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General Structure of Nonlinear Evolution Equations in
1 + 2 Dimensions Integrable by The Two-Dimensional
Gelfand-Dickey-Zakharov-Shabat Spectral Problem
and their Transformation Properties

B. G. Konopelchenko

Institute of Nuclear Physics, Novosibirsk~90, 630090, USSR

Abstract. The general form of nonlinear evolution equations connected with the
matrix two-dimensional Gelfand-Dickey-Zakharov-Shabat spectral problem
is found. The infinite-dimensional abelian group of general Backlund transfor-
mations and infinite-dimensional abelian symmetry group for these equations
are constructed.

I. Introduction

One of the main problems of the inverse scattering transform (1ST) method is the
description of equations integrable by this method (see e.g. [ 1,2]). All the equations
to which the 1ST method is applicable form the classes of the equations integrable by
the same spectral problem. A very convenient and simple description of the partial
differential equations integrable by the spectral problem

dΨ
~=λAΨ + P(x,t)Ψ (1.0)
dx

of the second matrix order has been given by Ablowitz, Kaup, Newell and Segur in
[3]. Then this approach (AKNS approach) has been generalised to the problem (1.0)
of an arbitrary order [4-10], to some other spectral problems [11,12] and, in
particular, to the one-dimensional Gelfand-Dickey spectral problem [13].

Recently the two-dimensional generalisation of the AKNS technique has been
developed [14]. Namely, the two-dimensional arbitrary order spectral problem
dΨ/dx + A(dΨ/dy) + P(x, y,t)Ψ = 0, where A is any diagonalisable constant matrix
was considered: the general form of the nonlinear equations integrable by this
problem and their Backlund transformations were found [14].

In the present paper we consider the two-dimensional matrix Gelfand-Dickey-
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Zakharov-Shabat problem

dNχ δN~2

where N is any integer, the coefficients V0(x,y,t), Vfay^),--,
VN_2{xfy,ή are matrices of an arbitrary order M which depend on the
two coordinates x9y and time t, and Vk{x,y9t) > 0(fc = 0,1,.. .,N — 2).

^Jx2 + y 2 -> oo

The applicability of the 1ST method to the problem (1.1) was discussed in [ 15,16]. In
the case N = 2 the problem (1.1) was used for the integration of the Kadomtsev-
Petviashvili equation [15,17,18].

We find the general form of nonlinear evolution equations in 1 + 2 dimensions
(t9x,y) integrable by the problem (1.1). We construct the infinite-dimensional
abelian group of general Backlund transformations and the infinite-dimensional
abelian symmetry group for these equations. As an example we consider the case
N = 2. In this case we also obtain the nonlinear superposition formulas for the
simplest Backlund transformation.

The paper is organised as follows. In the second section we rewrite the problem
(1.1) in a matrix form, then we consider the direct scattering problem and obtain
some important relations. In Sect. 3 we calculate the recursion operators which play
a main role in our constructions. The general form of the integrable equations and
Backlund transformations are found in Sect. 4. Group-theoretical properties of the
integrable equations are discussed briefly in Sect. 5. In Sect. 6 the case N = 2 is
considered: the infinite family of the equations, the simplest of which is the
Kadomtsev-Petviashvili equation, their Backlund transformations and nonlinear
superposition formulas are described.

II. Direct Scattering Problem and Some Important Relations

Let us note first of all that the problem (1.1) is equivalent to a matrix problem of
order NM

where

A =

\

ox oy

0

0

0 ...

0 ...

0 ...

o\

0
0

, P =

/o - J A

0 0

0

0

0 0

\

and IM is an M x M unity matrix. The adjoint spectral problem is

dΨ dΨ
— + — A~ΨP(x,y,t) = 0.
ox oy

(2.1)

(2.2)

(2.3)
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The matrix problems (2.1) and (2.3) are more convenient for our purpose than
problem (1.1) and the problem adjoint to (1.1).

Let us consider first the direct scattering problem for (2.1) and (2.3). We follow

[16,14]. We assume that Vk(x9 y,t)->0 at ̂ Jx2 + y2 -± oo sufficiently rapidly that all
+ 00 Q

quantities and integrals exist and that J dy — ( ) = 0.

We introduce the matrices-solutions Ft (x,y,t) and F^ (x,y,t) of the problem (2.1)
given by their asymptotic behaviour

F+

λ (χ9y91) ^ + oo> (2πi)" 1 / 2 D(λ)exp{-λ N y + Άx},

(2.4)

p~(Xj y^ ή > (2πί) - i/2D(λ) exp {-λNy + Ax),
x^> - co

where A is a complex number, A is a diagonal matrix:

1, i = K

[0, iφk

and

The quantities λqι x are eigenvalues of the matrix Ά = λNA + P^, where

d= = - lim P(x, y91) and A = DAD ~ K
Γ

The scattering matrix S(λ,λ,t) for problem (2.1) is defined as follows

F+

λ (x,y, t) = +lf dlPi (x,y, t)S(λ,λ, t). (2.5)
- ioo

Correspondingly for the adjoint problem (2.3) we introduce matrices-solutions

ft(χ>y> 0 a n d Fλ(x,y5 ή for which:

Ft(x,y,ή > (2πiy1/2exp{λNy-Άx}D-\λl (2.6)
x-> ± oo

and the scattering matrix S(λ, λ, ή:

+ ioo

F+

λ{x,y,t)= j dλS(λXt)F-λ{x,y,t). (2.7)
- ioo

It is not difficult to show using (2.1) — (2.7) that the following relations hold:

+ 00

f dyF*(x,y,t)F*(x,y,t) = δ(λ-λ),

1 Here and below latin indices take the values 1,2,..., N (or N - 1) and numerate the block elements of

matrices of the order NM which are themselves the matrices M x M. Greek indices mark the usual matrix

elements of NM x NM matrices and take the values 1,2,..., NM
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f dλFt(x, y, t) Ff (x, y',t) = δ(y' - y), (2.8)
- ioo

'fdμ S(λ,μ,t)S(μ, λ, t) = δ(λ -A),
— ioo

where δ(λ) is the Dirac delta-function. Hence the scattering matrices can be
represented as follows

+ 00

S(λ,λ,ί)= J dyFϊ{x,y,t)F+

λ(x,y,t\
- co

(2.9)

S(X,λ,t)= I dyF{(x,y,t)F;(x,y,t).
— oo

Now let P and P' be two different matrices and F + , F+,F+\S,S' be
corresponding solutions and scattering matrices for the problems (2.1) and (2.3). One
can prove (analogously to Ref. [14]) the following important relation

S'(X9λ,t)-S(X9λ9t)

+ ioo +oo

= - J dμS(λ,μ,t) j dx dyF+

μ(x,y,t){P'(x,y,t)- P(x,y,t))Ff(x,y,t). (2.10)
— i oo — oo

The mapping P(x, y, t) -• S(l, 2, ί) given by the spectral problem (2.1) establishes a
correspondence between the transformations Bp: P-*P' of the manifold of the
potentials {P(x,y,t)} and the transformations Bs. S->S' of the manifold of the
scattering matrices {S(λ9λ,ή}.

We consider only such transformations B that

S(l λ, t) ̂  S'(λ, λ,t) = B- ι(X, t)S(l λ, t)C{λ, t\ (2.11)

where B(λ, t) and C(λ, t) are arbitrary block diagonal matries, i.e. Bik =
Bi{λ, t)δikIM, Cik = C^λ, t)δiklM. This "restricted" class of the transformations, as we
shall see, is wide enough.

Further, it is not difficult to show that the following identity holds

+ ioo

- j dμS(l μ, t)(l - B(μ, t))S'(μ, λ, t) + (1 - B(λ, t))δ(λ - λ)
ioo

(2.12)

+ oc

= - J dxdyFΪ(x,y,t){P(x,y,t)(l-B(-dy,t))FΪ'(x,y,t)
- oo

- (1 - B( - dr t))P'(x, y, t)Fΐ\x,y,t)},
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where P^P + P^ and B{μίή=D(μ)B{μ,t)D~1(μ). Here and below

__ 3 _ d

Combining the relations (2.10) and (2.11) and taking into account the identity
(2.12) we find2

+ OO

J dxdy[Pϊ(x,y,t)φ{-dyt)?\x,y,t)PtXx,y,t)
— oo

(2.13)
- P(x9 y9 t)B( - dy9 t)F+

λ ' ( * , y9t))}F = O9

where (ΦF)aβ

 d=Φaβ ~ δaβΦaa(<x, β = 1,..., NM) for an arbitrary NM x NM matrix Φ.
Let us represent the block diagonal matrix B in the form

J V - l

B{λ9t)= Σ Bk(λN

9t)Ak

9

where Bk(λN, t) are scalar functions and Ά° ά— 1NM. Correspondingly for B( — dy, t),
we have

B(-dy9ή= Σ Bk(-dy9ή(-Ady + PJk. (2.14)
fc = 0

It is easy to see that

where the symbol τ denotes a transposition of M x M blocks in NM x NM
matrices.

We consider only functions Bk( - δy, t) which are entire on the first argument, i.e.
n

Bk(- dy, t) = Σ ^toifrX- 5y)π> where βkπ(ί) are arbitrary functions. By virtue of (2.14)
« = o

and (2.15), for such functions Bk{—δy9t) the equality (2.13) is equivalent to the
equality

Σ Bk
« = 0

y,t)Φ%ll){χ,y,t)
(2.16)

- P(x,y, t)(PτJN~k( - 1)"+ ^ ί f λ j ^ ^ ί )

-P{x,y,t)PkJ- iγ&$(x,y,t)} =0, (αφβ),

where tr denotes a usual matrix trace and

2 We omit some intermediate calculations which are typical for the generalised AKNS-technique (see
e.g. [8,13,14])
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dtt(FΪ(xyt))β ~ +
\Γ λ \X> J> l))aδ

(α,j8,y,<5 = l , . . . , N M ; n = 0,1,2,...,).

III. Recursion Operators

For the further transformation of the equality (2.16) one must establish the relations
between the expressions Φ{n) and Φ{n) for different n, i.e. one must calculate the
recursion operators.

Let us consider first the expression Φffl. From Eqs. (2.1) and (2.3) we obtain

σmP{n.m)Φ^ (,1 = 0,1,2,...,), (3.1)

The relations (3.1) allow us to express all matrix elements of the quantity Φ\ff
through N — 1 independent ones.

Let us introduce the projection operation Δk: (ΦΔh)u = fδ^kΦ i k. Applying the
operations Δk to Eqs. (3.1) and taking into account the properties of the matrices
A.P^.P, one obtains

$L?)Δi - Σ C»mP^m)Φ^Δι, (3.2)

- ^ ( « f i - i P o o - Σ °!nP[n-m)^tl)Δ^ (& = 2, 3, . . . , ΛΓ). (3.3)
m = 0

The relations (3.2) and (3.3) can be rewritten in a more compact form. Let us
introduce the matrix infinite order triangular operators 2Γ and T with matrix
elements

^ίn,m) = ~ Km K " Q ^ - m), Π ^ W,

^ , m ) = 0, m ̂  w + 1 («, m = 0,1,2,...,), (3.4)

and

T(n,m) = δm,n + 1INM' (*>m = 0,1,2,...,). (3.5)

Matrix operators ^Γ and T act on the infinite-component column
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ψ ^ ( Φ ( 0 ) , Φ ( 1 ) , Φ ( 2 ) 5 . . . , ) τ by the usual rules. For example,

Ψ~ M « ) = Lu n,mx) L &(mι,m2)^\m2)
mi = 0 m 2 — 0

~ Lu XJ (n.mi)^ (mi,m2) (m2) ' (^ M « ) ~ Mn+1) '
mi = 0 m2= 0

With the use of the operators ZΓ and T, the relations (3.2) and (3.3) can be
represented in the form

(βT~A T)Ψ™ = dy Ψ<$A + TΨ^A - (ΨfflP)^, (3.6)

Ψw = { ^ _ A T ) Ψm i ( i 4 τ + p ^ j

+ (KtP)Ak + Mτ + PτJ> (k=l,2,...,N-l). (3.7)

From the recurrence relations (3.7), we find

(3.8)

By virtue of (3.8) one can express the quantity Ψ(^β} through Ψffi. Substituting this

expression for Ψ%β) into (3.6) and taking into account the identity

where (Φ(II)o Vk\/= (Φ{n))-uVk, we obtain

ffoV^TψW-dyψW. (3.9)

Let us note that by virtue of the properties of the matrices A, P^ and P (for

example, A2 = AP = PA = AP^P = PP^A = 0) the operators F - AT)' are linear

functions on the operator T, i.e.

_ r TA- <Te (* ~ \ 2 3 )

M 1 * 2 - (3.10)

where

Λ — d e l _ . _ _ ,

and y = ^ n n = - δx - P .

Substitution of (3.10) into (3.9) gives

The equality (3.11) gives N relations between N expressions
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ψ(<xβ)
ψ NN

Ψ{2N\ , Ψ(NN' The first nontrivial equation from (3.11) allows us to express

N- 1

(*> y , t ) = Σ ' . ̂  0, (3.12)

where

(3.13)

Xtyf* - idx'f(x',y).

Formula (3.12) contains the inhomogeneous term Ψ%\x = + co,y9t). Similar
inhomogeneous terms (namely (Ψ{£βl + OOtytt))kέ) will appear after integration in
further calculations too. Taking into account (2.5) and (2.6), one can show that
(λ>0)

( £ )

Let us denote by ^ ( * } the subspace of quantities Ψ{in) for which Re(g" ι — qι {) =
cos((2π/N)(n — 1)) — cos((2π/]V)(i — 1)) < 0. For the indices n and i which satisfy
this inequality one has lim exp{λ(qn~1 — qι~ 1)x} = 0. Therefore in the relations

χ-> + oo

which contain the expression Ψ{*\ the inhomogeneous terms will be absent. In
particular, instead of (3.12) we have

N - 1

!ί= Σ kN

By virtue of (3.14) one finds

where

(3.14)

(3.15)

o\
0

0 0 0

\

0

0

J V - l . N

0

(3.16)

Substituting (3.15) into the relation (3.11) we obtain

(3.17)

Let us now rewrite the equality (3.17) directly in components Φ}*,*, of the infinite-
component column Ψψ. Taking into account the explicit forms of the operators
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F and T (see (3.4) and (3.5)), one finds

w - 1

la ^ (n,m)ψ (m)Δ>

where

def ^

Σ Σ

Operator M is of the form (3.16) where instead of ίk one must put the operators ίk,
which are

4 ' = ^ Σ K1(^\k(^v,) + ̂ δlkd;1dr (3.20)

The relations (3.18) contain only independent expressions Φ{^\ Let us introduce
the ΛΓ-1 -component column χin) = (Φ[%9Φ

{^N,^.9Φl^N-ίtN)τ. In the terms
of these quantities, the relation (3.18) is

n- 1

££(»+!) = ̂ % ) + Σ ^(r,,m)im), (3-21)
m = 0

where operators §, #", ^Γ

( Π s W ) are block matrices of the order N ~ 1. Their matrix
elements are

Σ
(3.22)

( = 0

+ Σ Σ (
ί = 0m'=0

It is not difficult to show that the operator # is a lower-triangular one (§u = — Ndx,

i = l,...,N — 1) and it has no nontrivial kernel. As a result, from (3.21) we have

Z(« + i, = ̂ " 1 ^ Z , n ) + Σ ^~^in,mΛm), (« = 0,l,2,...,) (3.23)
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From the relations (3.23) it follows that the recursion operators Λn exist such that

fa=Mo), (n = 1,2,3,...,,). (3.24)

The operators Λn are calculated by the recurrence relations

m = 0

J*! = # - ! # , Λ0=INM9 (3.25)

where the operators #, ̂  and J^(π>m) are given by the formulas (3.22).
The operators Λn are just the recursion operators which we are interested in.
In an analogous manner one can show that

£(«> = Λ,Z(O)> («= 1,2,3,...,), (3.26)

where recursion operators Λn are calculated by the recurrence relations analogous
to (3.25). It is easy also to show that

Λn= t(-l)kCn

kd"y-
kΛk. (3.27)

In the further constructions we will also need the operators Ά* and Λ* adjoint
to the operators An and An with respect to the bilinear form

+ 00

<X'X> = f dxdytr(χ/τ(x,y)χ(x,y)l
- oo

where χ and χ' are columns with N — 1 components. The recurrence relations for
calculation of the operators Λ* are of the form

m = 0

A ^ ^ + ί t ^ - 1 , (π= 1,2,3,...,), (3.28)

where matrix elements of the operators # + ,<#Γ+ and ̂ ( t , m ) are

N
42+ . — V y (r

+\ —λ T
*ik ~~ La vArί)i,k+l υi,k+l1M^

- Σ ~C Ve{^+yNk + δitk+1IMdy, (3.29)

(^ ( : , m ) k = - Σ ^ ( ( ^ + )f«,m,)α+l- Σ Σ (^+W.»)(( ̂  + )f».»'))Nt.
^ = o t = o m' = o

and
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In the formulas (3.30) and in all adjoint operators (marked by +)(d~1f)

(x,y) = J dx>f(x',y).
— 00

The operators r/ are calculated by the formulas

rϊ = Σ (f"¥)kίAτ(3^+)k2

9 (3.31)

1 ~, def ,

where zΓ "*" = y „„ and

(ii,w) ~υ(n,m)ux *~ m

/ °
~IM

0

\ °
\ 0

0
0

-IM ...

0

0

0

0

0
0

0

J

0

(3.32)

V ,-m)

Formulas (3.28)—(3.32) give a somewhat cumbersome but direct method for
calculation of the recursion operators A^.

The operators Ά* can be found by the recurrence relations analogous to (3.28) or
by the formula

ϊ + = (— l)" y cni (3.33)

IV. General Form of the Integrable Equations

In the previous section it was shown that matrix elements of the matrices
can be expressed through χ(w) and χ(m). So let us transform the equality (2.16) into a
form which contains only independent quantities χ and χ.

Taking into account the properties of the matrices P^ and P, one can show that
the equality (2.16) is equivalent to the following one

dxdy
k=0 M=0

(4.1)

From the relation analogous to (3.8) we find

_x = (δ x + Ady + P' -AT)N~

N-k-l
— V if) _1_ Δp\ j _ p' _

/ = 0 m = 0

def y Q(k)
= 2-j U(«,m
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Passing on in Eq. (4.1) from the matrices Φ[*)ΔN to the columns χ(n) and
introducing the N - 1 -component column V(x,y9t) = (V0(x,y9t)9 Vγ{x,y,t\...,

VN-2{x>y>t))τ> w e

Y Σ
k=0n = 0

where

'{ntm'))iN\

(4.4)

Operators /fc are calculated analogously to the operators (k.
Lastly, by virtue of (3.24) and (3.26), the equality (4.3) is equivalent to the equality

•=o, ( 4 5 )

where operators Λ + and τίn

+ are calculated by the formulas (3.28)—(3.33), and

m'

(Rik)\ = δu_N+kIM9 (4.6)

The equality (4.5) is fulfilled if

J V - 1 oo

Σ Σ M
k=0n=0

Thus, we have found the transformations of the potential K->F' which
correspond to the transformations of the scattering matrix S^S' of the form (2.11).
These transformations V~>V are given by the relation (4.7), where bkn(t) are
arbitrary functions.

It is not difficult to show that the transformations (2.11), (4.7) form an infinite-
dimensional abelian group. The transformations from this group are characterised
by N functions Bk(λN, t) which are entire on λN.

The infinite-dimensional abelian group of the transformations (2.11), (4.7) which
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act on the manifold of the potentials {F(x,y,ί)} by the formula (4.7) and on the
manifold of the scattering matrices {S(X,λ,ί)j by the formula (2.11) plays a
fundamental role in the analysis of the nonlinear systems connected with problem
(1.1) and their group-theoretical properties.

The group of the transformations (2.11), (4.7) contains various types of
transformations. Let us consider the infinitesimal displacement in time V.t^t'' =
t -f ε, ε -• 0. In this case

dV(x,y,t)

dt
00

Bk(λN, t) = δk0 - εΩk(λN, ή = δk0-ε £ ωkn(t)λNn.

Substituting these expressions into (4.7) and keeping the terms of the first order on
ε, we obtain

dV(x,y,t) . Λ

— ; + J^oUΛ t)V = 0, (4 8)
dt

where

,t) =
k=l n=O V'=V

and LfWAf\y,=v. The operators 1B

+ and Lπ

+ are calculated by formulas

(3.28)-(3.33) at V = V.
For the scattering matrix S under infinitesimal time displacement S'(λ,λ,t) =

S(λ,λ,ή + εd/S(λ,λ,t)/δt, and correspondingly from (2.11), one has

= γCλ,t)S(lλ,t)-S(llt)Y(λ,t), (4.10)
dt

N-l

where Y(λ9ή= Σ Ωk{λN,t)Άk.
k=l

Therefore we obtain nonlinear evolution equations in 1 + 2 dimensions (t, x, y) as
the infinitesimal form of the transformations (4.7) generated by the time
displacement.

The class of nonlinear equations (4.8) is characterised by arbitrary integers N and
M, by recursion operators Ln

+, and by arbitrary functions ωkn(ή (k = 1,..., N — 1). A
choice of the concrete N9 M and functions ωkn(t) leads to the concrete equation of the
form (4.8). The case N = 2 will be considered in Sect. 6.

Nonlinear evolution equations (4.8) in 1 + 2 dimensions are just the equations
integrable by the 1ST method with the help of the two-dimensional problem (1.1).
Using the two-dimensional version of the 1ST method (see [15,16]) one can find a
broad class of the exact solutions of Eqs. (4.8).

In concluding this section let us attract attention to the fact that by virtue of
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(4.10) the diagonal elements Sa0L{λ,λ) of the scattering matrix are time-independent:
dSaa{λ, λ)/dt = 0 for any functions Ωk(λN, t). Therefore the quantities SaΛ(λ, λ) for any λ
are integrals of motion of Eqs. (4.8). If one expands tr(Ap In S ^

00

in the asymptotic series on λ~ι :tr (Άp \n S D{λ, λ)) = £ λ~nC{p\ then one obtains a
w = 0

counting set of the integrals of motion C{p\p = 1,..., N — 1 n = 0,1,2,...,). By
standard procedure (see e.g. [1,14]), one can find the explicit dependence of the
integrals of motion Op) on V0(x9y9ή9 Vλ(x9 y9 ή9... 9 VN_2(x,y,ή. Let us emphasize
that these integrals of motion are universal one, i.e. they are integrals of motion for
any equations of the form (4.8).

In conclusion let us consider the one-dimensional limit when all the potentials
V0,Vl9...,VN_2 i n O l) a r e independent of the variable y(βVJdy=ϋ). If one
performs the Fourier transform over the variable y, i.e. χ(x, y9t) = \ dλ
exp( — λNy)χ(x9 λ, ί), then problem (1.1) is reduced to the one dimensional
Gelfand-Dickey spectral problem for χ(x9λ9 ή;

^+VN_2(xJ)-^Γζ+' + V0(x,t)χ = λNZ. (4.11)

In this one dimensional ^ case Ff (x, 3;, ί) = (2πί)~1/2 exp( — λNy)F±(x9 λ, t),
F±(x9y,ή = (2πi)~v2Qxp(λNy)F±(x,λ,t\ and from the relations (2.5)-(2.9) it
follows that F ^ ί l ) " 1 and

S(X, λ, t) = δ(λ - λ)S(λ9 ί), 5(1, A, ί) = δ(λ -λjS'1 (A, ί),

where S(λ, ί) is the one dimensional scattering matrix.
Then for the quantities Φ{n) and Φ{nγ we have Φ(n) = (— λN)nΦ(x, λ91\

Φ{n) = (λN)nΦ{x,λ,t). Furthermore in the case dVk/dy = 09 the operators ^ ( n ? m ) in
(3.25) at n ψ m are equal to zero, and therefore the relations (3.24) — (3.26), (3.28) are
reduced to the following ones: — λNχ(x, λ91) = Λ^ix, λ, t)9 and

Λn = (-λx)\ A:=(-A?y (n= 1,2,3...).

As a result, at dVJdy = 0, (k = 0,1,..., N — 2), the transformations (4.7) and Eqs.
(4.8) are reduced to the corresponding transformations and equations connected
with the one dimensional Gelfand-Dickey problem (4.11) (see Ref. [13]).

V. Transformation Properties of the Integrable Equations

General transformation properties of Eqs. (4.8) are mainly analogous to those for the
equations integrable by the problem dΨ/dx + AdΨ/dy + P(x9 y, t)Ψ = 0 [14]. So we
consider them briefly.

The group of transformations (2.11), (4.7) plays a main role in the analysis of the
general group-theoretical properties of Eqs. (4.8).

Let us first consider the transformations (2.11), (4.7) with time-independent
matrices B φC. These transformations form an infinite-dimensional abelian group
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and, as it is easy to see, does not change the evolution law (4.10) of the scattering
matrix. Therefore they convert the solutions of the concrete equation of the form
(4.8) into the solutions of the same equation, i.e. these transformations are auto-
Backlund transformations for Eqs. (4.8).

The group of transformations (2.11), (4.7) also contains as a subgroup the infinite
dimensional abelian symmetry group of Eqs. (4.8). In the infinitesimal form these
symmetry transformations are (V-+ V =V+ δV)

J V - l co

k= 1 n = 0

'V, (5.1)[n,m)
V' = V

where/^ are arbitrary constants. The transformations (5.1) are symmetry transfor-
mations for any equation of the form (4.8).

And finally, the transformations (2.11), (4.7) with time-dependent matrices B and
C are generalised Backlund transformations: they convert the solutions of certain
equations (4.8) into the solutions of the other equation (with other functions ωkn(ή)
of the form (4.8).

VI. An Example N=2: Nonstationary Schrodίnger
Spectral Problem

Here we illustrate the general results of the previous sections. Problem (1.1) for
N = 2 is the nonstationary Schrodinger spectral problem dχ/dy + d2χ/dx2

+ V0{x, y, t)χ = 0. In the scalar case M = 1 this problem was used for the integration
of the Kadomtsev-Petviashvili equation [15,17,18].

For N = 2 the general equations (4.8) are of the form (V0 = U)

B _ m ) J

Recursion operators L^ and LM

+ are calculated by formulas (3.28)—(3.33) at N = 2
(V = U). For example

It. = -1{ (3,3; ι + dxf + 2\U{x, j,),.] +

lK1l+ -UJ{x,y),dyd;2.-]_ (6.2)

and 1+ = - 1 ; - dy, where [A, E] ±

 ά£AB ± BA.

The simplest equation (6.1) corresponds to ω 1 2 = ω13 = • = 0 and it has the
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form

dU(x,y,t) ,JU(x,y,t) , ωίί(t)fd3U(x9y9t) , α * ,d2U(x'9y,t)
^ ω i θ W Λ + Λ Γ~3 + 3 J ^ X TΊ.

dt dx 4 \ dx3 j ^ dy2

+ 3^-( ι J

(6.3)

In the scalar case (M = 1) and ω 1 0 = 0 , ω n = — 4, Eq. (6.3) is the well-known
Kadomtsev-Petviashvili (KP) equation. For M > 1 Eq. (6.3) is the matrix KP
equation (see e.g. [19]). The KP equation (6.3) is the lowest one (KPX) from the
infinite family (KP family) of the 1 + 2 dimensional equations (6.1): the KPn

equation corresponds to ω n = ••• = ωln_ί = ω l n + 1 = ••• = 0, ωίn= — 22",
(n= 1,2,3,...).

The simplest Backlund transformation (BT) (4.7) corresponds to constant b00

and b10 and bkn =0,(/c = 0,1 n = 1,2,...,), and it is Bb(U^>U')\

Λ:

+ J dx'(U'(x',y,ή-U(x',y,ή)U'(x,y,t)
— oo

-U(x9y,t) j dxW(^^0-^(^^0)=0, (6.4)
- OO

where b = 2 boo/blo. Introducing a quantity W(x, y,t)= J dx'U(x', y, t), we obtain

a local form of BT (6.4):

3 d2 d dW dW
b—(W -W) + —^W + W) (W'W) + { W ' W ) ( W ' W ) 0

d dx2dxy J dx2y ' di "' v ' dx dxx '

(6.5)

Let us emphasize that the BT (6.4) is a universal one, i.e. it is a BT for any
equation of the form (6.1).

The BT (6.5) allows us to construct the infinite family of the solutions of Eqs. (6.1)
by almost pure algebraic operations. Indeed, let us consider the following diagram

(6.6)

W2

which expresses the commutativity of BT's (6.5): BbιBb2 = Bb2Bbι.
Here Wo, Wί9 W29 W3 are four solutions of the concrete (but any) equation of the
form (6.1). With the use of relation (6.5) for all four solutions WO9Wl9W29 W3 from
(6.6\ we obtain

w3 = φί-b2 + w1- w2r
1!Λb1-b2)(wϊ + w2- w0)

d ) ( 6 ' 7 )

- WO(WX + W2) +W\-W\ + 2—iW, - Wi
2
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Therefore given three solutions WΌ, Wl9W2, one can easily calculate the fourth
solution W3 by formula (6.7). Let us emphasize that relation (6.7) is a universal one,
i.e. it is valid for all equations of the form (6.1) and in particular for any equation
from the KP family.

Relation (6.7) is just the nonlinear superposition principle for Eqs. (6.1). Some
concrete nonlinear superposition principles for some concrete 1 + 1 dimensional
equations (for example, for the Korteweg-de Vries equation) are well-known (see e.g.
Ref. [20]).

In the scalar case (M = 1), BT (6.5) and nonlinear superposition formula (6.7) are
reduced to the following

b(W'-W) + —(W'+W)+%W'-W)2- J dx'—(W'(x'9y)-W(x',y)) = 09

dx oy
(6.8)

and

W3 = W1 + W2- W0+2~\n{bι-b2 + W,- W2\ ( 6 9 )

which coincide at b = 0 with those found earlier by another method in Ref. [21].
Let us consider for definiteness the scalar KPί equation (6.3). Let us start with

the trivial solution Wo = 0. If one applies BT (6.8) to this solution, then one obtains
the solution Wl9 which can be found from the equation

One of the solutions of Eq. (6.10) is the well-known soliton-type solution of the KPX

equation (see e.g. [1]):

U(x, y, t) =

(6.11)
where a and c are arbitrary real constants and bί<0.

Let us now take the trivial solution as Wo, and soliton-type solutions (6.11) with
constants b1 and b2 as W1 and W2. Then using formula (6.9) we find the two-soliton
solution W3. An obvious proceeding of this procedure gives any iV-soliton solution
of the KPX equation.

In the scalar case one can also obtain from (6.6) an other nonlinear superposition
formula for BT (6.8). It has the form

{b1+b2){W2-W1)-2 ] dx'y(W2(x\y)-W1(x',y))

3 0 + b1-b2 + W1-W2

For dW/dy = 0 this formula is reduced to the well-known superposition formula
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for the Korteweg-de Vries family of the equations (see e.g. Ref. [20]).

VII. Conclusion

1. In addition to problem (1.1), there exists an other generalisation of the Gelfand-
Dickey spectral problem to two dimensions, namely the problem

8NX dN~2γ dNγ
^+VN-2(*,y,t) a^^+''' + Vo(x9yj)χ--jφ = 0. (7.1)

Spectral problem (7.1) can also be obtained as a result of the ZN reduction of the
general matrix problem dΨ/dx + AdΨ/dy + P(x9y,t)Ψ = 0 (see [14]).

For the two-dimensional problem (7.1), one can obtain all the relations
analogous to those given in the Sect.2. But the recursion operators of the type An and
Λn (with the properties (3.24) and (3.26)) do not exist for problem (7.1). Therefore an
essential modification of our constructions is needed for the applicability of the
AKNS-technique to problem (7.1).
2. Let us note also that in the present paper we consider the direct scattering
problem for (1.1) by treating the variable x as a time type variable, i.e. the scattering
matrix S connects the asymptotics of the solutions χ of problem (1.1) at x-infmites (at

x = + o o and x = - oo). In [18] in the case N = 2(i.e. for dχ/dy + d2χ/dx2 +
V(x> y> t)% = 0) the standard version of the scattering problem for the nonstationary
Schrodinger equation was used in which a scattering matrix connects the solutions
at ^-infinites, i.e. at y= + oo and y= - oo. The interrelation between these two
approaches will be considered elsewhere.
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