 n- ι,ω2n ω2n ω2n >
CO

ω = (ω0,ω15 ...,ω2w), ωf are arbitrary indices;, but satisfying the restrictions

μ-ω2 ί + 1J^l for z = 0, 1, ...,w- 1 , ??^0. (5.17)
μ=ί,...,d

Let us now prove (5.7). We have

< r υ ~ "

CO

^ Σ

(5.18)

To investigate the sums above, it is convenient to take the absolute value |/| defined
by I/I = Σ l/μl ' t^ιen tne sum over /s factorizes into sums over components. If we

μ=l

define g1(j) = e~02^, jeZ, then the sum over /s in (5.18) can be written as
a

Π 92ndμ~~fμ)> 9 2n = 9 1* *9 1 ^s a convolution of 2n functions gv. The Fourier
μ = l

transform of g1 is equal to
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so we have

and from this we obtain

\9n(J)\^2e~**M> for some C2 (5-20)

Finally we fix M such that y~Q

laedδ2c2

2

d< 1, and we get

- - -_ _
. 1 _ -1 d<52 2d

jJ':xeΠj,x'eΠj' X /O e C2 α

^C le"^2 A i"1 | x" x / l. (5.21)

This inequality implies (5.7) with δ1 =^δ2M~ 1. The inequality (5.8) is proved using
the representations (5.17) for both operators CΛ, CΩ and properly taking into
account cancellations of some terms, exactly as in the proof of bounds for
δGk(Ω,Ω0,A)in Sect. 2.

We define Π; by the equality (5.11) with Ω instead of A, and C = CD;. If Π^ is
disjoint with the complement Ac of A in Ω, then Dj= D_/ and C'j = Cj. Similarly if
both Π}, D/ are disjoint with Ac, then jR^. ^ = Rj ... Let us take a difference of the
representations (5.17) for CΛ and CΩ. In this difference all terms corresponding to
walks ω with Π^ disjoint with Ac are canceled, and we have

δCΛ(x,x')

Σ <δ

X'
h

ωo

C<ao

hω0

Rω1,<02

Cω2

hω2

 Rω2n-l,ω2n

C

ω2J
lω2n

δ

X'>
ω:xeΠωo, x'eΏω2n,
for some i^]Ό}inΛc Φ φ

Σ <δx» ̂ ωόCό^ωδ^ωΊ , ω'2
C'ω'2

hω'2 '•••' Rω'2n _ l t ωin

C£ Ai A' > '
ω' :xeΠ'ω6) χ'6Π'ω^n,
for some ΐ D ω ^Λ^Φ /ς ^^\

The range of ωj in the second sum might be larger because Ώ D Λ Estimating (5.22)
in the same way as in (5.18) and (5.21), we get

dist(x/ κc) + | x ~ x / l )

(5.23)

A proof of the last inequality (5.10) is very similar, although a little bit more
awkward. We form the representations (5.17) for A~A

 1 and (A + B)^ 1, and we take
their difference :

C(A)ωιha2 ..

- hωoC(A + B)ωhωoR(A + B)ωit ωC(A + B)ω

= Σ Lhωo(C(A)ωo - C(A + B)Jh
ω

+ hωoC(A + B)ωohωo(R(A)ωι<ω2 - R(A + B)ωι>ωj)

C(A)ω2hω2 ... + ...]. (5.24)
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From the definition (5.14) of the operators Rjjf we have

and from the condition (5.9), we get the estimate

\\R(B). . ,11 <ae-
δ2\j-f\e-δo(dist(Πj,Ω^ + dist(Ώj',Ω^) ^ (5.25)

Further we have

C(A)j-C(A + B)j = A^-(A + B)-]=Au]BDj(A + B)^, (5.26)

and

\\C(A}j-C(A + B}j\\^y^2c'Qe-2δ^i(^ΩC\ (5.27)

The equality (5.24) and the above estimates imply

V1 ~ δ2\ω2n- \~ u>2n\

c) + dist(x', ί?c)) - 2

Thus Inequality (5.10) is proved. The constants <515 c1 are functions of δ0, y0, c0,
and from the above proof we can get more precise estimates for them.
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