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Abstract. We determine the statistics and the spin of isolated Yang-Mills
monopoles in eigenstates of their electric and magnetic charge. Exchange of
solitons is defined using the translation operator of a companion paper and
under exchange, state vectors representing N identical solitons change sign
precisely when the angular momentum of each soliton is half-integral.

I. Introduction

The symmetries of classical mechanics can be understood as expressing a freedom
in the relation between a subsystem and its environment. When this environment
is neutral in some neighborhood of the subsystem - when, for example, the forces
due to external matter are small - it makes sense to translate or rotate the
subsystem without altering its internal state. Then the invariance of the total
system's action under such changes implies the conservation of the momentum
and angular-momentum of the subsystem.

In gauge theories, an invariance of the vacuum (neutral environment) under
some global gauge-transformation implies a further freedom, one which is
exercised by applying the transformation to the subsystem but not to the
environment, just as one rotates a subsystem by applying "rotation" to it but not
to the objects around it. Here again symmetry leads to conservation laws, for
example to the conservation of the electric charge of the subsystem in theories with
an unbroken phase-invariance.

When such "internal" gauge-symmetries are present alongside spacetime ones
any symmetry operation can be composed with an "internal" one without affecting
its geometrical content. In particular the operation of exchanging a pair of
indistinguishable subsystems (which might be single particles) via a sequence of
translations through the vacuum is ambiguous until one specifies which of the
gauge-equivalent versions of translation is to be used at each stage.
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For identical particles with only an overall U(l) freedom one can resolve this
ambiguity locally by requiring that infinitesimal translations in different directions
commute. This yields a physically appropriate exchange, but one whose result
need not be the identity operation. When it is not, the particles (or subsystems) in
question are not acting like bosons, and this can happen even in a theory in which
the fundamental fields are tensors quantized via canonical commutation relations.

The prototype of such an "anomalously fermionic" subsystem is what we will
call a "Dirac-dyon," a system consisting of one particle with electric charge QE and
one with magnetic charge QB. A Dirac-dyon whose constituents are bosons has
half-integral angular momentum when the angular momentum QEQB due to the
electric and magnetic coulomb fields is half-integral [1]. In a Yang-Mills-Higgs
field theory, the 't Hooft-Polyakov monopole [2] is an extended object that looks
from afar like a magnetically charged particle and by adding a charged boson
field to the extended monopole, Jackiw and Rebbi and Hasenfratz and't Hooft [3]
obtained an extended dyon in which the angular momentum is again half-integral
when the product QEQB of the total electric and magnetic charge operators has
half-integral eigenvalues.

Dyons constructed from point particles and having half-integral angular
momentum exhibit fermi statistics. When the separation between two identical
dyons is large compared to the size of each dyon and one interchanges the dyons
by a simultaneous translation of each to the position of the other, the gauge
transformation that accompanies the translation of charged particles in a mag-
netic field changes the sign of the wave function [4, 5]. More formally, the
configuration space of TV separated dyons can be decomposed into a product of N
bundles, the configuration spaces of the individual dyons. And the spin-statistics
relation is recovered for the unique dyon interchange that corresponds to this
decomposition.

One expects that in the asymptotic limit, charged Yang-Mills-Higgs mo-
nopoles will behave like separated Dirac-dyons and that a spin-statistics relation
will hold here as well. We find that this expectation is in fact correct. However, in

the Dirac quantization condition QEQB= -, the electric charge is replaced in the

e2θ
θ-vacuum theory by a linear combination q = QE -\ QB and monopoles are

2π
bosons or fermions when qQB is integral or half-integral, respectively.

By means of the monopole translation defined in the companion paper
(Paper I), we establish in Sects. Ill and IV that dyons with half-integral spin are
fermions and dyons with integral spin are bosons1. (Dyon = monopole in an
eigenstate of electric and magnetic charge.) We show first that if one interchanges
two identical distant dyons by simultaneously translating each to the position of

1 The statistics of Yang-Mills dyons was previously discussed by Ezawa [6] who claims to show the
existence of dyon creation operators satisfying anticommutation relations. However, we believe that
the key equation, (2.9), of that paper is false because the element Ω(θ = π,φ) of SU(2) appearing there
does not have the value — 1 (instead, its square Ω(θ = 2π, φ] is — 1). Thus what is really shown is not
that the (gauge-dependent) operators denoted "φαW and "φb(Y)" in that paper anticommute, but that
their anticommutator does not vanish
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the other, the state vector changes sign precisely when each dyon has half-integral
angular momentum. This suggests that the space of state vectors describing N
identically charged dyons ought to decompose as a properly symmetrized tensor
product of one-dyon state spaces. In Sect. IV we verify this for state functionals ψ
defined on an "asymptotic" configuration space representing the R/1-+Q limit of N
monopoles with arbitrary internal configurations. In their interaction with each
other identical dyons are thus fermions or bosons in the strongest possible2 sense.

Our result is reminiscent of much earlier work by Finkelstein and Rubinstein
[7], who establish a spin-statistics theorem for the interchange of "kinks."
Beginning with a non-simply connected space of field configurations, they show
that a theory whose configuration space is the associated covering space admits
double-valued representations of the rotation group precisely when an interchange
of kinks by translation can be nontrivially represented. However, we have been
unable to interpret our results as a consequence of their general arguments. In the
first place the effective configuration space is for them larger than the space of field
configurations, whereas in a gauge-theory it is smaller. Moreover, the Finkelstein-
Rubinstein definition of vacuum does not apply here because the fields (in
particular the Higgs field) are not constant in the Higgs vacuum that separates the
monopoles. Nor, for this reason, can monopole exchange be accomplished via the
naive field translations they use to define kink exchange; instead, the naive
translation &r(r)->&:(r—ά) is accompanied by a gauge transformation, as was
discussed in Paper I. Finally, their basic lemma that kink exchange is homotopic
to kink-rotation is vacuous here because the space of field configurations is simply
connected3.

II. Formalism

Our notation and definitions will conform to those of Paper I. In particular, J^ will
denote a triplet (Aa

i9 Φfl, σ1) of fields on IR3, an SU(2) Yang-Mills field (in a
temporal gauge), a Higgs field, and a spinless isodoublet σ1. Here 1,7, . . . are spatial
indices, α, b, ... are Lie algebra (so3) indices, and /, J, ... are indices in the space of
the two-component isospinor σ1. By a configuration \_^~\ is meant an equivalence
class of fields, where [J ]̂ = {βF'^<=>3F' = U^, where U is the gauge transformation
associated with a map U :IR3— >SU(2) that is asymptotically the identity. We
denote by ^N

m the space of configurations [J ]̂ which describe N distinct

monopoles of magnetic charge g= -- with fixed asymptotic gauge. Precisely,
e

if the following conditions are satisfied :

,

2 What is not possible is to have a tensor-product decomposition when unlike dyons are present

3 By restricting consideration to the subspace <£N of N-monopole fields we could get a topologically
non-trivial configuration space. But the homotopy in [7] converting exchange to rotation proceeds via
the creation and annihilation of kink-antikink pairs and thus would not be expected to have an
analogue remaining within the N-monopole sector
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there is some R > 0 and N disjoint balls βa of radius R and centers oα for which 3F is

Higgs vacuum outside (J βa - that is,

where τ\ = rl — o\ F j satisfies

m β. i / *

and Φα vanishes at each point oa and nowhere else. The space ^N

m is a fiber bundle
with fibers isomorphic to the JV-fold product U(l)x ... xU(l), and two con-
figurations [«̂ ], [^'je^H belong to the same fiber if they have the same
monopole locations and internal configurations, i.e., if for some phases ua(χa) = eιχ*
the associated U(l)-rotations wα(χα) of the monopoles at {OΛ} transform ̂  to 3F' ' :

where

u ( )=|W^)^ rα<Λ + ε

~eUW 1̂ , elsewhere, ( '

with (7α(χC() = exp(ίχα/Φατα), / any smooth function equal to 1 outside ra = R + ε.
The corresponding N-dyon state space of functions ψ on e£N

m for which each
n

monopole has electric charge n- is denoted J ,̂ and ψe34?£n iϊψ is homogeneous

of degree n with respect to each U(l):

Operators on ̂ N

m corresponding to infinitesimal translations and rotations of
individual monopoles were defined in Paper I, Eqs. 1(58) and 1(59). The change in
[J ]̂ arising from the infinitesimal translation of a monopole at oa along the

constant vector field n1 is written δn\_^~\, and the change arising from an

infinitesimal rotation along a rotational vector field ξl: = εl

jkn
jra

k is written δξ[&"].
The commutator of two translations is [Eq. I(54a)]

• Σ^α'(^7 /cK')^k); (7 a)
α'

where ^α(χ) denotes an infinitesimal U(l)-rotation; while single monopole trans-
lations commute with overall translations of the field ̂  (denoted

(7b)

III. Exchange of Monopoles by Asymptotic Translation

We saw in Paper I that an N-monopole configuration [^"]e^N is not fully
determined by the locations and internal configurations of the monopoles, that
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there remains for each monopole a further phase degree of freedom, expressing
how that monopole fits into its environment. These extra U(l) degrees of freedom
make possible the "anomalous" appearance of dyons of half-integral spin and, as
we shall see, fermi statistics in a theory constructed only from vector and scalar
fields.

More precisely, we will show (Theorem 2, in Sect. IV) that in the asymptotic
limit of large monopole separation, the Hubert space Jtf^.n ^as a decomposition in
terms of 1-dyon Hubert spaces

where J^1

 n is itself the tensor product of spaces representing the internal and
£

external degrees of freedom of a single dyon of charge n—,

When the product mn is even, ^f^n will be the symmetric subspace of
3^mn®> ®^mn> and when mn is odd, the antisymmetric subspace.

To begin with, we show that dyon exchange realized via the asymptotic
translations defined in Paper I is equivalent to a U(l) rotation by mπ of one of the
dyons. Together with our earlier result that the 2π spatial rotation of a single
monopole is also equivalent to a U(l) rotation by mπ, this provides a heuristic
spin-statistics relation, reminiscent of that in Finkelstein and Rubinstein [7].

We then carry out (in Sect. IV) the above mentioned decomposition of Jήf^ n,
which allows one to speak of dyons as particles with well-defined statistics. Here
again we employ the notion of asymptotic translation, this time in the guise of a
connection on a bundle of asymptotic 7V-monopole configurations. In this
discussion, the mathematics is very close to that used in [5] to derive a spin-
statistics theorem for dyons composed of point electric and magnetic charges.
Only there the relevant U(l) degree of freedom had been introduced ad hoc in
order to get an action principle for the system of elementary point charges. Here it
arises from the phase ambiguity automatically associated with each Yang-Mills
monopole, or, in other language, from the fact that ΉN is a bundle over the space
JίN of monopole locations and internal configurations. It is ultimately the
structure of this bundle that determines dyon statistics, and in Sect. IV the
asymptotic translations will serve simply as a convenient means of deducing this
structure.

Were one concerned only with SU(2) theories, parts of Sect. IV would merely
be duplicating the derivation of the minus sign accomplished more suggestively in
the present section. However, we have chosen to present an ab initio derivation,
because the method adopted in Sect. IV should carry over without change to any
theory in which - as here - the spontaneous symmetry breaking leaves one with an
effective U(l) gauge group.

Let us consider a state vector ψ in the two dyon state space 3tf£n and suppose
that \p has support on configurations in ̂  for which the internal configurations of
the monopoles are identical. We will exchange the monopoles of such a con-
figuration by translating each of them to the position of the other, in accordance
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with Eqs. 1(53) - i.e., in the approximation that each is translated in a constant
coulomb field due to the other monopole. After the exchange has been completed,
the final configuration will differ from the original only by U(l) rotations of the
monopoles and we shall see that the effect of these U(l) rotations is to change the
sign of ψ(^) precisely when mn is odd.

Denote by β± the balls of centers o± and radius R containing the two
monopoles; let / denote the monopole separation \o+—o_\. We will consider the
exchange E that results from translating each monopole along an arbitrary path to
the position of the other monopole, in accordance with Eq. 1(53). With the help of
three lemmas we can prove the main result of this section.

Theorem 1. Let tpe^fm

2

n have support on configurations \_^~\ for which the
n

monopoles have the same internal configuration. Then to leading order in λ = —

Eιp = (-l)mnιp. (8)

Without altering the asymptotic conditions (1), we can pick r = 0 to be mid-
point of the monopoles. Let nl be a unit vector perpendicular to the plane of
the semicircles o±(t). Then ξl = εl

jkr
jnk is the rotational symmetry vector tangent to

o±(t\ and the corresponding rotational symmetry vectors that generate rotations
about the rc-axis through o± are

C±=?-?(o±(t))^? + ?0(t). (9)

Lemma 1. The simultaneous infinitesimal translation of β+ by ξl

0 and β_ by — ζ l

0 i s
equivalent to an infinitesimal (counterclockwise) rotation of 3F by ξl together with
infinitesimal (clockwise) rotations of each monopole by — ί+, respectively.

Proof of Lemma ί. We need to verify that

(δξ-δζ+-δζ_) = (δξo-δξo) (l + 0(λ))9

+ —
where δξo and δξo are the infinitesimal translations by ξl

0 of β+ and β_ respectively.
First, because r-n=^(r+ -n + r _ -ri) + 0(r~2\ δξ as given by Eq. 1(32) is equivalent
to

δξ=-ξj@.-A[m(f+ -

Equation 1(55) then implies

.nΦa), reβ± , (lOa)

(10b)

-
where in the last equality we used Fa

ij = (Fij + Fij)Φa, re/.
On the other hand, from Eqs. 1(53) we have (to leading order)

reβ± , (lla)
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(δ -δξ)Φ« = 0=(L -δξ)σ'
re/. (lib)

Equations (10) and (11) differ only in the arguments of Δ in Eqs. (lOa) and (lla).
To compare them, note that for reβ+,

using \ξ0\ = \o+ , \r\ = 2\o + \(l+0(λ)), reβ + . Similarly, for reβ_

+

Thus, as claimed, Eqs. (10) and (11) differ only by O(λ).

Lemma 2. Let \_&~\ e ̂  be a configuration whose monopoles have the same internal
configuration and are centered on the y-axis. Then there is a representative ^Έ \JF~\
for which

#r(r) = R(πz)#r(r)9 re/ . (12)

In Eq. (12), R(πz) is the "naive" π-rotation 1(35) of 3F as a vector and two
scalars about the z-axis through the midpoint of the monopoles.

Proof of Lemma 2. By a gauge transformation in °̂°, one can rotate Φa for r± >ε
to any other (smooth) isovector field of the same magnitude and the same Euler
indices at o + . In particular, let

(13a)

and, in accordance with (10),

Φa = R(2mφz)a

bx
bsmθ + zacosθ, r>2l, (13b)

where (r±9θ±9φ±) are spherical coordinates about o±.
Then Φa[R(πz)~1r~] = Φa(r) outside r = 2l and in the shells about β±9 and one

can smoothly interpolate a field Φa in the intervening region with this symmetry
under π-rotation. Figure la shows an example of such a field for m= 1 monopoles.

Now in the intermonopole region / one can find A" with the symmetries of Φa

as follows. In /, DtΦ
a = 0 implies that there is some Ά{ for which

and

Faij= -Ba

bcdiΦ
bdJΦ

c + Φa(diΆj-djA:). (14)

Since Fa

tj and Φa are invariant under Φα, Eq. (14) holds with At(r) replaced by
RAjM^RJAjiR'ir). Then if 2Aί: = Άi + RAi, a vector potential for Fa

tj invariant
under R(πz) on / is

ί. (15)
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Fig. 1. The Higgs field in the x — y plane of two m= 1 monopoles is shown at stages of the translation ̂ t

of each monopole to the position of the other. Figures (a)-(d) illustrate 3Ft of Eq. (24), except that here
we have fixed Φa near the center of each monopole: Thus U( — tza) in (24) has been replaced by the
^°°-equivalent transformation U(-F(r±)tza\ where F(r) increases from 0 to 1 for O^r^R. Between (d)
and (e), the 2π twist outside r = 2l has been pushed inwards, untwisting Φa in the upper monopole, but
leaving a 2π-twist around the lower one. The equivalence between E2F and R(2π)^ is visible as a
homotopic equivalence in the x—y plane of the Higgs fields that result from exchange and from
rotation, when Φα is fixed near o± and outside r =
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To extend ̂  = (Aa

t, Φα, 0) to β±, choose any gauge inside that agrees with (15) at
the boundaries dβ±. The resulting 2F satisfies (12) and by Lemma 3.1 differs only
by U(l) rotations from [̂ ]. Finally, because U(l) rotations of the form (5) with
/ = 1 are the identity for r± ^R, we can U(l) rotate 2? to make [J ]̂ = \β*~\ and
retain the symmetry (12) on /. Π

Corollary. Let \β?~\ be as in Lemma 2. Then there is a field ,̂ U(l) related to & ,
satisfying Eqs. (13), and such that

(16a)

(16b)

(16c)

Proof. For r± ^# + 2ε, let J* be as in Lemma 2 with Φa given by (13). Then

(17)
±

is a vector potential for Fa

tj in the shells R^r± ^R + 2ε, where Ae

t

xi given by 1(41)

is a vector potential for eFeK\j = eFij. Let Aa

i have the form (17) for R^r± ^R + ε
and match it to the Aa

i of Eq. (15) outside r+ =R + 2ε by setting

Aa

i = εa

bcdiΦ
bΦc + ΦaA^t-DilΦ

af(r±-ε)h±']9 R^r±^R + 2ε, (18)

where d.h+ = Aext — Aί and f(r± — ε), as in Eq. 1(39), rises from 0 to 1 in the shell
R + ε^r+ ^R + 2ε. Within β+ let 3F have any gauge consistent on dβ+ with
Eqs. (13) and (17).

It remains to specify 3F in /?_. Because [̂ ]+ =[^]_, J^lnte[^]_, where

^\r + o_)=υ(mπz)^\r + o + }, r^R (19a)

moreover, Eqs. (13a) and (18) imply that (19a) holds at dβ_. We may therefore
specify ^ in β_ by Eq. (19a). Then for r^,

φ«(r + o _) = Ra

b(mπz) Φb(r + o + )

σ\γ + o _) = U(mπzYj σj(r (19b)

Now for r± ^.R + 2ε, ̂ .-oμ2)^. and A™\ = 0(λ2}£\cdiΦ
bΦc. Then Eqs. (16a-b)

follow from (18) and the fact that At and Φa are invariant under R(πz); and (16c)
follows immediately from Eqs. (19). Π

Lemma 3. Let ̂  with [̂ ]e^ satisfy Eqs. (13) and (16). Lei £[̂ ] be ίΛe
exchange that results from parallel transporting each monopole counterclockwise to
the position of the other. Then, to leading order in λ,

(20)

where R_ is a 2π rotation of β_.

That is, when [J ]̂ has the particular U(l) relation between its monopoles that
results from our imposed symmetries, monopole exchange is equivalent to a
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2π-rotation of a single monopole. This is illustrated for the Higgs field of two m— 1
monopoles in Figs. l(a)-(d).

Proof of Lemma 3. As in (9), let

£(ί) = ξ'(o+(t)), C'±(ί) = £' + £(«).

From Lemma 4.1, E^ = ̂ t = π, where ^t = 0 = ̂  and

^-[Sί-^w-Wί (21)

From Eq. (34a) with Euler index 2m, we have

<5^-£ξ + Λ(ΐ2mz«), (22)

where we may take f = 0 for r^2l, f = 1 for r^2/ + ε. From Eq. 1(56) (which holds
for ^ satisfying (13) and (16b)),

elsewhere,

where r±(ί) = r— 0±(ί). Equations (21)-(23) imply

I Ulή(r)2mza^R(tz)^(r) , elsewhere . l ;

Then, by Eqs. (16)

( U\_\2nmza']^(r) , elsewhere .

Finally, if g(r) = [_ί — f(f")]/(r_) then, because f̂ = 0 outside r =

and, renaming UE^, E^ ', we have

r_

elsewhere

Proof o/ Theorem 1. We are to show, for any ̂ e^2

m whose monopoles are in the
same internal configuration, that

Observe first that for given initial monopole positions, one exchange differs from
another only by the translation of each monopole about some closed loop. By
Eq. 1(54), any two exchanges E and E are then related by U(l) rotations in the
manner

E = u+(χ)u_(-χ)E,
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and we have

V>(E[#"]) - ein(χ -*}(£[Ό = V>OE[Ό

That is, all exchanges are equivalent on Jtf^n
If the monopoles lie on the y-axis, Lemmas 1-3 imply there is a field ̂  related

to ̂  by U(l) rotations of the monopoles,

and such that

Since R_(2n)\_^~\ = u_(mπ}^~\, we have

^[^])=(-i)
Because U(l) rotations commute with monopole translations,

Therefore

If the monopoles are not on the y-axis, they may be first translated to the axis,
then exchanged and then translated back. The resulting exchange has the form
TΈT" 1; and, since £ is a product of U(l)-rotations, it commutes with the
translation T. Thus TET^1 =E and Eq. (8) holds for this case as well. Π

In our discussion the basic result (Lemma 4.3) was the fact that for a
symmetrically chosen field 3F , exchange by translation was equal modulo °̂° to a
2π-rotation of one of the monopoles. This feature of the exchange can be
visualized by looking at the Higgs field as in Fig. l(a)-(e).4

V. The Asymptotic Fock Space

a. The Asymptotic N -Monopole Configuration Space. The limit Λ,->0 in which
monopole separation is large compared to the size of each monopole can be

4 In fact it seems evident that the U(l) character of the bundle ̂  originates in the way in which the
positions of the monopoles determine the possible configurations of the Higgs field Φa and specifically
in how Φa necessarily contorts as the monopoles move about. To clarify this might result in a
derivation of monopole statistics conducted entirely in terms of the Higgs field as envisioned in [8].
However, the claim in that reference that monopoles can display spin —1/2 in the absence of the
isospinor field σ is erroneous. It appears to result from the unwarranted interpretation of a monopole
as a "symmetric top". Such an interpretation is contradicted, for example, by the study of exact
monopole solutions in [9], which finds four (three translational plus one phase) degree of freedom for
each monopole, not 6 = 3 + 3 as would be the case for a "top"
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realized formally by maintaining the location of the monopoles and shrinking
their radius R. One can make this idea precise by introducing the direct limit as
jR->0 of the bundles ^N(R\ the configuration spaces of N monopoles of radius
^ R. A limiting bundle $N exists because for R' < R, ^N(R) is isomorphic to the
sub-bundle of ^N(R) in which monopole separations are greater than 2R :

Proposition. ^N(R)^^N(R)\{l^e^N(R) with \oΛ-oΛ,\^2R, some α,α'} via a
bundle isomorphism that preserves the monopole positions oa.

An explicit set ® of isomorphisms is given in the Appendix.

Definition. $N is the direct limit of the sequence of bundles ^N(R) with respect to
the isomorphisms of S. Then ΦN is a bundle with fibers isomorphic to
U(l) x ... x U(l) and in which the monopoles' locations are constrained only by
the requirement that no two monopoles coincide, oa Φ o'Λ.

One may similarly introduce the sub-bundles ̂  of $N :

Definition. ^ is the direct limit of the sequence of bundles ^J[(jR). Because the
fibers of ̂  are again isomorphic to U(l) x ... x U(l), asymptotic Hubert spaces

/?
JΊf£n representing monopoles of magnetic charge mg and electric charge n- can be

defined in accordance with Eq. (41) as the functions on ̂  homogeneous of degree
n with respect to each U(l).

Definition. ^n = {ψ^L2(^) such that the restriction of ψ to any fiber has the
form ψ0e

ιn(χί+ •" +XN\ where χ ί 9 ...,χN are N phases parametrizing that fiber}.

Remark. In the special case N= 1, the limiting process is superfluous and (t1 =#1,
^n = ^mn (strictly, tf^(R) for any R).

The aim of this section is to show that ffl^n is the symmetric or antisymmetric
subspace of the tensor product ^n® ... ®^n °f N 1 -monopole Hubert spaces,
when mn is even or odd, respectively.

This characterization of dyon statistics depends ultimately only on the
topological (or, more properly, bundle theoretic) character of ̂ . In fact the
internal monopole degrees of freedom play an inessential role in determining dyon
statistics and we may begin by studying a smaller bundle from which they have
been frozen out. They will be restored in Sect. Ve.

Let us fix, then, a particular internal monopole configuration Σ and consider
the sub-bundle B of ̂  consisting of pairs of identical monopoles each with unit
magnetic charge, and internal configuration Σ. This restricted configuration space
B has fibers isomorphic to U(l) x U(l), and the isomorphism is unique up to an
action of U(l) x U(l) or an exchange of the two U(l)'s.5 The base space M of B
consists in effect of unordered pairs of distinct points of IR3, each specifying the
location of one of the monopoles, the point where the Higgs field vanishes.

b. The Labelled-Monopole Bundle and Its Exchange Automorphism. To help
determine the structure of B let us introduce a second bundle B, obtained from B
by "labelling" the monopoles. In other words a point of B is a configuration ̂  in
B augmented by an arbitrary ordering of the unordered pair of monopole centers.

5 The group of the bundle B is thus not U(l) x U(l) but its semi-direct product with
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Thus B has base space

M = IR3xlR3\diag = {(o1,o2)elR3xlR3 |o1Φo2} (26)

and is formally the pullback,6 *t(B\ of B over the projection ί : M->M which takes
the ordered pair (o1,o2)eM into the unordered pair {o19o2}εM.

The advantage of introducing B is that in it the U(l) acting on the "first"
monopole does not get confused with that acting on the "second" monopole. In
consequence B admits a globally defined action of U(l) x U(l):

&^Γ(uvu2W, (27)

M 1 5 w 2 eU(l), ^e£. Thus B is a principal fiber bundle. Moreover, the parallel
transport defined on <&N(R) by Eqs. 1(53) commutes to leading order in λ with the
set 6 of isomorphisms ^N(R)-^^N(Rf). It therefore induces on B an exact
connection whose curvature is specified by giving the U(l) transformation that
corresponds to vectors (n\, nl

2} and (n\, nl

2) in the base space M. That is, the result of
translating o1 around an infinitesimal loop in M spanned by these vectors is, from
Eq. 1(54), the transformation Γ(ι/1?ι/2), where

2

j ) , (28)

A principal bundle with connection will be called a gauge space.
Let us define further Γl(u) = Γ(u, 1), Γ2(u) = Γ(l9u)9 which explicitly "untangles"

the 2 U(l)'s. By ignoring the phase associated with the second (first) monopole we
obtain from B a U(l) gauge space B1 (B2) acted on by Γx (Γ2). Formally 51 is the
quotient of B with respect to the action of Γ2 and vice versa :

B,=B/rl9 B2 = B/Γ2. (29)

Thus a point ^eB gives rise to a pair of points ^e£ , and conversely it is clear
that any such pair determines a unique point of B. In other words, B (including the
connection) is the fiber product1

B = BlxB2, (30)

and its study, thereby reduces to that of a pair of simpler structures - U(l)-gauge
spaces - over M.

Let us study Bv By definition, its connection prescribes how the phase of the
"first" monopole changes under arbitrary translations of both monopoles. From
(28), the curvature 2-form of B1 is

j, (31)

6 "Fullback" is defined, e.g., in [5]

7 The fiber product of bundles BVB2 over M is the bundle B whose fiber over any point x is the
product of the fibers over x of Bl and B2. We have in effect merely used that when the group of a gauge
space is a product, G = Gίx G2, the space itself is the fiber product of gauge spaces with groups G15 G2
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k

where yί2 = o1 — o2

 anc* Ftj(y)= ljk

3 (recall that m=l). As shown in [5], this

uniquely determines both the bundle structure and the connection of Bv to be
those of the pullback over yί2 (regarded as the map (ol9o2)->y12) of the "dyonic"
gauge space D1/2 defined in Appendix A of [5], the center of mass configuration
space of a Dirac-dyon for which QEQB = 2,

). (32a)

By symmetry we have also

). (32b)

Now to each point of B there correspond exactly two points of B. Hence the
exchange of such points is an automorphism P: B^B and B itself is the quotient of
B with respect to P. By determining P as an automorphism of y{ 2(]Dl /2) xy2l(]Dl /2\
we determine both the bundle structure of B and its connection.

Now by definition (see [5], Appendix B), an element of yί2(S^1/2) in the
fiber over (o1?o2) is a triple (ξ,o1?o2) such that π 1 / 2 ( ξ ) = oί — o2, where π1 / 2:D1 / 2

->IR3\{0} is the defining projection of Π)1/2. An element of j721(D1/2)_is a triple
(η,o19o2) with π1/2(η)= o2— ov Hence, by (29) and (32), an element of B = B1 x B2

in the fiber over (o1;o2) can be identified with a quadruple (ξ, ̂ , o1 9o2) such that

π ί / 2 ( ξ ) = - π ί / 2 ( η ) = o1-o2.

With respect to this identification let us write P(ξ,η,oί,o2) = (ξ',η',o29o1), noting
that P exchanges the fiber over (o1?o2) with that over (o2,ov}. Then from

it follows that ξ' = u1η for 1/^11(1); similarly η' = u2ξ. Because P preserves the
connection on B, t/1? and u2 must be overall constants. And because P is by
definition an exchange of points in B, we have P2 = 1, or uίu2 = 1. Finally, we can
use the overall phase freedom in the identifications (32) to arrange that uΐ (and
therefore u2) be 1. We thus obtain P in the simple form

For future reference we define P12:B2-^B1 and P21 :B1-^B2 by

P12(ξ9o19o2) = (ξ9o29oί)'9 P21=PΪ2 (33)

Then P = P21xP12.

c. Exchange of Minimally Charged Identical Dyons with Frozen Internal Dynamics.
A wave function ψ in ̂  1 with support contained in the bundle B defined above

£
describes a quantum state in which two monopόles of electric charge - and

magnetic charge - are present and in which zero amplitude is assigned to any ip
e

whose monopoles have internal configurations other than Σ. We want to show
that the set 2tf of all such \p is naturally identified with the set of complex valued
functions on IR3 x 1R3 odd with respect to exchange of arguments.
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To this end, notice first that, in light of the preceding section, any element
ιp:B^C of ffl can be constructed as a function on B = B1 x B2 obeying

ψ(ξ, η, o19 o2) = ψ(η, ξ, o29 oj (34)

and homogeneous in the sense that

ψ(uξ, η, o1? o2) = uψ(ξ9 η, o19 o2) ,

ψ(ξ, uη9 o19 o2) = uιp(ξ, η, o19o2) .

Because of its joint homogeneity on B1 x 52, φ can be further reinterpreted as a
function on the gauge-space [5] B1 V B2> whose fibers are those of B1 x B2 modulo
the equivalence relation (uξ,η)~(ξ,uη). (We write the equivalence class of (ξ,η) as
ζ®η.) This gives ffl as the space

of homogeneous wave functions on Bλ x £2, invariant under the inversion
77e Aut(B1 x B2) defined by

(36a)

or explicitly,

, oί9 o2) = (η®ξ9 o29 oj . (36b)

But in [5] precisely this situation occurred, with B1 V B2 denoted by Έφes(l, 2)',
and Π denoted by '77^es(P)8. Equation (3.42) of that reference established that
Bί VJ52 is in fact a trivial gauge-space:

^V^-U^xM; (37a)

and the proof of Theorem 3 there established that with respect to the presentation
(37), Π takes the form

77 = ( - l ) x ϋ 7 , (37b)

where cj(o1,o2) = (o2,o1). As in [5] it follows immediately from this that J^ is
equivalent to the space of L2 functions ψ(o19o2) which are odd under interchange
of arguments :

(38)

In other words, dyons of minimum electric and magnetic charge are fermions.

d. Exchange for General Electric and Magnetic Charge. At least they behave like
fermions when their internal dynamics have been frozen. Before indicating how to
handle the internal degrees of freedom, let us dispose of the restriction to minimum
electric and magnetic charge. (We also restricted to N = 2, but the extension to
arbitrary N is mechanical, given the work of [5], and in particular, Theorem 3,
therein.)

8 To see that £^es is our B^B2, compare with Eqs. (3.38) (with n=l) and (2.19) of [5]. To see that
Πr

0

es(P) is our 77, compare with the first equation on p. 182 [whose notation is explained following
Eq. (2.35)] and notice that therein P is the exchange (l<->2). In [5] the condition \p = ψ^Π had the
significance that the individual e-poles and 0-poles act like bosons
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For monopoles of Euler index m = l\QB= -- 1 the curvature 2-form in (81)
\ e!

would be multiplied by m, whose only effect on the subsequent analysis would be
to put Dm/2 in place of Π)1/2, and therefore (since Dm/2 is the quotient of D1/2 by

I/T in U(l)), to replace (34) by the condition that ip be homogeneous of degree m in
u. Similarly a ψGJ^mn is by definition homogeneous of degree n on the relevant
configuration bundle and therefore equivalent, from what has just been said, to a
function of degree mn on the bundle B of the previous subsection. Consequently Π
in (37b) would induce a sign (— l)mn in ψ, whence the fermionic dyons are precisely
those with mn odd.

Remarks. The above discussion has formulated the question of monopole statistics
in terms of the structure of a space ffl of wave functions which, because of their
double homogeneity on B could have been regarded as defined on a bundle B over
M whose fibers are simple U(l)'s. (B is the quotient of B1 x B2 by 77.) Now it is
known that M (which is homotopic to IP2) admits only 2 distinct U(l)-bundles,
and further that a choice of one of these amounts to a choice of the bose or fermi
character of the elements of & = L\(j$) [10]. To determine dyon statistics then, is
merely to determine which equivalence class of U(l) bundles B belongs to, and we
have in fact determined this class in two independent ways, both resting on our
introduction in Paper I of a notion of monopole transport. The way followed in
this section has used aside from general properties of U(l) bundles only the
curvature of the bundle's connection. Since this curvature only expresses the effect
of carrying an electric charge around a closed path in an external magnetic field,
the same arguments should hold for monopoles in any gauge theory whose
unbroken symmetry group reduces to U(l).

e. Restoring the Internal Degrees of Freedom. Returning to the full asymptotic
bundle ̂  and to the corresponding state spaces ^n, we can now establish the
main result of this section.

Theorem 2. The space $£n ™ tne totally symmetric (antisymmetric) subspace of the
N-fold tensor product of the l-dyon state-spaces

(39)

when mn is even (odd). Moreover,

(40)

where the two factors represent the internal and external degrees of freedom of a
monopole in 3?^*

Equation (40) shows that the decomposition (39) is physically natural, at least
on a kinematical level9. It will also enable us to define dyon spin in the present

9 However, any kinematic requirement is physically incomplete without a further dynamical
condition guaranteeing "sufficiently weak interactions" among particles. By this phrase, which we do
not attempt to make precise, we mean to suggest the stability and relative independence needed for the
notion of particle to be physically meaningful. In particular, a mutual decoupling of particles at large
separations is needed for statistics to have the correct consequences in scattering and rough reduction
of interactions to a (for example 2-particle) form independent of the number of particles actually
present is needed, e.g., in statistical mechanics
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language10, and, incidentally, it allows the introduction in ̂ mn = ®^n (but not
N

in all of jtf* !) of effective creation and annihilation operators for dyons (at least for
slow moving ones).

Having seen already how to pass from m = n=l to general m and n, we will
establish (39) explicitly only for the case N = 2, m = n=l. That is, we will find a
representation of ̂  1 as the antisymmetric subspace of ̂ Λ®^ 1 :

J^-J^Λ J .̂ (41)
Once can arrive at (41) by steps closely paralleling those by which its special

case (38) was reached. The role of B will be played by the space B : = ̂  , of allm = l
(asymptotic) 2-monopole configurations, regarded as a bundle over M, the space
of monopole locations. When ^\ was regarded as a bundle over M^ the space of
monopole locations and internal configurations its fibers were isomorphic to
U(l) x U(l). However J3's fibers will be isomorphic to the enlarged space */ x J^,
where

is the configuration space of a single monopole of fixed location.
To see this let [̂ ], [̂ 2] represent elements of J and Φ = B({o^ o2}) a fiber of

B. To [̂ ] corresponds a unique internal configuration of the monopole at oί and
similarly for [̂ 2], whence [e^1] and [̂ 2] determine an [̂ ] of Φ which is unique
up to U(l)-rotations of the two monopoles (Lemma 3.1). Moreover once the
U(l) x U(l) ambiguity is resolved for a single pair [̂ ], [̂ 2] the correspondence
of any other such pair to an element of Φ becomes unique (because a single pair of
U(l) choices - equivalently a choice of gauge in the intermonopole region I -
suffices to determine uniquely a correspondence between &r

i\βo and ^2\β0

 on ^ne

one hand and ̂ \βί^β2 on the other, where [^]e#ί(K)|0ι = ?, [lΠe#ftR)llθ2 and
β0 is the ball of radius R about the origin.) Thus we have defined a correspondence

B({o19o2})<r+SxS, (42)

and shown that the freedom therein is a pair of U(l)'s together with a TL2 (giving
the ordering of 01?02). Since an interchange of ol and o2 interchanges the role of
these U(l) factors, the group G expressing the freedom in (42) is (with ® being
semi-direct product)

G = U(l)xU(l)®2 2 . (43)

In sum B is a bundle over M with fiber J> x J> and group U(l) x U(1)®Z2.
Now to determine any bundle of known fiber it suffices to give an associated
bundle with the same base space and group. But the previously defined bundle B

10 In the non-relativistic, quantum mechanical context of [5], we asserted that the notion of spin
necessarily implies a decomposition of the form (13). In a relativistic context, this claim breaks down
because massless (but not spinless) particles have no position observables, whence their spin can be
defined only for momentum eigenstates. However, monopoles are not massless and the decomposition
(17) does exist, making it possible to study monopole spin without having to investigate how the full
Poincare group is represented on J^
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(for any choice of frozen internal configuration Σ) is a sub-bundle of B and is
associated to it. Hence B can be characterized as the bundle with fiber J* x J>
associated to B.

Using this characterization one can repeat the reasoning of subsections b and
c, replacing at each step the relevant bundle with fiber U(l)xU(l) [respectively
U(l) or U(l)(g>U(l) = U(l)] by the associated bundle with fiber JίxJ
[respectively J or J>®J, where, as before, J>®</ is ,/x,/ modulo the equiva-
lence (uX, Y)~(X\ wY), t/eU(l).] Our earlier result (38) emerged from an analysis of
£Γs structure culminating in Eqs. (37a,b). Expressed in a suitable form for
generalization it stated that the homogeneous functions on B correspond to the
homogeneous functions on U(l)(x)U(l) x M which change sign under the action of
σ x m , where σ interchanges the U(l)-factors. (Of course U(l)(g)U(l) = U(l) and
σ= 1.) Here the generalization will be that the space $1 ί=L%(B) of homogeneous
functions on J3 = ̂ 2 corresponds to the space of homogeneous functions on
i/® ̂  x M which change sign under the action of σ x m, where σpf ® Y) = Y®X.

To interpret this we must put Ll(J>®J> x M) in slightly different form. [The
corresponding earlier step was trivial :

) = L^
We have (cf. [5], Appendix B, part c)

x M) =

L2(M] = L2(R3 x IR3) = L2(IR3)®L2(1R3) ,

where the last line used that the complement of M is of measure zero in 1R3 x IR3.
Hence $2

 x corresponds to those elements of

which change sing under the simultaneous permutation of factors l<-»2 (from σ)
and 3<-4 (from w). Rearranging we find finally

&l , - \_L2

h(</}® L2(R3)] Λ \_L2

h(Jί}® L2(IR3)] . (44)

/. The One-particle State-space Dyon Spin. To complete the proof that m = n=i
dyons are fermions it remains only to verify that L^(,/)(χ)L2(IR3) is indeed the
1-dyon state space, ̂  v This will establish Theorem 2 with $£ ̂  identified as

Ll(S):

#}tl

l" = Ll(S). (45)

The correct relation between spin and statistics then follows from the fact, which
below we interpret the present language, that ^mVnt carries half-odd spin iff mn is
odd.

To begin with notice that ^j, regard as a bundle over IR3 with fiber «/, is trivial
since its base-space is contractible :
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Hence 2&1 1 =L^(^)~L;f(^)(x)L2(IR3) as required. For general m, n we have then

R3) ; (46a)

where ^^n

ιnt is the space of wave functional homogeneous of degree n on

Λ,=*ilβl = o (46b)

Given the decomposition (46) we can define dyon internal angular momentum
by the action of spatial rotations on ^?

m

1

π

int, which in turn comes from their action
on «/OT. If .R:SO(3)->Aut(./m) is this latter action, then the 2π-rotation in SO (3) is
always the U(l)-rotation u(πm). Hence L%(R\ the induced representation of SO (3)
on ^mYnt, takes the 2π-rotation into (— l)m. Consequently the induced repre-
sentation on ^mVnt, takes the 2π-rotation to [(- l)m]" = (- l)m".

Remark. In a region of Higgs vacuum surrounding a monopole, the U(l) rotations
of that monopole are global symmetries of the "electromagnetic" U(l) bundle
defined by the Higgs field. From this alone it follows [12] that R(2π) = u(πm),
where m is the twist-number (and therefore the magnetic charge) of the monopole.
Thus the correspondence of odd mn with half-odd spin will hold not only for SU(2)
but for any choice of gauge group.

Theorem 2 establishes that dyons behave like familiar particles with well-
defined fermi or bose statistics, at least when all dyons present are widely
separated and of a single species. Of these two limitations the first is essentially a
matter of convenience because a decomposition as in Theorem 2 could also be
carried out for general monopole separations. However no decomposition of that
form will be possible if dyons of different m : n ratios are present for then no path-
independent notion of dyon-transport exists [as in fact follows from I(54a) and
1(45)] 11. Rather dyons in this general setting do not possess any statistics in the
customary sense based on tensor product decompositions like (41).

Nevertheless one can define a meaningful dyon statistics by reference to the
bundle structure of the set of "position eigenvectors" - vectors ιpe^fN for which
the monopole positions are "sharp" [11]. The generalized notion of statistics
which emerges also allows one to see in a more general context why it is that (in
three spatial dimensions) bosons can sometimes combine to form fermions, and
assures one that in all such cases the spin-statistics connection will hold for the
composites if it does for their constituents [II]12.

Appendix

Proposition. For R^Rf %N(R)~%N(Rf)\{[^e%N(R) with |oα-oα,|^2£, some
α, α'} via a bundle isomorphism that preserves the monopole positions oa.

11 Hence effective dyon creation operators fulfilling the usual bose or fermi exchange relations do not
exist. To obtain effective fields describing dyons one might try using path-dependent operators, as in
[13]. Or one could try to show that the point-dyon theory of [14] correctly described Yang-Mills
monopoles in an appropriate limit

12 This applies to the present case if, for example, we regard an m = n = 1 dyon as a bound state of an
m= 1, n = Q dyon with one of the charged (W-) bosons of the theory
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Proof. An explicit isomorphism [«/]-> [«̂ T is defined as follows. Given
choose an & having in each shell R^rΛ^R-\-8 the form

Φα = χα cos mφa sin 0α + ya sin mφa sin θa + za cos 0 1

;, J

where (rα, 0α, </>α) are spherical coordinates about oa and ̂  is the unique vector
at.'

potential for eFQxi

ij= ]Γ eF j with ^4^ = 0 and Λz = 0 at rα = 0. Let r' be the point
α' Φα

n/

with coordinates (κrα, 0α, </>α), where κ= — . Let [3P~]' = [3?'~] with
.R

J^'(r) = ̂ (r), r.^Λ, (A2)

J5"'̂ ') having the form (Al) for R'^r'^R; and

°'i(f ') = - (A"i - ΦaAt) (r) + Φa(r)Ai(r')
K

(A3)

To show that \_3f~]' is well defined, let ί/e^00 be any gauge transformation for
which U3P retains the form (Al) (for all α). Then in each shell Rίίr^R + ε,
U = exp(iχaΦ

aτa) for some constant χα, and we can therefore define ί/'e^00 with
y by

(A4)

C7/(r/)=l/(r),

To show that [J ]̂- [̂̂ ]' is a bundle morphism it suffices to show that if ua(χa)
are U(l) rotations of the monopoles of J%

The argument is identical to that just given, but with L/e^00 replaced by the
operator

ϋ = l ,

Then (A4) gives I/' with (U
α

Note that the parallel transport defined on ^N(R) by Eqs. 1(53) commutes to
leading order in λ with the isomorphisms [«^"]-»[ '̂]/ defined here.
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