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Abstract. In SU(2) Yang-Mills theory, the N-monopole configuration space is
a bundle with fibers isomorphic to U(1) x... XU(1), and state vectors for which

e .
each monopole has charge ns are homogeneous of degree n with respect to

each U(1). Translations and rotations are defined for individual monopoles in
the N-monopole space. The commutator of two translations is found to be a
U(1) transformation that agrees for large monopole separation with the
analogous phase change accompanying the translation of a charged point
particle in an external magnetic field. The theory developed here is applied in a
companion paper to prove a spin-statistics theorem for monopoles in SU(2)
Yang-Mills theory.

1. Introduction

We examine here the kinematics of non-overlapping monopoles in an SU(2) Yang-
Mills-Higgs theory [1]. In Sect. II we briefly review the quantum theory of Yang-
Mills monopoles in the Schrodinger representation [2, 3]. We observe first that for
a single monopole, the configuration space € on which the state functional y takes

its values is a principle U(1) bundle; and state vectors of charge QE=n§ are

. e. .
homogeneous functionals of degree n on the bundle, where 5 is the smallest unit of

electric charge. We define rotations and translations in the one-monopole sector
by requiring that these transformations leave unchaged the asymptotic behaviour
of the fields. It then follows that the state space includes states for which the
corresponding angular momentum operators have half integral values.

In analyzing monopole kinematics, our principal aim is to define translations
and rotations of individual monopoles in the presence of other monopoles, and
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this is carried out in Sect. III. We first introduce a configuration space ¢ of N
distinct monopoles each with magnetic charge Q= — —. The space €% is again a
e

bundle with a U(1) degree of freedom for each monopole — a bundle with fibers
isomorphic to the product U(1) x... xU(1); and state vectors for which each
monopole has electric charge Q, are homogeneous of degree n with respect to each
U(1) in the product.

A decomposition of the fields inside a monopole into an “internal con-
figuration” and a magnetic Coulomb field due to the other monopoles is then
introduced. This decomposition (which at large monopole separation is physically
appropriate) leads to the desired definitions of individual monopole translation
and rotation. An intermediate step, and a possibly useful byproduct of the work,
1s a definition of monopole translation and rotation in an external field.

II. Preliminaries

We consider a theory of an SU(2) Yang-Mills field minimally coupled to two
scalar fields, one a Higgs field @ in the adjoint (isovector) representation and the
other a spinless isodoublet field ¢’. The Lagrangian density will be

1 c?
L= Fe F W Fe ¥F W D'~ D oiDFo!
tone? Tl g e F o D wib'e
~ V(@D gla"), (1)
where
Fe,,=0,4°—0,4° +¢&, A" A°,. )

Here u,v,... are spacetime indices, a, b,... are Lie algebra (so,) indices, and I, J,...
are indices in the space of the isodoublet (two component isospinor) field ¢’. Latin
indices i,j,... will denote spatial vectors. By D,@“ and D,¢” are meant the gauge
covariant derivatives of the Higgs field,

D,#"=0,8"+ &, A" &, 3)

and of the isodoublet
Do =00~ Le % @

We have normalized 4°, so that no coupling constant occurs in (3) and (4) and &*,
so that @°®_ =1 in the vacuum. (This last feature can be obtained by choosing V
to be minimized at |@|=1 or, a la Prasad-Sommerfield, simply by setting V=0
and demanding |@|—1 as a boundary condition at spatial infinity.)

. 0 . . .
Finally, the term 92 F*,*F " is a total divergence, which therefore does not
T

alter the field equations. However, for Yang-Mills fields that interpolate between
topologically distinct vacua related by a spatial gauge transformation of winding
number k, the term gives a contribution to the action proportional to k [4]. But
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the freedom to choose 6 is redundant: it is equivalent to the freedom already
present in the form of the superselected phase change 0 that results from a gauge
transformation with nonzero winding number [2,4]. By including 6 in the
Lagrangian one can without loss of generality assume that 8 vanishes, and this will
simplify the structure of the N-monopole configuration space. (We will indicate
differences that arise when §0.)

Denoting by U’, an element of SU(2) and by R, the corresponding element of
SO(3), we can write a gauge transformation of the three fields & =(4, @, 0) in the
manner & — U4, which will mean

Aaﬂ__)RabAbu + CabCRdbauRdC , (53)
o> Uo7, (5b)
@R, D. (5¢)

An infinitesimal gauge transformation associated with the element &%, (¢ of the Lie
algebra will be written A4({¢), where

44%: =D,L°, (6a)
A0 = [0, (6b)
Aot = %raIJC“oJ. (6¢)

It will also be useful to introduce an operator &, whose action on & is [5]

9,7 : =(F*,,D, 8" D,a". (7a)

Then
f“@u=£§—A(A“u§”), (7b)

where £, is the (“naive”) Lie derivative with respect to ¢*.

a. The Schrodinger Representation. We will adopt the Schrédinger or field
representation [2, 3] in which the state vector w=y(%) is a functional of the field
configurations on a spacelike hyperplane with unit normal n, We choose a
temporal gauge,

A% n*=0.
The fields & are assumed to have asymptotic behavior
Af=00""1),6'=00""),I¢|-1=0(""), ®)
and the space of such & consists of disjoint sectors labelled by the (integral) values
of the Euler index

1 g
m= 87 § Eabc(paai@baj(pcgukdsk ) ©)

where the integral is over any sphere enclosing all the zeros of @. We further
restrict the gauge so that in each sector,
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a abc 1
A = & 8i(15b<PC + 0] F_Z 5

1
@ =x*sinf cosmep + % sinf sinm¢p + 2* cos 0+ 0 (;) , (10)
d=0(r""Y),

where %4, $* and 2° are an orthonormal basis of isovectors and (r, 6, ¢) are spherical
coordinates in the physical space.
In a Higgs vacuum, a region where

|®|=1,D,8°=0, and ¢'=0, (11)
one can define the electromagnetic field F,, by
F¢,, =e®F,,. {12)

The index m is then related to the total magnetic charge Q, by

I
QB~EC£BdSi=~ : (13)

m
e
;1 . . .
where B'= Ea”kF 1 and the smallest unit of electric charge will be g.

In the Schrodinger representation the field operators 4%(x), @%(x), ¢'(x) have
the meaning

AW F) = A{(X)p(F), P(X)p(F) = D) w(F),

g P(F) = (x)p(F), (14a)
while the corresponding momentum operators (operator valued distributions) are
. 1 0 1 9 1 6

i — H =, H =< <> 14b
0= 5 aa00 L= 5 5ge0g 9= 3 501) (145)
where, for example,
1 0
I 0 =——F°,. *F%; - (15)

T4l 4ne®” O 82

The state vectors y are governed by the Gauss constraint equation
. i
Dig;‘*'sabc?bgc_ETaIJ(QJIJI"’g;IJU) y=0, (16)

and by the equation of motion
Hy=ioyp, (17)

where H is the Hamiltonian operator associated with the Lagrangian (1). Only the
constraint Eq. (16), however, will play a direct role in the discussion of statistics
and spin. Its left hand side is a distribution, and the meaning of the equation is
clear when one integrates it against a test function {* of compact support (i.e.,
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vanishing outside a bounded region): after an integration by parts one has

0=5d3x{—Dica( )5t L0 s
S0 s — s a1y
= d—di (A?—xDi€“, P+ x4, {PP, 0" — %xnﬁ(“a’) -
That is,
U, =0. (19

where U(y) denotes the gauge transformation (5), with

U=exp (éxc“<x>ra). (20)
Replacing .# by U(y,)# in Eq. (19), we have
iy VWP, -, =0, ally,,

whence Y(U(y)#)=y(F) for any member U(y) of a family of asymptotically
trivial gauge transformations for which U(0) is the identity. That is, denoting by
% the component of the identity in the group ¥* of smooth asymptotically trivial
gauge transformations, we have

WUF)=p(F), all U in g2 1)

Equation (21) implies that two gauge transformations U,, U, have the same action
on the state space # : = {y} if they differ by an element U, of 4. In particular,
the action of a gauge transformation that is asymptotically trivial but not in the
component of the identity depends only on the winding number ke 9*/9> ~7Z
there is in each superselected sector an angle 8 [2] such that for all Ue %,

Up=e"ly. (22)

in the Lagrangian

density allows one to set
0=0 (23)

without loss of generality, and we will do this. Then # is invariant under the full
group ¢* of asymptotically trival gauge transformations.
Let ¢= ()%, denote the space of equivalence classes of fields satisfying the

asymptotic conditions (10), where

F~F =F'=UF, some Ue%™. (24)
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Then state vectors e # are functions on €,
p([F]: =p(F),

where [# e ¥ is the equivalence class containing %.

There is, however, a set of gauge transformations which, although not
asymptotically trivial, leave invariant the asymptotic conditions (10). These have
the asymptotic form of rotations of isovector space by a constant angle y about the
Higgs field. That is, U(y) has the form (20) with

(=0 +0(r™ 1), (25a)

DL =0("2), (25b)

and because two transformations that differ by an element of ¥* have the same

action on ¥ and 4, the action U depends only on the angle y or, more precisely,
on an element u=e*? of the group U(1).

We denoted by U the action on # or € of Ue SU(2). Similarly, we denote by y
or u(y) the action on # or € of an element u=e*e U(1), given by

uw:=U20w, uw[F]:=U2)[F], (26a)
where

UQR2y)=exp(ixl‘z,), (26b)
with {? satisfying (25). Formally, if & is the group of all gauge transformations that
preserve the asymptotic conditions (10), then 4/4* ~ U (1), and the isomorphism is

the correspondence y<u.
The action of this electromagnetic U(1) is related to the total electric and
magnetic charge by the Gauss constraint (16). When the vector {* in Eq. (18) has

the asymptotic form (25), the integration by parts leading to (19) leaves as a surface
integral a linear combination g [6] of the electric and magnetic charge operators

Qpand Qp:

e?0 1 . e ‘ e d
D= -z = @ F O — —~FF O yp= — — -0 (27
w (QE+ 2n QB)U) 4ne£dSl ( N 2r ¢ )w 2i dxy(X)w"‘_o @7

Hence
2i
w=exp[ "L g). (28)

Now y(2n)=1 because it is asymptotically trivial, from which follows the charge
quantization condition

g=-e. (29)

(When 60, # is invariant only under gauge transformations Ue %°. State

vectors are functions on classes % of fields equivalent with respect to %> and the
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larger group 4/%7 ~IR acts nontrivially on %. The transformation u(2n)e ¥* has
winding number 2m, whence on J,, u(2n)=exp(—2iedQy), and Eq.(29) is

5 mn>
replaced by §=Q,+ g—n((}+9)Q3_—_ ge,)

The action y(r) on € is equivalent (since equal asymptotically) to the action of
—1eSU(2), namely,

AY— A%, > o' — ol (30)

In the absence of an isospinor field g, — 1e SU(2) acts as the identity on % ; thus the
gauge group is in effect SO(3) =SU(2)/Z,, and only integral multiples of e occur as
eigenvalues of g. When o has support on field configurations with nonzero o, half-
integral multiples of e occur as well. These half-integral eigenvalues are related to
the occurrence of states with half-integral angular momentum [7].

b. Spin from Isospin. One can now define momentum and angular momentum
operators on the state space # via the action of rotations and translations on %.
Let &' be a rotational or translational symmetry vector ; that is, for a unit vector n',

o =2, (31a)
generates rotations about the n-axis, while
i n' (31b)

transl —

generates translations along n'. In the rotational case let R(yn)’ 5 =exp(né) ; be the
rotation of IR? by an angle  about the n-axis. Denote by R(yn) [ ] the associated
action on [# ]€%; by T(nn) [#] the action of a translation by yn on [# ]; and by
6[F] or 6,[F] the corresponding infinitesimal change in [#]: for example:

d
8, [F]:= ay B 7 1o

A realization (R, T) on %,, of the (covering group & of) the euclidean group &
can be found satisfying
(1) [54’ 5§] [#1= 5[4,41[%_] 5
(i) to within a gauge transformation, A%, @“ and ¢’ behave like a spatial vector
and two spatial scalars, respectively;
(iii) the asymptotic conditions (10) are preserved.

Simply rotating 4%, ®° and ¢ as a spatial scalar and two spatial vectors will
change the asymptotic behavior of @ and A¢ unless the rotation is accompanied
by a gauge transformation. If m is odd, the gauge transformation needed to
preserve the asymptotics makes the realization of SO(3) double-valued when the
isospinor field ¢! is nonzero [3].

The infinitesimal rotation 6, [ ] satisfying (i)~(iii) is, in the notation of Egs. (6)
and (7),

55: _'ijgj_A(Ca)s (323)
where

(=mi-n®*+0(r ). (32b)
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Explicitly
3. =—&D @,
5§Aai = - ngaji - D,‘Caa

; i
I I I J
556 =—€JDJ-O' —-Z'Cafa Jo .

Infinitesimal translation by »' is given by?!
S,=—n'g,. (33)

To see when the realization is double-valued, it suffices to look at rotations
about the z-axis. Consider %,, (the subspace of % for which the Euler index (9) has
the value m).

For n'=2, Egs. (32) and (7b) give

8= — g+ A(A%EI—[9).
By Eq. (10), A* &/ —mi-Ad*=mz+O(r '), whence
8= — £+ A(fmz), (34a)

where f is any function with asymptotic behavior f =1+0(r™1). For f(r)=1, the
finite rotations corresponding to (34a) are

R(2) [F1=Umz) [R02) 7], (34b)

where ) .
Rﬁ(r) = (RiJAjaa @7, O-I)lR- 1(r) (35)

is the rotation of #=(4%,®%c’) as a vector and two scalars, and

eSUQ2). For n=2xr, UQ2mmz*)=(—1)", and by (30) we

U(ymz®)=exp E nmzit,
have R(2n)=u(mmn). Thus on s# we have from (28),
RQn)=u(mm) =exp(igQ,).,

and a state 1 is spinorial — is a superposition of states with purely half-integral
angular momenta — precisely when it is an eigenstate for which ¢Q, = $mn is half-
integral. In the 8=0 sector, this is of course identical to the criterion for half-
integral spin for the quantum mechanical system of point electric and magnetic
charges.

Denote by #,, the subspace of # for which y has support on 4,,. That is, #,, is

the eigensubspace of # for which Q has eigenvalue — ?. Similarly, denote by

#,,, the subspace of #, for which g has eigenvalue n%. Then R(2m)=(—1)"" on
H

(When 60, R(2n) differs from y(mn) by a gauge transformation with winding
number m. On #, , R(2n)=e""y(nm)=exp(2nigQ,) =(—1)"")

mn’

1 Eq.(33) is equivalent to the naive translation §,% = —n/d & = —£,7 because the difference,
A(ASn’), generates a gauge transformation in ¢: Asni=0(r" 4
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III. The N-Monopole Configuration Space

a. N Isolated Monopoles. To speak of particle exchange presupposes a notion of
distinct particles. In a theory of solitons formed from an ordinary scalar field ¢,
one could call two solitons distinct if they were separated by a region in which ¢
took on its vacuum value ¢, and state vectors having support on such
configurations would then constitute the two soliton sector of the state space. In
the Yang-Mills case, we will require that a single isolated monopole be surrounded
by Higgs vacuum, Eq. (11). Then, from Eq. (12),

Fo =ed°F,;. (36)

In order to isolate the degrees of freedom proper to the monopoles from those
corresponding to photons, we require further that in the Higgs vacuum F;; be the
coulomb field of a magnetic charge, that is, the external field of the monopole in
the low velocity approximation.

For N distinct monopoles centered about points o,, a=1,...,N, the Higgs
vacuum that separates them will again be characterized by Eq. (36) with F;; the
sum of the magnetic coulomb fields F;; about each of the points o,: If the

monopole at o, has magnetic charge g, = — &, then
e
« &l
F(r)=) F,(r= ;ga Il;kP ) (37)
where r,': = r'—o,". Formally, we define as follows the configuration space ¢~ of

N distinct monopoles of magnetic charges g,

Definition. €~ = {[ # ]€ % such that there is R>0 and N disjoint balls f, of radius
R and centers o, for which};
(A) Z is Higgs vacuum and satisfies (37) outside [ f8,, where g, +0; and

(B) @ vanishes at each point o, and nowhere else.
Condition (B) prevents one from classifying as a single monopole of magnetic
charge g a group of several monopoles having total magnetic charge g.
Similarly,
Definition. €~ ={[# ]e %" such that m,=m, all a}.
The corresponding state space of functionals v with support on € will be written
#N (and similarly #N corresponds to ¢7V):3

2 In the Prasad-Sommerfield limit, the approximation of Higgs vacuum outside the monopoles is
less appropriate because @ fails to be covariantly constant in the same order that the coulomb field
fails to vanish. For dynamical purposes, it would be better in this case to alter our definition of " to
include the 1/r contribution to the Higgs field of the monopoles. The resulting bundle, however is
isomorphic to €V, because this 1/r contribution to @° is determined by the positions and magnetic
charges of the monopoles

3 Two distinct idealizations are involved in treating ¥~ as the effective N-monopole configuration
space. First, we are assuming a perfect Higgs vacuum separates the monopoles, and second we are
ignoring the fact that an actual vacuum functional v is only concentrated near, not actually on, the
values of # described by (11), (36) and (37). These approximations become exact in the limit where both
h and the monopole velocities vanish and where the heavy boson masses of the theory become infinite;
and by continuity the statistics of the monopoles (the subject of paper II) are constant along the family
of theories parameterized by # and m
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Definition. #N = {ype # such that p(F)=0 unless [F |e€"}.
Definition. For # e %", the intermonopole region is the set I: =R3\{ ) B,.

From the fact that the monopoles are surrounded by a Higgs vacuum it follows
that there is an action of U(1) on each monopole separately, in terms of which one
can define the electric charge of individual monopoles. To see this, consider first a
field configuration #e®%' describing a single monopole located at the origin
(0,=0), and note that the gauge transformation U(2y) given by Egs. (25), (26) is
equivalent (equal modulo 9*) to exp(iyfP“t,), where f is any function with f=1
outside some finite radius, say r=R +¢. Because a constant gauge rotation about
@ Jeaves ¢ and A“, unchanged in the Higgs vacuum, we can, for the field # in
question, replace (26) by

u(=U, (382)

where

et <
U:{exp(led) 1), Tr=R+e¢ (38b)

1, r=R+e,
without affecting u%. For example, if

0, r=R

flr)= %+%tanh[(R+§——r)(R+8—r)‘1(R—r)’1, R=<r=<R+c¢

I, r=R+e, (39)

then in the shell R<r<R+e¢, y is a gauge rotation about the d“-axis by an angle
that increases from 0 to y as r increases from R to R+¢ (and y# = F elsewhere)*.

The operator (38) will be called a U(1) rotation. It is defined for any & which
has Higgs vacuum in the shell R <r <R +¢, and for such an % can be described as
a change in the “U(1)-orientation” of the interior region r <R with respect to the
exterior region r>R.

In an N-monopole configuration, one can choose r to be the distance from the
center of a particular monopole and take ¢ small enough that no other monopole
overlaps the region r<R+e¢. Then, once one has labelled (indexed) the N
monopoles of a field configuration &, one acquires an action of U(1) x ... x U(1)
(N-factors) on [#]. Thus ¥~ can be viewed as a fiber bundle whose fibers are
copies® of U(1)x...xU(1) and whose base space we will call .~ (ie., [F],

4 Note that u(y) as given by (38) is not the gauge-transformation corresponding to the discontinuous
function (38b) because it lacks the -function term which would arise from a sudden drop of y to zero at
r=R+¢ (whence it can be equivalently described as the addition of a certain é-function term to the
vector potential Af). Except when N=1, it is thus not a gauge transformation at all, although it is
everywhere locally equivalent to one in its effect on any [#]e%”. On the other hand, it will
approximately commute with the Hamiltonian for as long as the monopoles remain (approximately)
separated by Higgs vacuum, and is in that sense a dynamical symmetry of €~

5 Strictly speaking they are faithful copies only for configurations & such that ¢ vanishes identically
in no f,
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[#']e®" represent the same point of .#" if one can produce [#'] from [#] by
U(1)-rotating each of the N-monopoles through an appropriate angle). We claim
that a point of .#" represents the locations and internal configurations of the
monopoles without specifying their phases.

More precisely, if #e%" then we will call the centers o, the locations of the N
monopoles and will define the internal configuration of the monopole at o, by
subtracting from F*;; a contribution representing the coulomb field of the other

monopoles. In the Higgs vacuum this contribution is P°F" ., where
(40)

while inside f, there is no unique way to pick out an external field. In any event the
monopole’s statistics are unaffected by the choice and for simplicity we introduce a

o
specific “external” vector potential e®®A™,, where

detr JE(ir,) (41)

aext
A =

Ot

is the unique vector potential for I%“‘ij with A =0=A,(r,=0). Let

grint. _ (Aai — e ﬁexti’ °, O—I)Iﬁ,,, . (42)

o

Definition. If [F e €~ the o internal configuration of [ #] is the equivalence class
[#], where F ~F" iff FI™ and /™ are related by an arbitrary SU(2) gauge
transformation on f,.

In particular, a U(1) rotation of the monopole at o, reduces within f§, to a
gauge transformation and therefore does not alter the internal configuration as
just defined. Conversely, we have

Proposition. If [Z'], [F"]€ €™ have the same monopole locations o, ..., 0y and the
same internal configurations [F],,..., [ 1y, then for some choice of phases
> oo o LF" 1= (3)- - cun(yy) [F'), where u (x) is the U(1) rotation by x of the
monopole at o,

Proof. Convert #” to &' as follows. (i) For each a carry out a gauge transfor-
mation in f, to make #"|, =%"|, . This is possible by the definition of “internal
configuration” inasmuch as %' and " have the same external magnetic field in f8,
(because the monopole locations are the same for both %’ and &"). (ii) Carry out
in I a gauge transformation that makes @”|,=¢'|,. This is possible because if

B(x): ={U(x)eSUQ)|U(x): ?"(x)—P'(x)}, then B:=|{)B(x)isa U(1)

bundle over I which admits a cross section inasmuch as it is trivial on each df, (the
sphere of radius R about o,). So far we have arranged ¢"=¢" and ®"=¢’
everywhere and A”=A" within the f,. (iii) In I the remaining gauge freedom
amounts to an isospin rotation by y(x) about @(x) at each x. Since F{;=Fj; a local
choice of y(x) exists to convert A” to A’, and a global choice is possible because
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n,(I) vanishes. Choose y(x) to make A"|, = A'|;, and use the overall U(1) freedom in
x to arrange y(c0)=0. (iv) At this stage #"=%" everywhere but the gauge
transformation inside the f, (step (i)) will in general not match that outside the f,
(steps (ii), (iii)). Rectify this by appropriate U(1) rotations of the N monopoles,
which is possible because & is Higgs vacuum in some neighborhood of each
B, O

In summary, a point [# e %" is given by specifying for each monopole: an
internal configuration [#],, a location o, and a phase describing the U(1)
orientation of the monopole with respect to its environment.

(When € is formed by regarding only the connected component ¥° C¥%® as
pure gauge, the fibers of " are isomorphic to R x [U(1)]V 1)

We will consider only states we #Y for which each monopole is in an
eigenstate of g. That is, if Ze%" and S is a sphere in the Higgs vacuum enclosing
exactly one of the N monopoles described by &, then

2

1 i e0 )\ e
4—n—£d5,~(5+713)w(=/’)—n2w(f)- (43)

As in the one monopole case, Eq. (43) is equivalent to
YuF)=u"p(7), (44)
for any #e%” and any U(1) rotation by u of one of the monopoles of Z.

Definition. #Y ={ype @) satisfying Eq. (44)}.

Any we #" is a function on the bundle ¥} and such a function belongs to
N iff its restriction to any fiber has the form p,e™* - ¥ where y,, ..., xy are
N phases parametrizing that fiber. By the term dyon we will mean a monopole in
an eigenstate of g and @, and state vectors ye #,, will be called N-dyon states.

b. Rotations and Translations. To make sense of a rotation or translation of one
monopole that keeps the others fixed, one must decompose the field & into a part
due only to that monopole and a part representing the magnetic coulomb fields of
the others. The Higgs vacuum outside the monopoles is characterized completely
by the electromagnetic F;; which is the sum of the magnetic coulomb fields of each
monopole. Within a monopole, however, any such decomposition — e.g. that of
Egs. (41-42) is arbitrary for finite monopole separation. Nonetheless, the resulting
ambiguity disappears as the monopole separations become large compared to the
size of each monopole, because in that limit each monopole finds itself in a small
and approximately constant external field.

If I is the minimum distance between monopoles (and R is their radius), then to

. R e . .
second order in A= T the magnetic field in the intermonopole region I near the o

monopole consists of the coulomb field of the o monopole and a constant field
Fi¥(o,) [see Eq.(40)] from the other monopoles,

F = e®[F, + F3'(0,) (1+0(W)], 45)
and
F'(0,)=00))F,,. (46)
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A rotation of the monopole at o, may be consistently defined to leading order
in A by the prescription for an isolated monopole; that is, one may to lowest order
ignore the external coulomb field entirely. In order to speak of the translation of a
monopole across a distance comparable to [, however, it is necessary to keep the
0(A?) term F ;1'(0,). This is not surprising; its meaning is, as we will see, that for

R <1 the monopole behaves like a particle of charge g in an external magnetic field.

When translated about a closed loop it changes its phase by an amount
proportional to the magnetic flux through the loop.

Translations in a constant external field. Because this key feature is already present
for translations of one monopole in a constant external field, it will be helpful
briefly to consider that case first. Let a monopole of radius R and Euler index m be
centered at the origin, and suppose that in the Higgs vacuum (outside R), the
Yang-Mills field has the form

Fo, = e@(Fint 4+ Fex,

where

m

Fiit=— Gy 47)

is the magnetic field of the monopole and F*; is a constant magnetic field. As in
Sect. IIb, we define translations by requiring that to within a gauge transformation
F =(A4, &, o’) behave like a spatial vector and two spatial scalars and that the
asymptotic form of the fields be preserved. Since F*; is constant it is translation
invariant, and there is no need to subtract off an “external” part from A4¢ before
translating .

The present asymptotic behavior differs from that of Eq. (10) by the addition of
the constant field F**';;. For definiteness, we may choose the vector potential to
have the asymptotic form

1
Af =", 0,070+ ' eF™ + 0 (;) : (48)

but our prescription will depend only on the asymptotic form of F*,; and &
Let h be the scalar
h(x)=en' F*, 7%, (49)
chosen so that 8ih=ener’“ﬁ. Translations may then be defined by writing
d,=—n2,+ Ahd?). (50)

The change in the asymptotic form of & that would arise from F*, ; had we used
the form (33) is compensated in (50) by an infinitesimal gauge transformation
generated by h®“. Outside the monopole, because ¢/ =0=D,®“, Eq. (50) becomes

0A!=— edﬁanjFi“‘ﬁ}

0P°=46g'=0 (1)
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whereby the asymptotic conditions are preserved. Thus apart from the term
A(h®?), (50) agrees with the prescription for no external field. The meaning of this
term can be seen from the commutator of two infinitesimal translations n and 7,
namely

[0, 0] =4

. 1
eF™, n'n’®*+ 0 (;)] . (52)

That is, the result of translating a monopole in a closed loop of sides n’ and 7' is a

U(1) rotation of angle g F, n'i, proportional to the flux through the loop. Hence

e . o
for a state vector e #,  of charge nss the resulting change of phase is just that

corresponding to the translation of a charged particle in an external magnetic field
Fexl' .
1y

Rotations and translations in €Y. We can now define infinitesimal rotations and
translations of a single monopole of #%. Because the monopole at o, is immersed
in the coulomb fields of the remaining monopoles, translations of it will not
commute and one can weaken condition (i) of Sect. IIb to

(1a") [3 & 5”] [#] =3[§’,ﬂ[5¢ ], when & or 5 is a rotational symmetry vector
about o,
However, one has the additional requirement that

(ib’) translation of a single monopole by &' is equivalent to translation of [ %]
itself by & together with the translation of all other monopoles by — &',

Because translations and rotations should affect only the field “due to the o
monopole,” one must modify (ii) to require that ;

(ii') apart from gauge and U(1) phase, the fields Z "' =(A4""“ @“, ¢') behave in
B, like a spatial scalar and two spatial vectors, respectively; in I the contribution

I%j to the coulomb field arising from a translated monopole is the translated

coulomb field; and in 8, o' %o, [# ], is unchanged.
Finally,

(iii") the transformed configuration is again in €.

An infinitesimal translation of the «'* monopole is then given as follows, with
h,=n(r—o,)eF™, =nlr—o0,)*) eF ;(0,); to leading order in A

o

3, = =D+ A, &Y,  reB,; (53a)
5,48 = — ednF,

o rel; (53b)
0,=6,0=0

§n= - A[njeﬁjk(oa’) (r_oa,)k(pa] > re Ba”a,#a' (530)

Equations (53a-b) are analogous to Eqs. (50-51), while the gauge transformation
of (53c) is needed to satisfy (ib’).
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The commutator of two translations has the form of infinitesimal U(1)
rotations of the monopoles. Writing %,(y) to denote the infinitesimal U(1) rotation
of the monopole at o,

(4@, rep,
%a(x)~ - {0, r¢;8a,
we find
[5.51=—, (Z F (o)) nfﬁk) — Y UE (0, 0. (54a)

Moreover, overall translation of % commutes with individual monopole
translation,

[5,,6.1=0. (54b)

Infinitesimal rotations of the «* monopole about its center have, to leading
order in 4, the form

R (53)

5.—
¢ O H réﬁzx H
where 7,=F,/r,=(—o0,)/F—3d, and &'=¢'n'r* generates rotations about the
n-axis through o,.
The translations and rotations defined by Eqgs. (53) and (55) commute with the
U(1) transformations (38) of individual monopoles, and so respect the structure of

the bundle €V

Finite rotations generated by &, of (55) can be cast into a form analogous to

(34b). If, as before, f(r) is a function with f(r)=1 for r= R+¢, then A[(f(r,)—1){*]
generates gauge transformations in 4% ; if (*=A4° jéf —mi,-n®®, then adding
A[(f(r,)—1){%] to Eq. (55) and using (7b) we find
3 :{~—£é+A[f(ra)(A?£j—mffd~n@“)], r,SR+e
¢ o, r,2R+e.

For the gauge choice

@°=xsinf, cosmep,+ y*sinb, sinmep,, + z*sinb),
A% =¢", 0,9°P(1+0(4),

A —mit,-nd*=mz" in that shell .

}Rgrd§R+a,

Then
@ —£.F +A[ fr)mz*]F, r,=R+¢
T — 4 2 a 56
0.7 {0’ P >R, (56)
and the corresponding finite rotations of f§, by an angle # are
ULf(r)nz*IRmm)F, r,<R+e
=\; § 57
R (o) {9’, r,ZR+e. 7
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Fig. 1
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For f(r)=1, n'=% R, coincides with Eq. (34b) applied to %.. For f(r) given by
Eq. (39), R,(2n) # is a gauge rotation of & about the z* isospin axis by an angle
that increases from 0 to 27 as r increases from R to R+ ¢. Its effect on the Higgs
field of an m=1 monopole is shown in Fig. 1.

An exact infinitesimal translation that agrees with Egs. (53) is given as follows.

Let

where

Then

1
h,= g dt enjF”‘jk(tra +o )t = Z hX,

a' Fa
1 ,
@ _ i P k
h* = [dten’F,(tr,+0,)r,.
0

a

3,A% = ~nI(F*;—~ ed*F* )~ D,*

nt i ji—

§,8°= —wD 0" . reluf,

n

a . i
I_ _ipgd_ Ly par I o7
0,0'=—n'D;o 2ha<15 T, ;O

5 A% = — e@“nflgﬁ +hi.Dd"

n

5 =0 ,  refgoEo.

n

¢ I
e

n

i
apar I J
Eha’(p‘CaJO.

(58a)

(58b)
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The commutation relations (54) are exact for this law of parallel transport Exact
infinitesimal rotations agreeing with Egs. (55) are given by

a . .
0.A% = —CI(F;— e@“Fjl?“) — é’eAe"‘jDitp" — D{(m#,- nd?)
5.8 = —&D @
, ref,, (59a)
@ : i, .
o.0'=—8D o’ - i(é’eAj’“ +mt,-n) @0’
a
0,=0, elsewhere. (59b)
Conditions (i')—(iii’) are satisfied exactly by the translations and rotations (58)
and (59).
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