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Abstract. We prove that the renormalization program discussed in [1] can also
be developed beyond the &2=2n(VT7— 1) threshold found in the preceding
work. This result, as a byproduct, also allows a simplification in the technical
part of the proof of ultraviolet stability in the @3-theory [2]. In the last section
of this work we discuss, heuristically, but in some detail the interpretation of
the sine-Gordon theory as a two-dimensional Yukawa gas for fe? =o?>4n.

Introduction

The two-dimensional sine-Gordon theory has been studied by Frohlich [3] for the
values of a* <4n and, in the finite volume, by Benfatto et al. [1] for the values
>4n. There it was proven that, for a? =4, the theory has to be renormalized ; a
renormalization procedure was constructed which amounted to subtracting from

the potential V§™) =24 :cosapl":d¢ some constant counterterms C(N), whose
1

number increases each time «? overcomes the thresholds o3, =8n(1 —1/2n) and
which, of course, become infinite as the cutoff is removed (N — co). Although the
procedure envisaged in [1] seemed to prove the ultraviolet stability of the theory
for any values a? <8n, some technical difficulties did not allow us to prove the

upper bound of the ultraviolet stability for a? > &> =2n(l/ﬁ— 1).

The main goal of this paper is to prove that this spurious threshold can be
removed. This is obtained by proving a theorem which allows us not to use the
second part of Lemma 2 in [1], which was true only for a2 <&?2. As this lemma was
also used in the proof of the upper bound in the ¢3-theory [2] and as this result
can be immediately translated for that field theory model, this amounts to a
slightly technical simplification of that proof also. Moreover now the proofs of the
upper and lower bound appear more symmetric. The theorem is applied to prove
explicitly the ultraviolet stability for all the values of o? <327 (3237>a?), but the
structure of this result and of the renormalization technique discussed in [1],
allows us to conclude that the proof of stability for all «®> <8x is only a matter of
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computation and no new ideas are necessary at all. After a short review of the
renormalization scheme, discussed in Sect. 1, the next three sections are devoted to
a careful discussion of this result. The last section is of a different and less technical
nature. It is well known that the sine-Gordon theory has a very interesting
interpretation, for o?<4m, at short distances, as a classical two-dimensional
Coulomb gas' for enough high temperature (x> = fe?, where +e is the particle
charge) and as the counterterms in the renormalization procedure are constants
we expect it must be possible to preserve the Coulomb gas interpretation also at
lower temperatures, that is for o> = 4n. Therefore one is immediately challenged to
understand which phenomena are produced in the Coulomb gas each time f

1 . . . . L
overcomes a — o3, threshold. This was briefly discussed in [1], where heuristic
e

arguments were given to show that at each even threshold the gas tend to form
neutral clusters of particles, whose size tends to zero as N goes to infinity and
whose density tends to infinity in the same limit. The renormalization procedure
can be seen as a way of subtracting this infinite sea of clusters in such a way that
the meaningful statistical observables refer to the gas of single particles which do
not cluster and lie over this sea. This interpretation is discussed at some length in
the last section where heuristic arguments are given to get the expression of the
charge-density in the different regions of a?.

Some similar results for the massive Thirring model in the repulsive case have
been obtained by Korepin [4], with different techniques (see also the references
therein for the results on the sine-Gordon massless model using the quantum
inverse scattering method).

1. The Renormalization Scheme

To prove the ultraviolet stability for a field theory, in a finite volume I, with an
interaction potential Vy(¢™)= V™ amounts to proving the following inequalities

exp[—E_(WIT <[ P(de™) exp ViV Sexp[E  (A)]], (L.1)
where ¢V is the gaussian field, depending on the cutoff N, with covariance
CV=(1—a)~ = (> V-4, (1.2)

where A4 is the Laplace operator in R? and y>1 is a constant (see [1]). Here
P(dp™) is the free field measure, V™ is the renormalized potential and E (1) are
finite constants, N-independent.
In [1] we proved that, given the potential of the sine-Gordon theory in two
dimensions
Vi =22 :cosaplV: d¢, (1.3)
I

1 To be precise the massive sine-Gordon theory describes a Yukawa gas instead of the Coulomb
one, but at short distances the properties of the two gases coincide, so from now on we will always refer
to the “Coulomb gas” interpretation of this field theory model
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the renormalized potential for which (1.1) is fulfilled is for «? in the interval [4mw, &2)

1

V=V = 6080 57 EN04T, ),
where
V(N) V(N) Zk C2k(N
Zk e é"T(Vg?V; ;2k), 2 (1.4)

where &x(/; k) is the k-order cumulant performed with respect to the free field
measure P(dp™). For o2 <o =8n(1 —%)=67 only the cumulants until the second
order have to be subtracted. More generally it was expected in [1] that each time

1
a? overcomes a threshold value a§n=8n< 1— 2—) a constant
n

C,,(N)= ——cg’T(V(N};2n)
has to be subtracted, the renormalized potential looking, therefore:

VM = Zk QW EX(VEN 5 2Kk)

2
are [(XZn’ OCZ(n+ 1)) .

(1.5)

This was proved in [ 1] for the lower bound, but for the upper bound the proof was
lacking when o> > &2 and the elimination of this restriction is the main goal of this
paper.

To prove (1.1), as discussed in detail in [1, 2], ™ is decomposed as a sum of
independent gaussian fields

(N) — Zk ¢<k)

with covariance

~ 1 1

Cl&—n)= on )2 Idp e (y2k+p2 - 20T 1)+p2>’ (1.6)
then one performs the integration in (1.1) by successive integrations over the
fields ¢®
O [ P(de™) exp ¥ = [ Pdo™ ) ([ PG exp ViV, (L.7)
and shows that

PAp™)exp V™M =exp[ V¥~V + RY-D()1T, (1.8)
1 1

where V=1 is again a potential with similar properties to V"~ and RV~ Y(A)|1|
is a remainder term.

2 Let’s observe that only the even order cumulants become infinite in the limit N— oo (see [1]) and
therefore modifying the definition of the ultraviolet stability one can avoid the subtraction of the odd
order cumulant terms
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Then VN~ is such that it is possible to iterate (1.8) obtaining, for a generic
frequency h :
[Pdp™)exp VP =exp[ V"~V +R* V()] (1.9)

where

n—1 1 -
=[5 hax]
n—1

~ (1.10)
VI(N): VI(N).

Here (gahr(, ; k) is the truncated expectation of order k with respect to the measure
P(dp™) and [Y, c,A¥],_ , is the truncation to order n— 1 of the polynomial ), ¢, A%,
and the remainder satisfies

[R®(3)] < C(ﬂ.y(:—"_z) ") P2h= B, (1.11)

where C is some constant h-independent.
After performing all the N integrations we get
[P(de™ exp VIV =exp

2 R~ D)1 (1.12)

and, provided that Zh R™~1)(}) is finite we can, from (1.11), obtain immediately the

0
ultraviolet stability inequalities.
Using (1.11) we see that

N © 0 a? " _
Y, RV < Y, RV < Cr Y,y (g2 o (1.13)
0 0 (0]
which is finite provided
1
oc2<8n<1—~> =a?. (1.14)
n

The main part of the proof consists therefore in proving (1.9) and (1.11) ; in the next
sections we’ll discuss in detail the problem arising in [1] for the upper bound and
the way of getting rid of it.

2. The Upper Bound

To understand the way in which the spurious threshold is eliminated it is necessary
to recall, in some detail, how it appeared in [1]. The careful discussion of the upper
bound is in Sect. 5 of [1], (see also [2]); here we only recall the main strategy.
As we want an upper bound estimate we cannot put, ab initio, in the integral
(1.9) any characteristic function to constrain the field to be Holder-continuous.
Nevertheless to obtain, performing the integration frequency by frequency, at each
step, an interaction potential such that the condition (1.11) for the remainder is
satisfied we have to exclude the regions where the fields are “rough” (not Holder-
continuous). For that purpose we define a potential ¥, where for any choice of
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the field ™ we subtract the regions where ¢® is rough (see formula (3.23) of [1]);
these regions are ¢®-dependent, but to perform the integration with respect to
P(dp™) we have to avoid this complicated dependence of the potential on @™
through the integration regions; to do that one defines a different function H{”
which depends only on the field "~ ", via the integration regions, and whose
dependence on @™ is of the same type as that of V" and therefore can be
integrated respect to it.

This is significant because between V™, ', and H% there are the following

relations ~ 7
I/J(N_ 1) é VI(N— 1)
V0 < AL, By MR, 1|+ HYY, .

[ see Egs. (5.3) and (5.4) of Lemma 2 of [1] for the definition of ﬁ,, which there is
denoted by R,, which here indicates a different set (see Sect.4)]. Once these
inequalities are proved the integration for the upper bound is reduced to the

following one N .
[ P@d®)xgeix: exp Hyg, (2.2)

(see Eq. (3.32) of [1] and Egs. (4.21) and (4.22) of [2]), and we can apply Lemma 1
of [1], obtaining, apart from a remaining term with the right properties,

exp Zk é"T H}"’,k)] . (2.3)

-1

To produce an iteration mechanism we have to recover Vi~ from

e

n—1

and this was only partially provided from Eq. (5.5) of [1] of Lemma 2 as this
relation was valid only for a? <&? Therefore what we have to do is to devise a
mechanism to avoid the need of inequality (5.5) of [1] in the proof of the upper
bound. This is the content of the next two sections.

3.

Let’s assume a?€[6m,32n); in this interval the cumulant expansion has to be
performed until the fourth order. At a generic level h, we have (see Eq. (3.1) of [1])?

4 1 e~

Sr 10|

2

=V(§}’11—1) W(Z h— 1)+ Z W(3lh 1)+ z VVI(;txlIh 1)+A(h 1)+C(h 1)
(1)

where the explicit expressions for all these terms are written in Egs. (3.2)~(3.13)
of [1]. As we discussed in Sect. 2 (see [1, Sect. 3] for more details) to obtain a

f/I(h—l):

3 The factors A® (k:2,3,4) appearing in Eq. (3.1) of [1] have been included in the definition of the
W-terms (4, = ya2/4n 1(:})/)



586 F. Nicolo

remainder with the right properties [Eq.(1.11)] after having performed the
integration with respect to the P(dp™)-measure we should need instead of ¥ an
interaction ¥ where the regions of I x I, where ¢® is not Holder-continuous are
subtracted. Then V™ has the following explicit expression, Vh

(h) — 1/t 2,h) (3,i.h)
V VO 1~ W(z\@h-l_ Zi VVI3
1

+ Zi Wz‘?\’é’,,"’x ma, T W(;l\.@},.};)ﬂ
WD+ WS W AD 4 CO (32)
Due to the complicated dependence on the field $*® through the regions 2, [see
Eq. (3.21) of [1] and Eq. (4.1) of Sect. 4 for the definition of these regions] the
integrations with respect to the P(d®™)-measure in the cumulant expansion
cannot be explicitly performed anymore.

Therefore we are forced to introduce, using the relations (2.1) proved in [1],
another function H{" defined in the following way'

) _ p2.h (3,i,h) W ih
HI —VO,I IZ\J;. Z W + Z 12\ @y 1 x [2\@y, - ¢

4,1,h) (4,2,h) (4 i,h)
+Wita” o+ Wi, Z 12\@), - 1 x 12
+AP+CW, (3.3)

which does not depend on $® through the subtracted region Z,_, and whose
cumulants can be computed explicitly.
Performing the integration [ P(d@™)yg: exp H{z (see Sect. 4) we are left with

exp V"~ 1’=exp[ ;kﬁ@é,f(H”” k)L, (3.4)
plus some terms which will be included in the remainder (see Eq. (3.32) of [1] and
Sect. 4). Then P~ has to be connected in the right way to V*~ ! so that the

procedure can be iterated.
From Appendix B of [1, Egs. (B.1)-(B.11)] we have

4
I;I(h_l)_ f/[(h—n: [ Zk%(gf(H(Ih);k)} — f/I(h—l)
4

D, )+ WD, )+ CP YD, )

-Le 2

i Tz’( ( h— 1) . (35)
In [1] the idea was to use the positivity of the W{"~ (2, _,) term plus the fact that
it is of second order in the effective coupling constant (4{),—0 as h— o, for «*> <8n)
to dominate with it the other terms of (3.5) which are of order (/t("’ )* proving that
(3.5) was negative and therefore could be thrown away. Unfortunately a detailed
investigation of their explicit structure showed that it was impossible to prove
completely that (3.5) was negative ; then we decomposed the fourth order terms in



On the Massive Sine-Gordon Equation 587

two parts one which was dominated by W{"~ (2, _,) and the other which, as
summable in h, could be safely put in the remainder. The way this was done
implied an upper bound for the allowed « values: a® > &? (see Egs. (B.13)-(B.22) of
[1]). To remove this upper bound on o? is the main goal of this paper which is
obtained by Theorem 1 of Sect. 4.

We follow this strategy: we use the positivity of W~ (2, _,) only to control

4
those terms (Zl 7}("‘”(@,‘_1)) which can be dominated by it without any
1

restriction on a?; therefore we are left with the problem of dealing with the terms

WD, )+ C" D, _ ). (3.6)
First of all, let’s observe that we can bound these terms, which are integrals of the
lowi ;
following kind I dé, ...d¢ F(" VN, h), (3.7)
J2X Dy -y

substituting the integrands with their modulus and eliminating their dependence

on (¢™¢" "V _1), where it appears, (after having removed the Wick-dots) majoriz-
ing it by 2.

Therefore we get
(W22, )+ C" Y@,  N=CEE, |, (3.8)

and now C#4.Y)  depends on "~ only through 2, .
Using the explicit expression (B.3)—(B.9) written in [1] it is easy to prove that
CW, 5, S ALY M2,
where
A2,)= | dE +<y), (3.9)

(81,82)ePn

and A is an h, N-independent constant. Therefore for any h we can write

VSV +CW, g, (3.10)

where C{, . satisfies (3.9).
In the next section we discuss how to accomplish our goal, that is how to put
the C{}, ,, -contributions, after the integration, in the remainder.

4. The Main Result

Let’s start with some definitions

.o _
smi(wé’”—%’”) 2 B,("E—n)' ",

(0" = {(«:, el

Bh(yhlé—m)l—agkl}, @1

R, (p")= {AthlElé,ne 4, such that

L -
sin (G~ 54)

> B(E—n)' (1 +y"d(A,1)>},
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with
B,=Blog(e+ 4~ ")(1+h%),

B,=Blog(e+ 1" Y)(1+h?),
R(@")={4eQ,y*d(4, Ry(G") =1} 4 43)
From these definitions the following lemma follows easily
-1
Lemma 1. Let B= J—Z—B with 0<¢™'<1 and B>1 then
(2:\Z,- ) (@™ S(R, X R,) (3™).

Proof. The proof (trivial) uses the following “triangular” inequality

4.2)

sm2( PV — ") = |sin (go"’) o) (4.4)

M
Lo -
sin 5 @9 — o) +

and the observation that if (£,7)e 2, then

(IE—n)=(6B; ) <1
which implies that or ¢ and # belong to the same AeQ, or they belong to two
adjacent ones. []

From Lemma 1 we have
240" =(2,\2,- ) (@) N2,nD,,_ ) (")
C(R, X R)(@P)N(DnD,- )\(R, x R)) (9™). (4.5)
Let’s now investigate the second region of this inclusion. We have the following
result:
Lemma 2.
(2,02, )R, < RO D), _ (B, - 1) (0" ),
where
B _ B(1+R)

(h,h—1) (1 +(h— 1)3) Y
Then 9,,_ (B, ,— 1)) has the same definition as in (4.1) with B substituted by B, ,_,
and & will be defined during the proof of the lemma.

Proof. Let (£,7) be a couple of points belonging to (2,12, _ 1)\fih X ﬁh. Then the
following inequalities hold

1-¢

a) B,(ME—n)' <4,
o _
b) sm§(<pg‘)—¢f,")) 2 B,(y"|&—nl)*
DU = _
c) sm§(<pf:")—(pf1")) <2B,("&—n)' ¢,
9 sin (o= )| By (e

4 Q,is a pavement of R? made by cubic tesserae with side size y " ; d(4, F) is the distance between 4
and the region F
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The relation d) can be strengthened; in fact using the “triangular” inequality

sin2 (o=l 2

o
; (h) _ (h)
sin 5 (o )| —

: (h) (h)
Sln

2(B,—2B )y T E—nD)t e, (4.7)
then
B,— 2B, =(choosing ¢~ ' =1 and therefore B=B/2)=B(h*—h?)>By (1 +h?),

where § is a monotone decreasing function of h. Therefore defining & =&+ we get

Lo -
SIHE((/J(; 1) _ (Pilh 1))

(2,09, )\R,x R) (9")< {(é, ner?
2By (14— D) G E— )t

B(h,h_1)<1+<h—1)3)(#'-115—;701*55}=@,,_1<B(,,,,,_1,)<¢<h—1>)‘ (48)

From Lemmas 1 and 2 we get, omitting the field dependence
@h(B)g(éh X Iih) (B)VZ,,— (B n-1))- (4.9)

As the proof of Lemmas 1 and 2 does not depend on the choice of B we can iterate
the procedure obtaining

D, 1(B(h,h— 1)) C(ﬁh— e ﬁh— N (B(h,h— 1))U9h— Z(B(h,h— 2)) > (4.10)
where
. (4R
B =By?i-) 4.11
(h,h—2) Y (1 +(h__2)3) ( )
Repeating the procedure until h=0 we get
h ~ -
2,(B; ") C %)k(Rk X Ry) (B, 1y : 0®) (4.12)
with an obvious change of notations, where
e (1R
— pyhi—(1—¢) ) )
B(h,k) B')) (1 +(h_k)3) (4 13)
As, see Eq. (3.7),
CW o= | dEF(N,h:), (4.14)
12X 2y
we can write
h
C 128,00 é% C%}X(Rk)Z(B(h,k);‘ﬁ(k))’ (4.15)

and, of course, from (3.8)

é(l}?x (Ri)2(Bh, k) ) = A (/1( )4 ZhIRk(B(h k)’ )l (416)
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with some constant 4’ independent of 4 and N. Remembering Eq. (3.9) we have,
writing N instead of N—2 for notational simplicity,
N
V(N) s V(N) + C12 X DN (B; M) = V Y+ Zk IZ >< (Ri)2(Bw, k)3 $U)

N-1
™) ()
=(VM+CP s R2(B,o) T %:k Crx (R02(Bew, s 0 (4.17)
N—-1

and with respect to the P(dp"Y) integration the Zk . part is a true constant as it
does not depend on »™.

At this stage, therefore, we have only to show that, after the integration is
performed we can safely put the contribution coming from C{), ¢ 125 s, in the
remainder. Let’s suppose that this can be done, (this will be proven in a general
way later) in this case we are left with

(1\ “1)— pIN-1)
V V + Zk CIZ X (Ri)2(B(w ,10); 1)
N—-1
(N=1) | AIN—1) A(N)
<V +C12X@N 1(B, o™ n+ Zk CIZX(ﬁk)Z(B(N,k);¢‘k))
0

<(pN-1) (N—1)
S+ C% o o0 CEL Ry o pv-0)
N-2
+ Zk (C12 X (Ri)*(B(w, 1y $09) + CI2 x (Rk)z(B(N— 1,k);</3“")) ’ (418)

and again the first parentheses is the only ™~ dependent part.
At level h we have

2 N
h [h ~(q)
Vl )é (VI( )+ ;Q CIqZX(Rh)Z(B(q.h);@(")))
h=1 N
)
+ %:k z;q Cl s (R0 Big 0550 (4.19)
Therefore to show that the iterative mechanism can be performed we have to
prove the following theorem

Theorem 1.
N
§ Pdp®)exp | VP + Zq C o (R12(Big s 0

<expc|l| eXp[”V(h* D COY oo ]
for some constant ¢ independent of h and N.

Proof. The proof is based on a slightly more refined version of the Lemma 3 of [2]
(the “tail lemma”); Let’s start by introducing some simpler notations:
Let & be a fixed, but arbitrary, frequency, then

Ry(By,, 1y @) =R (3"),

B(qh)h_B(q,,)log(e+A-1)(1+h3)z .

By =3By nlogle+2" ) (1+h?)=8,, (4.20)
CH oo S A YR | (™) (4.21)
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for some constant A” independent of g and N, and of course, assuming I a region
exactly paved by A’seQ,, it follows that

SN R (&M
R(@")=R (") 1. (4.22)
Let’s consider the following decomposition of the identity
I= ) Yo X XX AGnGu., -+ Kan e KGn
Gu\Gn+1 Gn+1\Gh+2 Gn-1\Gn GN
tene, = 11 1 (4.23)
4€G\Gre + 1

where
)"ka — 1 _ ng
and y% is the characteristic function of the P(dp™)-measurable event
1o — P _ "
Sup == = B (1+y"d(4,1)); . (4.24)
snea ()€ =)' ‘

Let’s remark that in (4.23) G,, G, . |, ..., Gy are arbitrary sets of tesserae €, and
do not depend on »®. Moreover G,2G,, ;D ... DGy and

EP= {@h)

N
G ={)Gi\Gysy (Gy:1=9), (4.25)
therefore

N
— ~ (h 7 ~
[I=[ P(dp™)exp| VP + Y., CE¥, gaom)
h
— 77(h)., B
= > fexpVj )XQ:\G;,
(Gn\Gr+1,..0s GN-1\GN,GN)

N
P ;q C rzomanan, . -+ Lan-neianPdd")
<[using Eq. (2.1)]

=~ (h) (h), +Bn
= > | P(do )expHi6, Xoman
(Gu\Gh+1,..., GNn-1\GN,GN)

. {exp

A Gy 5&22:‘1\@221;}. (4.26)

N
Aig};Bf'))ZhlGhﬂll + Zq C(qu)x R‘%(@(M)]
h

Remembering Eq. (4.21) we have

{426} <(1h6,, , - Tex) exp AAL) Bry™ |G, |

N N-1
exp| X, A UGG + T, AVG Gy \Go

h+1

ot Zq A”(/l‘ej’gf)“y2‘1|Gth RYCAN -l-A"(/li)’;;,)“yz"lG,,\Gh+ i, (4.27)
[
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whejre the idea is that, given .(7)"'), such that (J%EZ\G;.H o ABy )(@")=1 then cont'ri-
butions to the term proportional to |Gyl can come from any C®, g0, With
ge[h, N], but contributions to the terms proportional to |Gy _ {\Gy| can come only
from those C\2, Ryt with ge[h, N—1] and so on.

L6
As (A9)*y*ocyts ! o0 we can bound each sum in the exponent by

q— o0
k
Y, A'D) GG, , | S A (k+ 1 =B (A G\Gy s ol (4.28)
h
so that
(426} S (B . - %) exp A2%), B2y G, ]
-exp A"[(N +1=m)(ZE)* MGyl + (N =) (A5, D) ¥ VGy_ \Gyl
A 22E DR G NG, + () G\G,, 1] (4.29)

Applying the main lemma (Lemma 1 of [1]) and the estimate (4.29) we get
4 1 -
[ SexpLa(B,, 4 exp| S 7P )

exp Zﬂg})’/Bf“‘yzhléhmll

{(G;.\Gh+ 1...GnN)

N
+4” Zq (q —h+ 1)()&2%)4'}’2(‘1_h)')JZhIGq\GM_ ll}
h

(PGP g e iE::z\GNiEzP”}’ (+.30)

where ¢ is a positive number.

Remembering Eq. (3.9) and from [1] that d(B,,i%))y*"<c¢' which is
h-independent we obtain the theorem, provided we prove that the { } of (4.30)
satisfies the following inequality

{(4.30)} <Ml (4.31)

with some h and N independent constant.

Proof of (4.31). Applying the “tail lemma” (Proposition 1 of [1] and Lemma 3 of
[2]) we get o B ]
(JPAP™)igrg.. - Lonowion) "

< T expile,—c,Br(1+d(4,y*"|1)

ACGn\Gh +1

[T expilc,—c,Bis (1+d(4,y*"1))

ACGr+1\Gn+2

[T expile, —c,By_ (1 +d(4,y*"1))

4CGn-1\GnN

[T expi(c,—c,BA1+d(4,y*1))), (4.32)

ACGn
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which together with (4.29) gives
“30ys Y ( T[] exp[A"(A%)*+ AAM B2 +1c,

(Gr\Gh+1...GN) \AC Gn\Gh +1

—36,Bi1+d(4,y"D)] ... []  exp[A"(2Y)qy*@"
4CGg\Gg+1

+ /1/12’}”!3,3 B T %CZE;(I +d(4,y*1)] ... A!;[ exp [A”(/I%})“

Ny L QW B de, — 5, BY(1+d(4, y”I))])

N =
= T (14 S, expLatisgiaen+ Aty Bie

ACQn

+—é~c1—%czﬁj(lm(a,y”zm), 433)

where ¢'>¢ and A is some N-independent constant. From (4.20) and (4.13) it
follows that

B2=1B2 ,(log(e+ A~ V)X(1+h?)?

3\2
- 41‘ ((_‘1 123;2 (1+h?)2(log(e+ A4~ 1)>BPyXanE =)

2 ¢, BEy2an o), (4.34)

where ¢, is a positive constant.
We have therefore for the exponent of the right hand side of (4.33)

[(433)] S[A"() gy + A28 BE ¢
e, =30, By PO+ d(4,97 )], (435)
where ¢, is some positive constant.

@ >
As (Ag;;)‘*:y(n J “2%, it follows that for 2¢' < (8— ‘i) and for ¢>h
T

[(433)]S — ¢, B2y2a U1 4 d(4,7*']) with ¢s>0. (4.36)

Moreover defining ¢ =¢+ 4, fixed o, it is possible to find h,(«?) such that for
g>h,(a?)
a2
2 < (8_ —). (437)
n

Therefore if h> h,(a?), it follows that

N 0

— o BE 2
Zq e[(4'33”__<_ Zq ol(4.33)] <e ceBi(1+d(4, y2hI)) , (4.38)
h h

where cg is some positive constant.
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Therefore for h>h («?), we have
{(4.30)} explese” Py I[] <expe’lll, (4.39)

where c, is some positive constant.
Inequality (4.39) together with (4.30) allows us to conclude that for h>h,(«?)
we have

(1] <expl(@+c)Il]exp VY
<expdl|- exp[f/l(h_ Dt é(1h2; 2,, (B, ¢~ 1))] s (4.40)
which is the thesis of the theorem provided we can drop the condition h>h, (%)

This condition is in fact unnecessary because h, () is independent of the cutoff N.
Therefore when h<h,(«?), we can rewrite Eq. (4.33) in the following way

0 hy
{430} = [] (1+ Y, el 4 zqe[m.ssn)

ACQn hy h
h1
< H (1 +e Zq e[(4.33)]> <exp [Cgec9(i€}’/’"))4v2"': “h),yZhII’] , (4.41)
ACQn h

where ¢, is no longer a negative constant, but in this term h, is fixed, h<h, and
there is not any dependence on N. Therefore we can conclude again that there
exists a constant ¢” such that

{(4.30)} <exp[c”|I[]. (4.42)

This concludes the proof of Theorem 1. [

Remarks. a) As was discussed in [1, 2] (see Lemma 2 of [ 1], statement I'V) if 4 is not
small enough, we cannot perform the cumulant expansion until h=0. In this case
there is a certain i (N-independent) below which we just estimate W" in the
following way

VB <c, (4.43)

and then we continue to perform the integration to get rid of the remaining terms
C9, rne cxactly as before.

b) After all the integrations have been performed, we have obtained the upper
inequality of the ultraviolet stability, but now there is not any condition on o?
except the natural one: o? <327 which is only due to the fact that we have
performed the cumulant expansion until the fourth order, which is needed both for
the upper and for the lower bound and can be eliminated by just performing a
higher order cumulant expansion and adding the next necessary counterterms.

¢) The reader should be aware that although we do not need the positivity of
W"(2,) to control the remaining fourth order terms, this does not imply that this
“positivity” property is irrelevant. In fact the positivity of WS> is still fundamen-
tal in the proof of inequality (2.1).
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5. The Observables of the Coulomb Gas in the Regions of Collapse

The well known connection between the sine-Gordon field model and the two-
dimensional Coulomb gas is given by the following formal relations
2Af:cosap(&):dE
Z(p)=[P(dple T
0 lk (—1,+1)

dE, ... dE e el eirekelC)
k k' 1 k

ce Ik

2 (1,k)
/1"‘ L +1) TN

Z §d51 dfke_z ¥

e I

)i zj dxy...dx, [ dy,...dye PUw ot Yayiop o (51)
T Ir

where
(->=[P(do), (5.2)
a?=Pe?, (5.3)

where +e is the electric charge of the Coulomb gas particles

»—-M-q

a
. 2
U(p,q)(xl""’xq’yl""’yp —e Zx JC(XDYJ
1

(1,9) (1,p)
+%82{ il Clx;, x) + ;k]k C(yj’yk)}’ (5.4)
j

i+l
and
Clx,y)=(1=4)"1(x,y), (5.5)

which at short distances behaves as the two-dimensional Coulomb potential. To
make these relations rigorous we have introduced the cutoff field o™ which
amounts to substitution in the last expression of (5.1) of the “Coulomb” two-
particle interaction C(x, y) with the cutoff covariance

C™x, ) =[(1=A)"" = >NV —A)"(x, ). (5.6)
As

1 1
C™M(0)= Z{—logyNE Elogl,; 1 (5.7)

we can interpret the introduction of this cut-off as the assumption that the
particles have a linear size of order [y, =y~"; of course collapsing phenomena are
expected in the limit [, —0, that is for N— co.

Let’s consider now the term of the grand canonical partition function with
qg=p=n, that is the canonical partition function for the neutral gas with 2n
particles, and consider the contribution to Z¢~° from the configurations in which
any +e particle is “near” (at a distance of order [) to a corresponding —e particle,
that is the dipole configurations where each dipole has a momentum of order el,.
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Due to (5.7) the energy of these configurations is approximately

" 1 . e
Uy —e? ;i C‘N)(0)=—e2nﬂlogl]v1=%logl,\,, (5.8)
and the Gibbs factor is , ,
e Pap g 22" T 2" (5.9)

The contribution to the canonical partition function from these configurations is

) /q'ln —nﬁ
zgp= BT e, s Gy
. In
1 ~n i’zi—Z 1 N ﬁ—l "
=E).2"(IN) 7 |I|"=;!*(/%/ (47: )) 1, (5.10)

which diverges as N—oo ([y—0), for a?>4xn; this means that the dipole-
configurations give the main contribution to Z2-° when Iy <1 if a?e[4n, 6m).
Therefore in this interval the gas looks like a free dipole-gas of activity

A0 = (/W(Z_" - N)Z (5.11)

and with the dipole-momentum of order
ely=ey™V. (5.12)

The density of this dipole-gas is of the order of /Ifj,‘;), which implies that the average
distance between two dipoles is

A(M:(A%)-1/2=A—1y<1_§;)N, (5.13)
The ratio between the dipole length and the dipoles distance is therefore
) 2 )N
O(T%) —olE )0, s ar<sn, (514)

which proves that to consider the dipole-configurations, for a«?>4n, as those of a
free dipole-gas is consistent.

We can expect similar phenomena when the next even threshold subsequent to
o3 =4n are overcome. The next even threshold is o = 67. Proceeding as before it is
easy to realize that when o> > 67, an infinite contribution to the partition function
comes also from those configurations in which the particles form neutral clusters
of four particles so that we can interpret it as the appearance of a free quadrupole
gas with the following activity

o (2
A0, =\1y . (5.15)
This argument can be repeated each time an even threshold o3, is surpassed. It is

also easy to realize that contributions from configurations in which particles are
assembled in non-neutral clusters never diverge as long as a?<8n. The next
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problem is to understand which is the statistical mechanics interpretation of the
renormalization procedure; is the renormalized sine-Gordon theory still describ-
ing a statistical gas? Which are the natural observables? To get a possible answer
let’s go back to the sine-Gordon representation for «? <4z and remember that [3],
in this case, the density of positive (negative)-charges is given by

oV(x)=2:eF o0, (5.16)

that is
22§ :cosap(N)(&):d¢

@P(x)y =4[ Pde™):e* 0™ : (5.17)

Now it is easy to convince ourselves that {o"(x))> diverges as a*24n, N— co.
In fact if we consider the generating functional

| P(dp™)exp ([u [ dxf,(x): ™M@ £ )3 | 1 gie0™O :dcf]), (5.18)
e I

where f,(x) is a function with compact support 4, it is clear that for a?>>4n to
prove the ultraviolet stability for (5.18) we have to renormalize the “potential”

V‘N) tljdxf (x):e™0 M@ 127 [ :cosap™(&):dé
I

= Vé’,v} +VM, (5.19)

and if we try to proceed as discussed in [1] we see that now the subtraction
constant depends also on ¢t which amounts to a redefinition of the observable

A y dxf,(x) eV = j dxf,(x)e'V(x).

We have not proven, with the same technique of [ 1] the ultraviolet stability of
(5.18) after the renormalization of the “potential” (5.19), but let’s assume that this is
only a technical problem and that the results of [1] can be applied also to this case.
Let’s therefore consider the subtraction constants that would be needed, using the
same procedure as in [1].°

For a? < 67w, we need only one subtraction constant which in this case is:

36TV 21, =36" (VS0 )+ (V) - 6(FEDeVN),  (5.20)

and therefore (5.18) becomes
[dxfa(x):ei*@™): — F(N, A))eVI(N)

J gl , 520
where
Jdxfx): ;= F(N, )= 0 (4) = [ 4,000 (x)
I
and
oY ()= @P(x)—~ F(N, x)=2:¢*™):
— [0 VW)= 6V IEV, 4] (5.22)

5 To be precise, ultraviolet stability allows us to prove t-analyticity only for those o' such that the
constant counterterms are linear in ¢
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with obvious notations. Here
) N-1 _ ZU(O,k) (x, &), —a2Ulk+ L+ 1)(x 13
F(N,x)=4 jdi Xke @V S &)@ UG .,
- (0 )
—ﬂjﬁ PUE DD 1), (5.23)

Let’s try now to give a physical interpretation to this renormalized positive charge
density ¢ (x). Following the previous discussion of the Coulomb gas for «?
above 4, let’s consider for the moment o%e [4m, 67), we know that a dipole sea
with infinite density (as N— oo) is formed, therefore we would like to subtract this
density from ¢®™(x) to get a finite result in the limit N— oo. Let’s define the positive
charge density due to dipoles at a point x in this way

0N (x)= {0 " V()

@‘i”ﬁ("”‘N’(X)=eZi Z,~5x(xi){f dzo(y)— | dZ<5Z(y,~)>,.}, (5.24)
Ax Ay
prazn
where (), is the canonical probability measure of the n-particle gas and 4, is a
volume of linear dimension of order I, centered at the point x.

The (@?™(x)» should give us the average positive density of charges at the
point x due to the dipole sea and therefore we expect that for
a?e[4n, 6m) (e ™(x)>— 00 for N—co and that performing the renormalization
for the charge density amounts to defining

oY r=0V(x)— 0¥ M(x). (5.25)

Going back to the sine-Gordon representation we ‘have, with slightly shortened
notations

P Mx)y=e [ dz]/¥0,x)0.(r)) — (L oL)\ (L)), (526)
(& 09) = (o) (R0

Ax

and

(N)
. = BU(p, o)(x, Xq - 1:v, Yp-1)
”der“ X, 1 jldyl...dyp_le e Xg -1 Ty

w 0 /1p+q
21 ()
=1*Z Z Z fdx1 dqu dy, ...dy, | Pdo™)
p
:e'“"’(m‘x) e '““"N)‘Z) (pe2 0D plae M) o mine ) miee ™) )

22§ cosap(N)(&):d¢

=7 1 ~[P(d(p(N)) (/12 <120 M(x) L~ iapM(2) Je T , (5.27)

@ 6x(xi)> <Z 6z(yj)>

=Z; 2 [ Pdp™M)A:e* ™ e

24§ :cosapN)(&)dE

J Pdp™M)h e 0N , (5.28)

24 [:cosapN)(&):de
be
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and therefore at the order A2:

@Oy =22 [ del[ Pl )zete ™ e o
Ax

_j P(d(p(N)) < 2o (x) :J"P(qu(N)):e—iw‘”’(z) ]}

=22 [ de(e= VDR 1), (5.29)
which diverges for «?>4n and whose divergent part coincides with the divergent
part of (5.23). Therefore Eq.(5.25) defines an observable which is finite for
a?e[4n, 6m) and describes the charge density for the free charges existing above the
dipole-sea. This interpretation can be extended when the second even threshold
a;=6m is overcome. Let’s write the order-t contribution of the fourth order
counterterm

PN, )04, = 37 675 412", (5.30)

Now, after simple computations it turns out that the divergent part for this term
when N— oo is

LEVIVE VYV )= sV VI VT), (531

and this term is divergent for N— oo when o? > 6.
Defining now, with obvious notations

QTMI(N)(X)=925)< j dz,0,, Z j dz,0, (y)) § dz30. ()
_825 (x,) j dz,0, () <Zk [ dz5,( x) j dz3523(yk)> (5.32)

0%’N(x) gives the density of positive charges at x due to the presence of the
quadrupoles® which are formed for «? = 6 and which tends to infinity for N — oo.
It is easy to see that at order A*

o Nx)y = divagent part of F(N,x)(A*)2=°,
and therefore the subtraction to ¢®Y(x) needed for «?= 67 means that

oD r(0) =0 V(x) — 09" M(x) — 7 V(). (5.33)
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6  The definition of 9#““™(x) has some arbitrariness, some other terms (finite in the limit N— o) can
be added to it
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