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Abstract. In the paper we study a class of lattice, covariant Laplace operators
with external gauge fields. We prove that these operators are positive and that
their Green’s functions decay exponentially. They also have regularity proper-
ties similar to continuous space Green'’s functions. All the bounds are uniform
in the lattice spacing.

1. Introduction. Formulations of Theorems

In this paper we prove some properties of Green’s functions for difference Laplace
operators. They imply all the properties of Green’s functions (propagators) and
Gaussian actions used in the papers [1-3], thereby completing the proof of
ultraviolet stability of (Higgs), ; models. But the range of applicability of these
properties is much wider and a need of them appears in many mathematical
problems of statistical physics and quantum field theory. In fact, the mathematical
estimates have an intrinsic interest of their own, so we present them in a self
contained paper.

The properties of Green’s functions we are interested in are regularity properties
and exponential decay. The difference Laplace operators are lattice approxi-
mations to second order elliptic differential operators, so the regularity properties
of lattice Green’s functions are similar to the properties of continuous space
Green’s functions. For example, if G is a lattice Green’s function, then |Gf],,
10,Gfl,, 6,0,Gf,=cll fll,, where d, is a difference derivative and | - ||, denotes
L*-norm on the lattice. Similar estimates hold for other norms, and we are
especially interested in Holder norms. Exponential decay is interpreted in physics
as the existence of an “effective mass”. In mathematical terms this means that there
is a strictly positive lower bound for the inverse Green’s operators. The simplest
example is the operator —4+m?. A Green’s function C,,=(—4+m?)~ ! for this
operator, on continuous space and on a lattice, satisfies a bound of the form
IC,2(x, Y)| SO(1)|x— y| ~4*2e ™™=, We are interested in proving similar bounds,
or bounds derived from these, for more general operators.

*  Supported in part by the National Science Foundation under Grant No. PHY82-03669
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Let us formulate some basic definitions. We consider operators on subsets of
the lattice nZ4, n=L~* Here L is a small positive integer > 1, e.g. L=2or 3, and k
is an arbitrary positive integer. Another common case is to consider operators on
subsets of a torus T, which we identify with a rectangular parallelepiped in #Z*
with periodic conditions. The lattice #Z? is divided into unit cubes called blocks
and parametrized by points y of the unit lattice Z¢:

B(y)=4(y)={xenz*:y,<x,<y,+1, p=1,...d}, yeZ’. (1.1)

We consider also a second division of #Z* into cubes of size M called big blocks.
They are parametrized by points of the lattice M Z¢ and defined in the same way as
unit blocks with M instead of 1 in (1.1). Here M is a large positive integer defined
later in this paper. We consider subsets Q which are unions of big blocks. In order
to define the class of Laplace operators, the so-called covariant Laplace operators,
we have to introduce a notion of vector fields. These are real-valued functions
defined on pairs <x, x") of nearest neighbour points of the lattice, called bonds. We
identify them with vector-valued functions defined on points of the lattice by the
identity 4, ., =A4,(x), where e, is a unit vector of u axis. The operators we
are going to define depend on A4 through the function
U(A)=e%"", g is an antisymmetric N X N matrix, where e is a real parameter.
(1.2)

Now the covariant Laplace operator —AJ’Z;f}’Q on a domain Q with Neumann
boundary conditions on 0Q is given by the following quadratic form defined on
functions ¢ : Q— RN

$p,(—= 450> = bZQn"I(DW)(b)IZ = bZQﬂ"ln‘ H(U(A4,)pb,)— b)), (1.3)

where the summation is over the set of all bonds b=<{b_,b, ) with end-points
b_,b, in Q.

Next let us define some projection operators in the space of functions ¢. At first
we define a covariant averaging operator

QAP )= Y nUAIID$(x), yeZ’. (1.4)

xeBX(y)
Here I}%), xe B¥(y), are oriented contours in B¥(y) connecting the initial point y
with a final point x. For an arbitrary contour I' in the lattice #Z“ (considered as a
sum of bonds) we define A(I')= Z A,, where orientations of the bonds b agree

with orientation of the contour ]2 C I:Fhe projection operator P,(A) is given by
P(A)=0F(A)Q,(4). (L3)
Our fundamental Green’s function is a kernel of the operator
G(Q, A)=(— 4% +m* +aP(A)~ 1, (1.6)

where m? =0 and a is a positive constant close to 1. We consider all these operators
under the assumption that the vector field A4 is regular on @ in the sense that

(@I sce’~ 1, xeQ, wu=1,...d, p>0, (1.7)
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and c is some universal constant. [Of course d} is a difference derivative defined by
(@14)(x)=n" " (A(x+ne,)— A(x)).]

The operator defining the Green’s function (1.6) has a strictly positive lower
bound. More exactly we prove that there exists a positive constant y, such that for
e sufficiently small and for a regular vector field A

— AN+ aP(A) 2,1 . (1.8)

The constant y, is independent of the lattice spacing #, as well as of 2 and of A.
This bound justifies the definition (1.6) and explains exponential decay properties.

Finally for an arbitrary pair of points x, x'enZ, let us denote by I, . ashortest
contour connecting these points. Now we can formulate the fundamental theorem
of the paper.

Theorem (Proposition 2.1 of [1]). For o<1 there exist positive constants d,,cy, R,
independent of A,k,Q and depending on d,M only, c, on « also, such that for e
sufficiently small and for an arbitrary function f:Q—RY, we have

L [UAT, N DY, G2, A)f)(x) = (D}, G (2, A)f)(x)]

Ix—x']*
=coexp(— 9, dist({x, x'}, supp /) fll (1.9)
Jor x,x'€Q, and satisfying the condition dist({x,x'}, 2°)=R,,. Similarly
(D%, ,G(£2, A) )L, [(G(Q, A)(X)| = ¢ exp(—J distx, supp ) /]|, (1.10)
for xeQ, dist(x, Q) =R, If QCQ,, then for 6G,(Q,Q,, A) defined by the equality
0G (2,20, A)=G (2, A)— G(L2,, A), (1.11)

we have the inequalities (1.5) and (1.6) (with the same restrictions on x,x’) with the
additional factor

exp(—d, dist(supp f, ) — J, dist(supp f, °)) (1.12)
on the right hand sides. For some simple sets Q, e.g. for rectangular parallelepipeds,
the inequalities hold without any restrictions on the points x,x’, i.e. for all x,x'€ Q.

This theorem implies in particular the Proposition 2.3 of [1]. It concerns unit
lattice Green’s functions C%(€, A) of [1]. Let us recall that for operators X defined
on the unit lattice functions we define the operator X| , restricted to a subset A by
X|,=AX A, where A also denotes the characteristic function of the set 4. We have

CP(Q, A)=((4"(Q, A)+aL *P(A) )~ *. (1.13)

Here A®(Q, A) is an operator of the effective Gaussian action after k re-
normalization transformations and can be defined by

AM(Q, A)=a,] — a7 Q,(A)G,(Q, A)Q}(A), (1.14)

where a, is a constant proportional to a. Properties of the propagators C%¥(Q, A)
are described in
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Proposition 2.3 of [1]. There exist positive constants , ¢y, .y, dependent on d and
M only and such that for arbitrary ACQW =QnZ% A being a sum of big blocks and
for e sufficiently small, we have

2ol SA(Q, A)+aL 2P(A)<7y,I, (1.15)
[CW(Q, 4; x,x")| Scoexp(—dolx—x]), x,x€A. (1.16)
In particular the above inequality holds for C*(Q, A). Putting
SCH(Q, A)= CH(Q, A)— CW(Q, A), (1.17)
we have also

[6CW(Q, 4; x,x')| S exp(—dy(Ix — x|+ dist(x, A°) +dist(x; A49)), x,x'€A.
(1.18)
Finally, for QCQ, and
3CW(Q, Q,, A)=CW(Q, 4)— CW(Q,, 4), (1.19)
we have
[6CH(Q, Q,, 4; x,x')|
<cpexp(—d,(x— x| +dist(x, QW) +dist(x', Q¥9)), x,x'ed. (1.20)
The last theorem we have to prove is the bound from below for the operator
AB(Q, A).

Proposition 3.1 of [2]. Let Q be a sum of unit blocks (i.e. Q% is an arbitrary subset
of Z%) and let A satisfies the condition

@A) =0(1)ple)  (ple)=ao(l+loge™ 1)), (1.21)
then there exists a positive constant y, depending on d only, such that for e
sufficiently small
<¢>,A”‘)(Q,A)¢>éyo< Y UAKx X DNG() = p()I> +m* ) |¢(X)!2>

(x,x"HC 0 xeQ(k)
—o()e*™ Y Ip(x)I? (1.22)
xe Q)
for arbitrary a>0 and a constant O(1) depending on o and the other constants, but
independent of Q, k, A, and for an arbitrary function ¢.

This theorem implies (3.29) of [2].

The theorems will be proven in Sects. 2-4 in the order in which they were
written above. The fifth section will be devoted to a general theorem concerning
operators on the unit lattice Z¢. There we have abstracted some basic features of
our method and we have proven a theorem which, if applied to operators (1.14),
gives another proof of Proposition 2.3.

2. Generalized Random Walk Representation. Proof of the Theorem

The proof will be done in several steps; in each step a reduction to a simpler
problem will be achieved. Let us notice only that it is sufficient to prove the
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Proposition for a function f with support in a unit cube 4,=By,), y,€ Q" ; the
general formulation is obtained by taking the decomposition f= ) Af and
summing the inequalities. 4cq

In the first step we will introduce a generalization of random walk repre-
sentations of [4], [5]. We have assumed that Q® is a sum of large blocks, ie.
blocks of the size M on the unit lattice, thus Q is a sum of the corresponding large
blocks of the size M on n-lattice T,. For each je Z% let us define the set

[0,=2n{a sum of large blocks for which the point Mj is one of the vertices}.

Let us observe that if the point Mj is not a boundary point of €, then [J; is a cube
of the size 2M and with center in Mj. For Mj lying on the boundary the set [1;is a
sum of several (<2d) large blocks.

Next let us define a partition of unity {h;},,. on T,. For each je Z%, we take
d

h(x)= H h; (x ), and functions h(x), je Z, of one real variable x are defined as
n=

hj(x)=h<M —j), he C3(1—3,2]), h(x)=1 for xe[—3,%], and it is chosen in such a
way that ) h?=1.

jeZ
Let us define an operator G, by the formula

GO:Z_hJ'Gk(Dj’ Iij)hja (22)

where the configurations A are constructed in the following way: if [J; intersects
the boundary of Q, then A = A;if [7; is an interior cube of Q, then we take A as
equal to 4 on the cube {x Ix—Mj|= 3M }, and changing regularly to a constant
function in a neighbourhood of a boundary of [, For example using the
regularity condition (1.4) we can write the configuration 4 on [];as A=4,+ A4,
where A, is a constant configuration, e.g. Aq=A(Mj), and A’ is regular and
small, i.e. |4, |014'|<c’e’~ ", with ¢’ depending on c, d and M, more exactly
¢'=dMc. We take a function e C(]—1,1[), =1 on [ —2,7], and we define 0 i(x)

d
=ul:[1 9(% —jﬂ>, A;=A,+0,4". In the sequel we will use this definition of Aj. of

course it satisfies the regularity condition (1.4) with another constant c.
We will prove that G, is a very good approximation of the operator G,(£2, A).
Let us calculate (— 4%, +m; +a,P,)G,. We have

(D4h¢)(b) =h(b . )(D}¢)(b) +(9"h)(b)(b ), (2.3)

where h is a real Valued function

(D*gb) (x)= Z n~Hg(x—ne,, x))—g({x, x +ne, )X, x +1e,»)

u=

+ Z g({x=ne, DM HU(A e, ) O = 1€, X))

p=1

— 0({x, x+1e,))

= Zl (039) ()Ox, x+ne, )+ Y, g(<x—ne,, x)) (D, 0)(x), (24)
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where g, 0 are defined on bonds, g is real valued and 6 is a vector valued function.
We assume also that A_,= — A, for an arbitrary bond b. These formulas imply

(= 4% %hd) () =(= 45" ()p(x)— ). (0"h) (b) (D) (b)+h(x) (— A% 50) (x).

best(x), bC 2
(2.5)

Special care has to be taken in considering boundary terms. Let us remark now
that
(— A, G(O,, A) =(— A% b, G, A), (2.6)

because the function k; can be +0 only on the part of the boundary of []; which is
contained in the boundary of Q. From (2.5), (2.6) we have

(= A%75G,) (6, x) = [h(x) (— 455 GO, A)) (x, X )hx)

~ Y (@h) (b)(D"~ GO, A) (b, x)h(x)

best(x)

+(= A"h)(X)G(EI Ay % X1, 2.7)

where we have used the fact that the normal derivative of h; to the boundary of [J;
is equal to 0.
For the operator P,(A), we have

(P(ADhe) (x)=h(x) (P (AP)(x)+ > n*UA( x(k))’k(x) (O ( x(kj)ik(x) P

x’'eB(y*(x))
= h(x) (Py(A)P) (x) + (Ry(4, O"h)$) (x). (2.8)
Thus we get finally

(= A”’N +m2+ P (A4)G,) (x, x))
—Z[h () (— A% +m+ P(A)G(O;, A) (x, x)h(x')
— Y (@) (b) (D, GO, A) (b, X x)

best(x)
+(=A"h) ()G, A3 x, X (x')
+(RY(A, 0"h)G([;, A)) (x, XY (x)
=6"(x—x") Z[ Y (0"h;) (b) (D7, k(Dj,ﬁj))(b,x’)hj(x’)

best(x)

AR RIGUTy A% W) = (RYA, )G, A)) (5 ). (29)

Let us define the operators

(K;¢)(x)=0 J-(X)[ Y, (0"h)(B)(D ) (b)+(4"h) (x)b(x)

best(x)

= X ORI, IUAL ) ))¢(X’)], (2.10)

x'eBR(y*(x))

R=Y K,G(O,A)h;. @.11)
J
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In the sequel we will see that R is a small operator in reasonable norms because
|0"h| SO(M™1), |[A"h | SO(M~?), so we have the representations

G A)=GoI—R) "= 3 G,R". (2.12)
n=0

They can be written in a very convenient form of “random walk” representation.
Let us consider a space of paths w, each path is a sequence of points
w={wy,0,,....,0,}, o,Z% satisfying the following condition: the points w, w,_ ,
are vertices of a unit cube of the lattice. It can be formulated also that w, , , is of the

d
form w,, , =w,+ ) ¢, where ¢, is one of the numbers —1,0,1. We can write
n=1

G @A) =Y hy Gy Ap o K o, Gy Ay Yo, - Koy Gy Ts Ay I
¢ (2.13)

and this representation follows from (2.12) and the obvious fact that
G0, A)h K, Gy A;)=0,
if [j—j|=maxlj,—j,|>1. It is a basic representation and all the statements of
U

Proposition 1.2.1 follow from it and from some properties of the propagators
G,([O), 4)). Let us now formulate these properties in separate lemmas. We will need
Holder norms:

1
1= 50 1709, sUp D ) (9, $8p 15— VAT, )

(D )~ (DY) <x)|}, (2.14)

where the suprema are taken on a domain of the function f. This norm will be
applied to expressions depending on some vector field, e.g. to G,([J), 4,), and it will
be understood that the same vector field is in the norm (2.14) as in these
expressions.

Lemma 2.1. Let a set [] be an arbitrary sum of unit blocks, but such that it is a sum
of at most few large blocks, and let A be as in the theorem. Then for e sufficiently
small we have

GO, Af,, DL, G(O,Af,, 16O, ADE, S,
ID% GO, DY fll, e, ll 5 (2.15)

Let us notice that Lemma 2.1 implies that the L*-norm of the operator R given
by (2.11) is small for M large enough, so the series in the representation (2.12) is
convergent in this norm.

Lemma 2.2. Let a rectangular parallelepiped [] be a sum of few large blocks (e.g., as
in the case of the cubes [1;), and let A be a regular vector field configuration in the
sense of Proposition 1.2.1, constant in a neighbourhood of the boundary of []. Then
for e sufficiently small and x <1, there exists a constant ¢, depending on d, x only,
such that

1G(, A S .Syl fll, (2.16)
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and a constant c, depending on d, py, such that

1G(O, Df g, 1D% GO, Df Iy, NGO, ADF Sl =l fl, (2.17)
for 1=p, q=< o0, satisfying the condition 1 — p—§ 1 < % with p, >d.
1
These two lemmas together with the representation (2.13) imply the theorem.
Let us prove the inequality (1.9). We take an arbitrary pair of points x, x'e Q
with distances to the boundary of Q greater than R,. If |x"—x|>1, then this
inequality is a simple consequence of the corresponding inequality for the
derivative only, hence we can assume |x'— x| < 1. If any of the points x, x" belongs
to supph;, then both belong to [J; and in the representation (2.13) for each term we
have that either both points belong to [],, , or none. Of course the first situation
occurs for at most 2% cubes [, We restrict the summation in (2.13) to paths
starting in the corresponding j’s and we will prove the inequality (1.9) using the
representation (2.13):

(the left hand side of (1.9))
S My Gl s AwgooK o, GelOop Ao, - Koy G es A Yo fll1 o
° (2.18)

where w, and w, are each restricted to 2¢ possible values of j by the conditions
x, x'€ [, supp fC,,. We do not know yet if the series on the right side of (2.18)
is convergent, and it will be one of the consequences of our estimates. Let us now
take a positive integer n,, we will fix it later, and let us define R, as

R,= (diameter oo U U Dwi) 1M, (2.19)
= (W0, ..., W) i=1
wo=0

Here [; denotes a cube with center Mj and size equal to 2M. From this definition
it follows that R, depends on M and n,. We divide the sum in (2.18) into two
subsums: one with n<n, and the other with n>n,. The first is finite and the
condition dist({x, x'}, 2°) = R,,, together with the definition (2.19) of R, imply that
all 7, are cubes contained in Q. The same of course holds for the first n, elements
of the sequences w in the second sum. We estimate the first sum using Lemma 2.2

b - -
Y Y e 1Ky Gl(Clos Ay My 1o 1Ky, G(Tr Ay Vol I £

w:n=ng

< Y el 0OM ™Yl - (2.20)

w:n=<no

We apply Lemma 2.2 to the terms of the second sum also, more exactly we apply
(2.17) with % = 5%; and we fix n, such that p, =2n,>d+1, e.g. no=d. We
estimate the second sum by

¥ K Gu Dy Ay T 1K Gl Ao

w:n>ng i—1 i
n

[T 1Ky GOy Ao 1715 Y €4(c;00OM Y £, . (221)

i=no+1 w:n>ng
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Here || T, , denotes a norm of an operator T:L”— L% Let us remark that the basic
reason for the restriction dist({x,x'},Q2°)=R, is that we do not have the
inequalities (2.16) for the norms other than L?-norms if [] j is not a cube (or
rectangular parallelepiped). The summation in (2.18) is restricted to paths w
satisfying x,x'e (1,,,, supp fC[],,, so the length n satisfies

n=M " dist({x,x'},supp f)—2.
There are at most 24(39)"~12¢ of such paths, so finally we get the inequality

(the left hand side of (1.9)) <Y 2%, (3%,0()M ™ Y'| f1.,

2d+1

= e~ Ml R £ (2.22)

where n=M dist({x,x'},suppf)—2, and if M is fixed such that
39c,0(1)M "' <e” . Thus the inequality (1.9) is proved, similarly the inequalities
1.10).

( T)o prove the corresponding inequalities for 6G,(2,Q,, A)=G,(2, A)
—G(2,,A) with QCQ,, we take the representations (2.13) for both propagators.
The terms with o such that [, are interior cubes of Q are the same in both
representations, so they cancel in the difference, and for 6G, we get a repre-
sentation similar to (2.13) with the additional restriction that at least one [,
intersects the boundary 0Q. We estimate the terms of the representation as above
and we get the first inequality in (2.22) with 2¢*! instead of 2¢ and with the
restriction

n=M~! sup (dist({x, x'}, x,)+dist(x,, supp f))— 3
x1€82¢

=(2M)~ }(dist({x, x'}, supp f) + dist ({x, x'}, Q) + dist(supp f, %)) — 3.

It implies all the inequalities we need. Finally let us notice that if Q is a rectangular
parallelepiped, then all []; in the representation (2.13) are cubes and we can apply
Lemma 2.2 to all operators in it, so the restriction dist({x,x'},Q2)=R, is un-
necessary. Thus we have proved the theorem, or rather reduced it to Lemmas 2.1,
2.2.

Proof of Lemma 2.1. The first part of the proof is the same for Lemma 2.2 and is
based on the ideas of the proof of Lemma 2.4 in [2]. We can write the
configuration A4 as a sum 4,4 A’, where A, is a constant configuration, e.g. it is a
value of 4 at some point of [J, and A4’ is a small and regular configuration, i.e. we

have
A=A+ A, lA’I,I@ZA/Igc’e/’_‘, (2.23)

¢’ depends on ¢ and M. Now we expand the propagator G,((J, A) with respect to
A’. Using formula 1.3.16 we have
G0, Ao) (— 455+ m? + a P )G (D, 4,)
=1—-G'X([0,4y) [F, (= A)*D, +D¥F, (—A)
—F, (- A,)*Fl,k(— A)— aF, (A4 Ao)*Qi(4,)
— Qi (Ag)F, (A, Ag)— a F 5 (A, Ag)*F, (A4, A)1GA(O. 4p)
=:1-GA([0,4.)V,GY*(O, 4,), (2.24)
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where F, ,(4)=n""(U(4)—-1),
(Fy (A A)9) (0= Y 1'F| (A TE)UA(L¥))(x),

xeBX(y)

and F| ,(4)=U(A)— 1. Taking into account the bound (2.23) and the inequalities

1GYHO Al 2> D4y GO A2 2> G H(O, 4g)D,l22=¢o s
(2.25)
holding for some absolute constant c¢,, we can easily prove that

” G;/Z(Da Ao)V};G;/Z(Da Ao)” 2,2 b 0(1)eﬂ>

with a constant O(1) depending on M only. For e sufficiently small, we get the
representation

GO, A) =GO, 40) I = GO, A GO, 40) ™' G/, 4,), (2.26)

and a similar representation for derivatives of G,([J, A), decomposing them on the
right hand side according to the formula D’ =U(A")D" +F, ,(A'). From these
representations and (2.25) we get easily the inequalities (2.15). Thus we have to
prove the bounds (2.25). Using the same gauge transformation as in the proof of
Lemma 2.4, we reduce them to the case A4,=0. Now these bounds are con-
sequences of quadratic form considerations. At first let us notice that [] is a sum of
unit cubes 4 and we have

(D (— AV +mi+aP)>Z Y (b= AT +aP)g). (226

4cO

The operator — 4% " is bounded from below by 7 on a subspace of functions on 4
orthogonal to constant functions, which are its eigenvectors corresponding to
eigenvalue 0. The operator P, is an orthogonal projection on a subspace of
constant functions, thus

(b, (= 45"+ a,P)$> Zmin{n?, a,}| Pl 124 » (2.27)
and from this and (2.26) we get

0<G(O,00=¢ol, c¢o'=min{n*a}, hence |G(O,0)fl,=collfl,-

Further we have (2.28)

10,60, 00f 153 =</ G/, 000} 0,G,'*(0, 00/ >
SLGAO 0 (= A5 +mi +a,PY)GA(O,0 /> =113,
(2.29)
hence [31Gy/*([3,0)], ,=1G/*(0,0007l, ,<1, and this together with (2.28)
imply the bounds (2.25). Thus the Lemma 2.1 is proved.
Remark. Let us notice that this lemma alone implies a weaker version of
Proposition 1.2.1 with L?-norms. More exactly we have

Corollary 2.3. If Q and A are as in Proposition 1.2.1, then there exist positive
constants c,, 0, such that for arbitrary scalar field configurations f,f" defined on Q,
we have

KAGUR AfN, KADL G ASD, KGR ADY [,

. . 2.30
[<f: D}y, uGilQ ADYy [ S coe™ ottCure e IO £l | 7], 230
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The same inequalities hold for 6G(Q,8,, A) with the additional factor
e —do(dist(supp f, 2¢) + dist(supp f’, QC)).

Of course it is enough to prove it for f,f* with supports in unit cubes, and the
proof proceeds as before using only the Z?-bounds of Lemma 2.1. Let us notice
also that now there are no restrictions on supports of f,f”, so in this aspect the
Corollary is a little bit stronger than Proposition 1.2.1.

Now we begin a

Proof of Lemma 2.2. 1t is much longer and will be reduced to some other lemmas
again. We start with the same operations as in the proof of Lemma 2.2 and we
have the representation (2.26) for e sufficiently small, which we can write in the
following form

GO, A)= Z G0, A)(KG(T. 4p))". (2.31)

Now we have to choose A, more carefully. According to our assumptions Ais
constant in a neighbourhood of boundary of [, and we choose 4, equal to this
constant. Thus in the decomposition A= A4,+ A’, the configuration A’ is regular
and has a compact support in [J. The series in (2.31) is convergent in L*([]), but
we will prove that it is in fact convergent in stronger norms appearing in
formulation of Lemma 2.2.

Let us assume that Lemma 2.2 holds for G,([],4,) with constant con-
figurations 4,. We will prove it for a general case using (2.31).

At first let us observe that ¥, can be interpreted as a first order differential
operator acting on a function on the right hand side of it. The only trouble is with
the term D%*F, ,(—A’), for which it is not a natural interpretation. Using the
formula (2.4) and the fact that 4’ has a compact support in [], we have

(DEF i = )N x) = (@"F, (= AN xH-ZI%A Al ey ) D, ) ()
== X (OF (= 4))(x~ne) /()

= X Fl—A(x—ne )U(— 4, (D%, ,f)(x—ne,).
) (2.32)

Thus it is a first order differential operator with small coefficients. Only here we
needed the assumption that A is constant in a neighbourhood of d[].

Now using Lemma 2.2 for G,([J,4,) and the decomposition D= U(A")D’
+ F, (A"), we have

0

GO, Af |4, 0(1)e, Z VGO, 40)"f |, £O(M)e, Y, (OM)ele, )"l f1l,,
n=0
(2.33)
The series on the right hand side is convergent for e sufficiently small, and we get
the inequality (2.16). The inequality (2.17) is proved in the same way.
Lemma 2.2 in the case of a constant configuration A4, is equivalent to the case

of configuration 4,=0 by the same argument with the gauge transformation as
before. Thus we have reduced the proof of this lemma to a proof of the
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corresponding properties for the propagator G,(LJ,0), or to the one-component

propagator G,([0) [G(OJ,0)=G, ()1, 1 is identity operator on R"]. This proof is

based on renormalization group equations (2.43) of [1] rescaled to the -lattice:
k—1

GD)=C"(+ ), a}(Ln)~*GUDQFCY()Q,GI).  (2.34)
ji=1

The expressions on the right hand side above are built with the help of the
operators G'([1)Q¥, CY-*""([7) and we need some of their basic properties. They
are gathered in the following

Lemma 2.4. There exist positive constants cy,0,, and for a<l1, there exists a
constant c,, such that

(G(DOH X, VI I@E G LDOH (. Y Scpe ™%, (2.35)
1 - .
0L G (DO (. y)— (LG (D)QH (X, )
x — x|
écle—éodist({x,x’},y) , (236)
ICO; y, ¥ Scpe” b1, (2.37)

for arbitrary non-negative integer j, arbitrary, rectangular parallelepiped [JCL™IZ*
built of large blocks, and x,x'e [, y,y'e OV =[nZ"

Using this lemma we will prove Lemma 2.2 for the propagator G,([J). Let us
start with the proof of the inequality (2.16). We use (2.34) with j*™ term rescaled to
the L™ /-lattice:

(036N xX) = (TG /) (X))

[x—xI"
1-a
= (LT )N )~ (@O DN X))
I~ "x—n""x
k—1 (le’])l —a
2
" jgl Y ye(Lyn) ~1OW (L)~ *x— (L)~ X[
(@G DIEHLIN) ™ X y)— (@ G (L)~ DN (L)~ x',y)
(CUL) ' DQG(L ' DN, xxel, (2.38)
hence Lemma 2.4 implies
1

[T (0,6, (0).N)(x) = (7, G (DN (X))
=n'""4c 0|1,
+ kil a?(L'y)? ¢, z o~ dodist((Lin) = 1x, (Lin) = 1x'),3)
Jj=1 ! ye(Lin) = 1OW

NCAL) ™ DQ,G (L~ TN

k=1
=0) ¥ @' 1l =il (2.39)
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0
where the constant ¢} is built of ¢, ¢,, Y, e %M, Z (L™9)' 7% We estimate in the

xeZd

same way [(G(()f)(x)l, (3,G,(O0)f)(x)l, and we get (2 16).

Remark. Let us mention here that the above method can be used also to prove
pointwise estimates of G,([J), G,((J, 4), and even G, (£, A), their derivatives and
“Holder-derivatives”.

Now we will prove the inequality (2.17) for G([J). For g=p= 0, it is a special
case of (2.16), but for lack of dependence on a, and was proved above. For g=p=1
we get it by duality argument, i.e. using the fact that the space L*([]) is adjoint to
LY([0). The Riesz-Thorin Theorem implies it for arbitrary g=p from [1, co]. (For
Riesz-Thorin Theorem see Ref. [6].) '

Now we will prove that the operators G,((J), 0]G,((1), G,((J)07* are bounded
operators from LP*([]) with p, >d to L*([0). We will use again the representation
(2.34). Let us consider for example the operator G,([1)0}*:

(GO 1) (x)=n(Cn ™ )2, * N~ x)

+k:21 a; Ln(G(L'n) "' Q¥ CO(Ln) ™' TNQ,G (L'n) ™' TNaL*f)
-((Ij;;nl)‘ 'x). (2.40)
Hence
(GO )X =201~ | £1],,
+’;;1O(I)L"nys(m;ID“)e"j""“”""“y’f(QjGj((L"n)“lEl)ﬁ,f"*f)(y)f
=o(n'~ ““"Ilfllpl+k210 D@L =P fllp, =call £, (241)

o0
for xe [, p, >d, where the constant ¢} is built of ¢,, Y. e~ %] Z (L)t

xeZ4
Again by the duality argument we get that the operator G,([J) and 1ts first order
derivatives are bounded operators from L([J) to L*Y([]), Py +p; =1 The
Riesz-Thorin Theorem gives us finally (2.17) for G,([0) and for all p, g described in
the figure

A (1,1)

(1,p‘;‘)

A

S
s |-
N
lIA
| =

—p"

(0,0) (p7.0)

Thus Lemma 2.2 is proved, or rather reduced to Lemma 2.4.



584 T. Balaban

Proof of Lemma 2.4. At first let us notice that the inequality (2.37) concerning
CY([0) is a special case of Proposition 2.3. The proof of this proposition will be
given in the next section and is based on Corollary 2.3 only. Thus we can assume
that (2.37) is proved.

The proof of (2.35), (2.36) can be reduced again to a simpler case. This part of
the argument is valid for an arbitrary rectangular parallelepiped [ built of unit
blocks, so the inequalities are valid for all such sets. Let us denote ¢=L"7
We represent G,([]) with the help of the propagator G; with free boundary
conditions on de using the multiple reflection method If (0 is written as

O={xelZ":0=x,=M,,u=1,...,d}, then
d
G(O;x,x)=G{x,x)+ Zl G %, (X, ey =X, = &,y X))
e

d
+ Y G (X s M~ E =X X) . (242)
p=1

Using this representation it is enough to prove (2.35), (2.36) for the propagator G .
Now we will construct an explicit representation for G; Let us introduce a
Fourier transform on ¢Z“ by the formulas

fp)=Y e ™ f(x), f()=2m)~¢ [ e*?f(p). (243)

Ipl sn/g

We apply it to the basic equation
(—A°+m} +a,0%0)po=1f . (2.44)
Defining the propagator G, ¢,=G,f, we get
APMolp)+ ajufp) Yup+1) +Dolp +1)=7),

d e_'pi‘—l d e_iép“'—l 2
ufp)=[1 —m— A= Y +mi,
p=1 e H— 1 n=1 é
¢
(2.45)
pel—mal*, [I'=({,...0), l,=2mm,,
. J—1 L—
m, is an integer, — < ;g for L odd,
—IJ , LI
3 gmu<7 for L even.
Solving this equation we obtain the following formula:
ufp'+1)
'+ + ,
3ol +0= g F+ - ST
a; uj(Pl'*‘ll) e
+1). 2.46
w0 ¥ asn’ T 240

YL+ D)
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To calculate G,Q%, we take f=Q%g in this formula, g is a function on the unit
lattice, f(p)=u(p)g(p), 4(p)= Y.e~ " ’g(y), and we get

y

——— up’ +1) 1

G,Q%g)(p' +1)= -

( J jg)(p ) Ag(p/'l’l) . Z |uj(p/+ll)|2
A D)

g®). (2.47)
+1

From this we obtain finally the following formula for (G,0H)(x, ),

(GONEY=2m)~" [ dp

Ip'|=m

el T (x=y) uj(p/ +1)
1
YA

Ju(p'+ 1) A +D
We are now ready to prove the inequalities (2.35), (2.36); for example, let us take
the expression on the left hand side of (2.36):
1

=T (05G,01)(x, )~ (05G,0%)(x', y))
x— x|

+1 (2.48)

=@m~" | dp

p'lsn
1
[x—x'|*

(ei(p’ +1)(x—x") __ l)ei(p’ +D(x"—y)

Z ’ |2
7 (' +01*
4 Y iy A0+ 4'0)
O+ Dup' + DA (p)
A%(p'+1) ’

(2.49)

where
ei‘fpu — 1

d
ANp)= ) le =17 +m?, d(p)= ,
W= ¢
and we have assumed that |x'— y| <|x — y|. [t is easy to prove that the underintegral
expression is bounded because

d d

o) [ 2 <l +ni=o 11

P,
Ip,+1

N
1
1+

u

con ]

/> +m?

2 2 Al
P> +m] (p) <o) PLEm
p +] +m;

< =<
' +1P4+m? = A% +1]) =
05(p + DI= O(V)lp), +1,1,

o(1)

1

ol S0 I
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hence
lup'+ 1) v o el (p’)l ,
(1)>0, (2.50)

and we have
[(the expression under the integral in (2.49))|
pP+m; & 1
'+ +m} = 1+

1 u 1
<o+ ¥ o) ——
M+ 2 o= 1

| a
o)+ 0(1)(122 W) =0(1),

the constant depends on a<1. (2.51)

= ZO P+ 1Flp, +1,]

The expression is a function of p’ and can be extended as an analytic function to
some neighbourhood of [ — &, 7]% It is more troublesome, but equally elementary,
to prove that this neighbourhood can be chosen independently of j and that the
expression is bounded also in this neighbourhood. Shifting the domain of
integration in (2.49) into a complex domain in the direction of the vector x'—y, we
can bound the left hand side of (2.49) by a constant depending on « multiplied by
the exponential factor e~ %01 ¥l = g~ d0disttx.x%3) We get the inequality (2.36). The
inequalities (2.35) are proved in the same way and constants depend on d only.
Thus we have proved Lemma 2.4, hence also theTheorem.

3. Proof of Proposition 2.3 of [1]
The proof will be based on explicit representation for the propagators C%¥(Q, 4) in
terms of G,(€, A) or related propagators. We have the following equality

COQ, A5 y,y)=((4D(Q, A)+aL ™ 2P(A)) )~ 1(y,y)
NlA'|
—(ZM(Q, A) " [dy |A(GU; ) ’
-€Xp [—EGL"_Z Y Q@A) () — 5y, 4M(Q, A)1P>] Y)W ()

zed’
NjA'| N|QUo)|

2
) Fadwl pp*(y)(Z, (2, A) " del, (;_;)
exp[—3al’™? 3 QAW

—3a, ) N Aw)y) = QAP YN =3, (— 4% +mk)¢>}

yeQ(k

Ld—2
—(Z29(Q, )2
@@ (4

NjA| NjQUa]

=(Z(/I1‘)(Q,A)Zk(Q,A))_1(aLz‘:Z) ’ (%) ’
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Jddlg {f Al ;) + (@ (A)P) W) (W*(¥) +(Q(A)P)*(V)
'exp[—%ak 2 WP =3aLl'™? Y (@A) (=)

yeA zed’

—alf®™? Z (04 Z)(Qk+ 1(A)¢)(Z)}}

zed’

-exp[—%alﬂ‘z ZA Qs 1 (A)P)(2)?
—3a, ) I(Qk(A)qﬁ)(y)lZ—%<¢,(~Ag;fg+m,§)¢>}. (3.1)

yeQUN A

The integral in the curly bracket {...} factorizes into integrals with respect to
Ylp) In these we make a gauge transformation y(y)— U(A(I}, )y(y), and we get
integrals which can be factorized with respect to components of y. After this we
have to compute integrals of the form

Fdwlge, {1, w0, ()W)}
'CXP[—%ak Y wz(y)—%aLd_z(L_d > w(Z))Z—aLd_ZL_" Y w(y)CJ,(3.2)

yeB(z) yeB(z) yeB(z)
where C is a component of (Q,, ,(A)¢)(z).
We apply the general formula

| I_[ dx;{1,x;xx,} exp| —

(ix) —3B % xf+Ci X;

_{1 C C \? A +(ng}
" |’NA+B’ \NA+B)/ B(NA+B) B

‘QmN*(NA+B)BY 1)~ 12ex (1 NCE ) (3.3)
Pl2Na+B '
and using the recursive relation a,, , = aLflfal;ak’ we get

W@ A3y, 1) =2 [ddl, {[—"—’;ﬂrZ(Q*(A)QH1<A>¢><y)+<Qk<A>¢)<y)]
~[— L LAQHA, A+ QA

Gt y-2 N Oy
_ L7 2P(A: v,y
2 (A y,y)+ P }

k k
-exp { —34 Q%)\A [(Q,(A)p)()I?
- %ak+ 1Ld— 2 ZA I(Qk+ 1(A)¢)(Z)|2 - %<¢7('— AZ’,I}]) + m£)¢>],

o , (3.4)
Z is of course a normalization factor. Denoting

G, A, A)=(— A%+ mi + a P (A)(Q\B(M) + s 1 L2 Pyy (A)BA) 1,
(3.5)
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we have finally

@A )= (| = EELL QU0 )+ 0,4)] 6,0 4.0
k

| =Bt L20r (A)Q(A)+ Q;"<A>D 0.3

a

a _ -
— g LRy )+ (3.6)

k k

A composition of an operator T defined on the y-lattice with Q(A) or
QF, ,(A)Q(A) can be interpreted as the action of the operator T on properly
defined functions on the y-lattice. More exactly if we define the functions g,(y),
4, +,(y) by the formulas

q,(y,x)=a column of U(A(I'")) for xe B¥(y), 0 otherwise,
G+ 1(y,x)=a column of L™U(A(I} VU, ) for xe B**'(2),
z such that ye B(z), 0 otherwise, (3.7)

then we have
CUW(Q,A45y,y)

a - a - ’ /
= < - "kc;r_lL 2qk+ () +49), G2, 4, A)(‘ “k;_lL 24k+ {0 +aqly )>>
K X

a _ L0
— o LTIy )+ (3.8)

k a

The L*-norms of the functions q,(y), g,.,(y) are equal to 1, L™%* and their
supports are in B¥(y), B** (z(y)) respectively, so the inequalities (1.11), (1.12), and
(1.16) are simple consequences of Corollary 2.3. At this moment let us mention
that the corollary was proved for the propagator G,(€2, A), not for G,(£, 4, 4), but
the only difference between these operators is that G,(€, 4, 4) is, according to (3.5),
defined by L-blocks on unit scale 4, i.e. blocks B**1(z), ze A, instead of unit blocks
BXy), yeA, for G,(2, A). This difference is unessential and the whole proof of
Corollary 2.3 goes on with only slight changes, the most important is that in the
inequality (2.27) for A=B*"!(z), ze A, we have to replace min{n®q,} by
min{n?L~% a,, L%}, but this is also some positive constant only depending
additionally on L. Generally we have to expect that bounds on C%¥(Q, 4) will
depend on L.

Now to prove the inequality (1.14) we have to estimate the difference
G (2,4, A)—G], (@, A). This is easy because on the basis of (3.5) we have

G (2, 4,4)—- G}, (2, 4)
=G A, AlaP(A)~a, L7 Py (ANQ\B )G, ,(2,4),  (3.9)
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and for f, f'e LA(B¥(A)), we get

[KfA(GU(2, A, A) = G, (2, AN f DI =coll fIL 111N,
-exp[ — d,(dist(supp f, supp f*) + dist(supp f, B¥(A°)) +dist(supp f', BX(A9))].
(3.10)
The function 6CP(Q, A) is given by (3.8) with the operator (3.9) instead of

G, (2,4,4) and the inequality (3.10) implies (1.14). This ends the proof of
Proposition 1.2.3. Another proof will be given in the last section.

4. Proof of the Lower Bound for the Quadratic Form A (Proposition 3.1")

We will estimate the quadratic form on the left hand side of (1.18) in several ways,
finally getting all the terms on the right hand side.

At first we have G(Q, A) (@, P,(4)+ m?)|,) "', and the left side of (1.18) can be
estimated from below by

Y [add()? = ald(x)-(Qu(A) (@ P(A) + M) pry) " QGEA) (e, X)(x)]. (4.1)

xe Q)

Each term of the above sum is determined by the integral
§dd | gy exp[—%aquﬁ(X)—(Qk(A)fﬁ')(X)IZ—%m2 ; nd!qﬁ’(X)lz}- (4.2)
x'eBk(x)

This means that the integral is equal to const exp[ —3(the term of the sum (4.1)
corresponding to the point x)]. In this integral we make the gauge transformation
¢'(x)=U(A(I",)¢"(x"), and we integrate over the subspace orthogonal to the
constant functions on B*(x). Then we get

const [d¢” exp(—3alp(x)— "> = sm?|¢p"|?)

_ ’ 1 al% 2>
=const exp(— §<ak— ak+m2> lp(x)* ], (4.3)
and hence
a,m? a
the left hand side of (1.18))> k izt 2 2
(the left hand side of ( ))_x%k) ak+mzl¢(X)l =300 xe;(k)m [p(x)|%,
(4.4

if m*<0(1). Thus a part of the inequality (1.18) is proved.

Now let us consider the set of all positively oriented bonds {x, x> C Q®. This
set can be represented as a sum of 2d subsets B, with the property that each point
of Q belongs to at most one bond in a given subset B, For example we can define
B,,_, asaset of bonds {x,x+e,»C Q® for which the coordinate x, of the point x
is an odd number; similarly we define B,, with the difference that x, is an even
number. For a given B, there may be points which do not belong to any bond of
this set. Let us denote A(x, x') = B¥(x)uB¥(x'). Again separating subsets of by the
Neumann boundary conditions we have
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(the left hand side of (1.18))
z ) [a4lo(0)I* +ald(x)? = ai{$,QA)G(A(x,X), A)Q(A)p)]

{(x,x")eB;

+ > [a ¢ — a;d(x)

xeQ() x does not belong to a bond in B,
(Q(A)G(BH(x), A)Q;(A)) (x, x)p(x)] . (4.5)

Bach term in the second sum of the right side (4.5) is non-negative, as it follows
from the proof of (4.4), so we can omit these terms. Summing the inequalities (4.5)
over B, i=1,...,2d, we get the inequality

(the left hand side of (1.18))

Y [ade()1 +aldpx) — ail{$, QAGA(x,.X), AQFHAP)].  (4.6)

~2d {x,x"yC Q)

Now it is easily seen that to prove (1.18) it is sufficient to prove

a0 + a (x| — g {p, QA)G(A(x, x'), A)QF(A)$>

2 7ol U(A(Cx, X D) (x') = p(x)|*> — O(1)e?p*(e) (o> +p(x)?),  (4.7)

A
a,+0(1)
transform the left hand side of (4.7). Using the regularity condition for A4, we write
A=A,+ A" on A(x,x’) with 4, constant and A" satisfying the bounds |4, [0]4'|
=0(1)p(e). We expand the expression on the left hand side of (4.7) with respect to
A’ using (1.3.15), (1.3.44), and we separate terms of first order in e. Using Lemma 2.1
the remaining terms can be easily estimated by O(e?p?(e))(|p(x)|> + |¢p(x))|?). Now
let us consider the terms of first order. Formally we could rely on the estimates of
perturbative expansions in the third paper [3], but there they were derived in a
different setting, the interaction terms considered on a domain far from the
boundary of basic domains for propagators, so let us repeat this part of the
argument. Denoting ¢ =a,G,(4(x,x"), 4,)0;(4,)p, we have the following
expression

2 Y [(D4,0“)(0)qdM(b )]ed,

bc A(x,x")

+ 2ak Z (Qk(A0)¢(k))(y) . Z ,,]de,,]A/(I;(’kz))q U(AO(I—;(’kz)))(b(k)(Z)

y=x,x’ ze Bk(y)
“2a, ¥ $0)- Y nlend XU ). 48)
y=x,x" ze Bk(y)
Now we have to inspect closely the proof of the Lemma I11.2.4. At first let us notice
that we can “gauge away” the configuration A, using the same gauge transfor-
mation, and we get the expression (4.8) with 4,=0 and ¢(x), ¢(x') replaced by
d(x), U(Ay(x, x"))p(x") respectively. Then using 11.2.75 we have

, . .1 .
with y; independent of k, {x,x"), and A. Then y,=4min {Zd Yoo } We will

BUE= 3 900+ OUAN G X MGE) 9, 26 A ),

(4.9)
(0"9®)(b) = O(U(A,(<x, x M)P(x) = p(x)),  bed(x,x'),
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and this implies the following estimate
|(the expression (4.8))|
4a
o [0()qp()] Y Y nlendl(r )

(1+ 2) y=x,x" zeBk(y)

- [0 ad] T Y tena(,)

y=x,x" zeBk(y)

+ 0(Dep(e)lU(A4,(<x, x"3))p(x) — p(x)I(|p ()] + [ (x")])
S U4, X DND(xX) = p(x)I* + 03~ e’ () (|p(x)I +|p(x)]?)
(p(x)-gp(x) =0 because g is an antisymmetric matrix),
for arbitrary 6 >0. (4.10)
Thus we get
(the left hand side of (4.7))
= (the left hand side of (4.7) with A4 replaced by 4,)
= lU(Ao({x, X D)Np(x) = p(x)|> = 06~ e p*(e) (Ip(x)|* + (X)) . (4.11)

Now it is sufficient to prove the inequality

(the left hand side of (4.7) with A replaced by A,) =5l U(A({x, X' >))P(x") — d(x)?,
4.12)

because this together with (4.11) with =375 and

[U(A(<x, X D)p(x) — (x)> Z | U(A({x, X D) P(x) — p(x)|> — O(1)e* p*(e)| p(x)]?,
(4.13)

give (4.7) with y, =775. Let us notice that the second term on the right hand side of
(4.7) does not appear if 4=0.

Now we will prove (4.12). At first we estimate the left side of it from below by
the same expression with m?=0. Further we “gauge out” the constant field A from
the expression with the simultaneous gauge transformations of ¢ : ¢(x)=¢"(x),
o(x)=U(A(KX', x)))¢"(x"), as in the proof of Lemma 11.2.4. Then the inequality
(4.12) is transformed into the inequality

ald" () + ald" (<) — 4i<$",0,G(A(x,x),00Q5 ¢"> Z y5l¢" (x') = ¢"(x)]*.
(4.14)

We use again the fact that const.exp[ — (the left side of (4.14))] is equal to the
integral

5d¢l|A(x,x’)
-exp[ —3a,1¢"(x) = (Q)(X)I* ~ $a,¢"(x') = () (XN = 3<&', (= A%% )]
4.15)

Denoting 4=B*x), 4'=B4x'), p=¢;(x')—$,(x), and making the translations
O'(y)=d(y)+ ¢"(x) for ye 4, ¢'(y)= d(y) + ¢"(x) for ye A’ in the above integral, we
get
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jd(l),A(x,x/)
'eXP[—%akI(de))(X)l2 — 5 (= 45N D) —3a,/(Q D)X ) — 3. (— A5 M) )
-3 3(; > nl(0"$)(b)+n~ 'wl*| =const exp(—34olw|*), (4.16)
be x,x')

where B({x, x'») denotes the set of all bonds of the #-lattice connecting the block
B¥(x) with the block B*(x), i.e. B((x,x">)={bCT,:b_eB(x), b, e B{x")}. Now we
have to show that 4, >0, more exactly A, =7y, vo >0, and y; depends on d and a
only. It is obvious that the integral on the left hand side and the function on the
right hand side of (4.16) factorizes into the products of the corresponding
expressions for the components of ¢ and . We can assume that ¢ and v are real
quantities. We will use the following simple formula for the Fourier transform of
the Gaussian function:

Jdpexp(—ifyp)exp(—3Agw?) =]/ 2nA, ' exp(—3A4, *&?). (4.17)

Now it is sufficient to prove that 0<Ay ' <y;~*, and 75~ ! depends on d and a

only. Let us calculate the Fourier transform of the integral on the left hand side of
(4.16). At first we transform the last expression in the exponent:

Y @b+ wlP= 3 p@"$)b)

beB({x,x')) beB({x,x"))

— Y TEHEP T Y r@Her.  @18)

. b'eBKx,x")) beB({x,x'))

Let us introduce the notation

{$,4¢) =, (Q,)(X)* +<{¢,(— 45N> + a Q) (X)* + <, (— A5M) >
+ 2 nl@eo)- Y 4@ (4.19)

beB({x,x")) b’eB({x,x"})

The Fourier transform with respect to y of the expression on the left hand side of
(4.16) can be written in the form

[dpexp(— ifw)quﬁexp[—%n" Tot+ X 0" Pk — b)) —3Kd A)

beB({x,x"))
=IdweXp(—iéw)eXp(—%n‘lwz)IMeXpiéb B«Z ,>]n"‘1(¢(b+)—¢(b_))
*eXp _%<¢9A¢>)
=]/ 2mn exp(—in&H(2n)~“(det 4) 2 exp(— 1< Jexwy A e ws2E?),  (4.20)

and we get the formula for A, ':
Ao ' =1+ Sewry A i xs? (4.21)
where
S W= 3 n7H0y—b,)=d"(y—b_)).

beB({x,x"))

Of course both terms on the right side of (4.21) are 20, and n=L"%, 0<n<1. We
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have to estimate the second term. From (4.19) and the definition of f, . it follows
that

<](<x,x’>’ AM lf‘<x,x/>> é <f‘<x,x’>’ Gk(A)f<x,x’>> + <f\<x,x’>’ Gk(A/)f‘(x,x'>>
=2 Y VG4 y,y), (4.22)

y,y'edr

where 4, is any face of the block 4, e.g. 4, ={yed:y,=x, +1—n}. Of course the

expression on the right side of (4.22) is a constant y;~ ' depending on d and a only.
Thus the inequality (4.14) is proved and the proof of Proposition 3.1’ is completed.

Remark. The argument applied in the proof of (4.14) is an example of an
application of “duality transformations”. In our case this is an ordinary Fourier
transform.

5. A General Theorem on Unit Lattice Operators

There is another way of proving Proposition [.2.3, relying on a general theorem
concerning inverses to some unit lattice operators. This theorem is interesting
enough in itself to devote a separate section to it.

At first let us prove that the bounds (1.11) are consequences of
Proposition I1.3.1". The upper bound is quite elementary because

AB(Q, A)+aL~2P(A) = a,] — a0, (A)G,(Q, A)QX(A)+aL ~*P(A)

<aJ +aL~*Q*(A)Q(A) < (a,+aL" 2)1=aa—a’<— I. (5.1
k+1
The operators are considered as defined on L*(Q®). To prove the lower bound we
apply Proposition IL.3.1" to A®(Q, A):

(D, (A(QA)+aL™*P(A))p> 2y, ), UAKx X D)) — d(x)I?

{x,x">C K
+al"? Q;m L™ ) UL Do) =077 3, ld(x)*. (5.2

xeB(y) xeQ()

Now we use again the method we have applied so many times: in the expression
on the right hand side above we separate the blocks by Neumann boundary
conditions, in each block we decompose A=A,+ A" into a constant field 4, and
small field A" and we expand with respect to A" getting the same expression with
A, instead of 4 and a bigger constant in the last sum. Next we “gauge away” the
constant field, and we obtain the Laplace operator with Neumann boundary
conditions for each block plus the projection operator on constant functions. This
sum is bounded from below by a positive constant (more precisely by
1yomin{n*L~ % aL™?}), thus we have

(. (4°(Q, A)+aL™*P(A)p) Z7,<$, $> — O(e* )<, $> 2 V<. ¢>. (5.3)

for e sufficiently small and we get the lower bound. Finally Corollary 2.3 implies
that the considered operator is short-ranged in the sense that for some J,>0

[(A%(Q, A)+aL™2P(A)) (x,X)| Scoe 1, x,x'eQ®, (5.4)
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and a change of the domain @ implies a change of the operator which can be
estimated in the following way

](A”‘)(Q, A)— A(k)(go, A)) (x, X')I < coe—éo(lx—x'| +dist(x, 209¢) + dist (x', Q(K)e)) ,
QCQ,, x,xeQ®, (5.5)

From these properties it follows that Proposition 1.2.3 is a consequence of the
following

Theorem. Let QCZ¢ and let A be a symmetric operator defined on the space L*() of
functions ¢:Q—RYN and satisfying the following condition: there exist positive
CONSLants y,, ¢y, 0, Such that

AZy,0, A X) Scpe ¥ x,xeQ. (5.6)

Then there exist positive constants c¢,,0, such that for arbitrary ACQ and for
C,=A,", A, is an operator defined on L*(A) by A ,=AAA. We have

IC ,(x, X)|[Sce ¥ x,xXed, (5.7)

16C ,(x, X)) gcle—51(|x—x'|+disz(x, AVHS A §C = C —C. (5.8)

If we perturb the operator A by an operator B such that the condition (5.6) is satisfied
for A+ B, and additionally B has the property

B X, x éC e—éo(lx—x’|+dist(x,!2")+dist(x/,9")) , X, XIGQ, (59)
0]

then we have also

A2 06, X) = (A -+ By () S o™=+ a9 e ) g g
(5.10)
The rest of the section will be devoted to a

Proof of the Theorem. The proof goes along the lines of the proof of
Proposition 1.2.1. We start with a construction of a “generalized random walk”
representation. We define the sets

O,=4An{xeZ*: =M <x,—Mj,<M,u=1,....d}, jeZ¢, (5.11)

and we introduce the same partition of unity h; as before. In the sequel we restrict

ourselves to these j’s for which [] j=|=¢. Let us define

C;=Cq,, C=YhCh;. (5.12)
J

We will show again that C is a very good approximation of C, in the sense that
A ,C is almost an identity. We have

Bt i®y
Z;thDchhﬁ; 0,[4, hj]cjhj+j ,;*,., (1—0;)h}Ah,C,h,

=I—-R, (5.13)

AAC=Z/1Ahjthj=Z O;4h,Ch;+ Y- [_—_Ij)hj%Ahjthj
J j
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where
Rzsz,j’Cj’hj’a Rj,j=—Dj[A,hj]Dj, Rj’j,=—(1——Dj,)hJ?Ahj, for j=+j.
J

(5.14)
It is natural to interpret R; ; as an operator R; j,:LZ(D j')—>L2([| ;), similarly
R; ,C;h;. We have

IR, o6 ) = A e, ) () — B () < cge 2oy X=X

M bl
IR 5063 =11 = C1,) A, Xy ()] < (L 00, (g™ Th ()

—1 —x'] =1
Scpe Holxm¥lgms oM for xe;, x'el;,

x,x'ed;,

and these estimates imply that the norms of the operators R; ; have bounds
IR; I Soe™ 22l (5.15)

for o depending on M and arbitrarily small if M is sufficiently large, , depending
on §,, e.g. ,=%5,. From these bounds it follows that

IR|| <max {sgpzl l!Rj,,»»ll,sng HR,»,,-«H}yO‘1 Sap ' Y e

jezd

is small for M large and

C,=C(I-R)"'= Z CR", (5.16)
which can be given a random walk form:
CA=Zhwonohwon1 wzcwzhwz szn~1,w2n wznthn’
w=(wy, 0, ...,0,,), 0; are arbitrary indices j, but satisfying the restrictions
max lwzl W= Oypy ST for i=0,1,...,n—1, nz0. (5.17)
n=1,

Let us now prove (5.7). We have

JCA(X,X/)I Z '<5x’ wo a)o ‘ szn—1,w2ncwznhw2n5x'>l

w:x€ ey, X' €0 e
0 2n

gZ/ ,yg(n+ l)ane—(72|w1—wzl' e 2oz w2
w
0
—(nt+1 ddr\n
= Z Z Vo( Ja(e??)
J,Jjixeldj,x'edj ln=1
Z e d2li—al, .6“52|J'2n—1—j'l_|_y(‘)‘ ledéze—thlj—j'l . (518)

To investigate the sums above, it is convenient to take the absolute value |j| defined
by ljl= ), i,l; then the sum over j’s factorizes into sums over components. If we

u=1 .
define g,(j)=e %V, jeZ, then the sum over js in (5.18) can be written as
d
11 92nGu—Ji)> 92n=g;*...%g, is a convolution of 2n functions g,. The Fourier

n=1
transform of g, is equal to
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1—e 2%

(1—e P92 (1 —eiP~92)’

2 e iPip—dalil =(1 _e—ip—éz)—l +(1 _eip—62)~ 1_ 1=
JjezZ
so we have (1—e22)
—e 2)n
0) 2n _j,[ pe (1—e e 22)

oy 9.0=9,lh, (.19

1—eé'Pe
and from this we obtain

l9,()| £ che ™ #2H, for some c, . (5.20)
Finally we fix M such that y, 'ae?2c2?<1, and we get
1 i i
IC (x,x)| < NP ————
8 J',}"ixEC%,x’sDJ 1—ypg te®2c3%
Scyem #aMT =X (5.21)

This inequality implies (5.7) with §, =16, M ~*. The inequality (5.8) is proved using
the representations (5.17) for both operators C,, C, and properly taking into
account cancellations of some terms, exactly as in the proof of bounds for
0G,(Q,Q,, 4) in Sect. 2.

We define [} by the equality (5.11) with Q instead of 4, and C;=Cp . If (7} is
disjoint with the complement A%of Ain @, then [;=; and C}= C Slmllarly if
both [0, [} are disjoint with A¢, then R; =R, Let us take a dlfference of the
representatlons (5.17) for C, and C,,. In this dlfference all terms corresponding to
walks « with [, disjoint w1th A° are canceled, and we have

0C 4(x,x)

= Z <5x, ha)ocwothRQl wzcwzhwz s Reg, g, wZnsznhwz 15“ >
@:x€ 0wy, X'€Me,,,
for some ll%lw nAcF ¢
’ 4 4 /
— Z <5x9 hwocwothRwl wzcwzhwz : sz -1.W3n 2nhw2n5V >
@' :xe 0wy, x'€0wy,,
for some iOepnA°F ¢ (522)

The range of w; in the second sum might be larger because 2D A. Estimating (5.22)
in the same way as in (5.18) and (5.21), we get

|0C 4(x, x)| S e $02M ™ dist e, 49 Fdist(x', A9 F =] (5.23)

A proof of the last inequality (5.10) is very similar, although a little bit more
awkward. We form the representations (5.17) for A, ' and (4 + B); ', and we take
their difference:

AZI_(A+B)A Z[hwoc A)wo wo ( )(m,wz

“C(A),,h - ... -R(4) C(A4)

~h,,,C(A+ B), h, R(A+B) C(A +B),,,h
‘R(A+B),, . ., CA+B),, h, ]

=) [14,,(C(A),,,— C(A+ B),, )h, R(A)

Wy, 2 Wty e

CA) b - ...

1,02 2

+hy, C(A+ B), o (R(A),, . — R(A+B)
C(A), hy -+ ] (5.24)

w2 ‘92

o wo( @i, wz)
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From the definition (5.14) of the operators R; ; we have
R(A4); ;—R(A+B); ;=—R(B), ;,

and from the condition (5.9), we get the estimate

”R(B)j,j’ | <ae” 821 J'l o = do(dist(D;, 2¢) +dist(0 7, 29)) (5.25)
Further we have
C(4);— C(A+B);= AE),I —(4+ B)E,j1 = AEJ}BDJ_(A + B)E,j1 , (5.26)
and
1C(A);— C(A+ B)j|| Syq *cpe™ 204 B2, (5.27)

The equality (5.24) and the above estimates imply
|44 (x, x') = (A+ B) ;' (x, X')|

/Ny (nt2) 0 ddr\n,—d2|wo— w1, L, 02— 1~ @
Z oY oc(e 2)8 2|wo— w1 e 92lom- oo

IIA

@:x€0 wy, x'eDwz"

n n
(Z o~ 2%0dist(Doy, 29 | Z e—ao(dist(mmz,_,,ncwdisn(mwz,,ncn)
i=1 i=1

<o 302M” ‘(dist(x,!?c)-!-dist(x’,ﬂ“))y(; ZC/OeZdéz 1 s o~ FoaMtx—x|
= — 1 2 .
1—yq "4e™2c5

Thus Inequality (5.10) is proved. The constants J,, ¢, are functions of d,, ¥, ¢y,
and from the above proof we can get more precise estimates for them.
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