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Abstract. We prove that the Schrδdinger operator H= -- ~ + V(x)+F-x has
ax

purely absolutely continuous spectrum for arbitrary constant external field F,
for a large class of potentials this result applies to many periodic, almost
periodic and random potentials and in particular to random wells of inde-
pendent depth for which we prove that when F = 0, the spectrum is almost
surely pure point with exponentially decaying eigenfunctions.

I. Introduction

This paper presents exact results on the behaviour of electrons in the presence of
an electric field. We discuss below the physical aspects of the problem and of our
results and then we present the mathematical aspects and the organisation of our
paper.

The Physics of the Problem and of the Results

The problem of an electron in a random potential has been receiving a great deal
of attention for quite a while, both from the physical and the mathematical point
of view. The case of almost periodic potentials has also recently attracted a lot of
workers in the field. A challenging question is the following : what is the behaviour
of such systems when a constant electric field is turned on? The more the states are
localized for zero field the more interesting is the problem : the most extreme case
deals with one-dimensional systems for which an arbitrarily small degree of
disorder implies the exponential localization of all states in the absence of electric
field. Mathematically this corresponds to the fact that the associate Schrodinger

τ2

operator — — -̂  + V(x) has almost surely only pure point spectrum with exponen-
ax

* Partially supported by N.S.F. Grant MCS-82-02045
** Partially supported by N.S.F. Grant MCS-8 1-20833



388 F. Bentosela, R. Carmona, P. Duclos, B. Simon, B. Souillard, and R. Weder

tially decaying eigenfunctions. When the electric potential F x is added our results
tell that the spectrum become absolutely continuous, that is all states become
extended! Although it could seem of common physical wisdom (after all, the
potential F x goes to — oo when x goes to — oo). This result is not at all trivial as
can be seen from the finite difference analogue for which the spectrum, as
explained below is always pure point!

It turned out that our proof is very general and applies to a large class of
potentials including periodic, almost periodic and random potentials. In fact it
appears as a deterministic result. We want to mention the previous work of Herbst
and Rowland [7] in which they proved for a class of random potentials that for
FΦO, almost surely certain matrix elements of the resolvent of H(w) possess
meromorphic continuations to a strip below the energy axis. However they use
translation analytic techniques which force the potential to be analytic; it also
makes unknown in their situation whether or not the spectrum is pure point for
F = 0. In our work we do not have such restrictions because we use the powerful
method due to Mourre [11].

We prove that for FΦO, the spectrum is absolutely continuous; this implies
that all the states are extended, i.e. they are not square integrable. Nevertheless it is
easy to check that they do decay exponentially fast in one direction.

Let us mention that the analogue finite difference operator presents a
completely different situation. The operator discrete laplacian plus discrete electric
field has a compact resolvent then adding a bounded potential gives an operator
with always pure point and even discrete spectrum!

The Mathematical Aspects and the Organisation of the Paper

In Sect. II we prove a deterministic result (Theorem 4), ensuring for a large class of

potentials that the spectrum of the Schrδdinger operator — —^ -f V(x) + F x is
cix

purely absolutely continuous; it applies to many periodic, almost periodic and
random potentials including random wells of independent depth. This result is
crucially based on the powerful Mourre's theorem [11] and on an ODE trick to
remove the eigenvalues. Section II is hence purely analytic and independent of
Sect. III.

In Sect. Ill, we provide the reader with a class of random potentials to which
the results of Sect. II apply a.s. and for which we prove (Theorem 6) the expected
localization result for one dimensional disordered systems in the case F = 0. The
proof follows the line of [3]. It is not shorter but it is definitely more elementary in
the sense that the hypoellipticity assumption which was crucial in [6, 10, 3] is
advantageously replaced by a simple assumption on the potential: it is assumed to
have a continuous density with bounded support. The fact that this assumption is
the one that had to be made in the lattice case (see [9]) should shed some light on
the very nature of the probabilistic aspects of the localization problem and should
help to convince workers in this area that there is so far some unity in the existing
lattice case as continuous case proofs which are usually regarded as technically
completely different.
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II. The Analytic Result

The following lemma is designed to prevent the technicalities of various approxi-
mation arguments from obscuring the proof of our Mourre type estimate (see
Proposition 3 below) which is the essential ingredient in the proof of the main
result of this section (see Theorem 4 below).

Lemma 1. Let W be a bounded uniformly continuous function which satisfies (#)
x + r

lim Sup — ί Mj>)dv|| =0. Then, for each ε>0, αeIR and /eJN, one can find a
2r ' '*"' v — r_

function W which satisfies (#) and a sequence {Wn;neZ} in C^(IR) such that:

i) \\W-W\\^<^

ii) VπeZ, suppWnC[n — α,n + ά] for some α>0 and W= ]£ Wn,

in) sup
ίelR, neZ

d= , _

dt^
00,

where Λ denotes the Fourier transform.

Remark 2. It is easy to check that if W satisfies ( # ) and μ is a bounded (signed)
measure on IR, then the convolution W*μ satisfies also (#). This fact will be
repeatedly used in the proof below. Moreover it is obvious that (#) holds
whenever W is the derivative of a bounded function.

Proof. For each nεΊL we set Wn = Wί[n_ 1/2 n+ 1/2], where 1A denotes the character-
istic function of the set A. Let ρeCJ(]R) be nonnegative, supported in [— 1, 1] and
normalized to have integral 1. Then we define the approximate identity (ρε')ε'>o
by:

ρε'(x) = ε/"1ρ(ε"1x), ε>0,xeIR.

Now, if we set Wε' = W* ρε' and Wf = Wn* ρε> we know that Wε' satisfies ( # ) for
each ε'>0 (recall Remark 2) and, since W is bounded and uniformly continuous,
we can pick e'>0 such that:

\\W-Wε'\\oΰ<ε/2. (2.1)

Let /^O be an integer to be chosen later on. The next step is to approximate the
Wε' by functions whose Fourier transforms are 0(|ί|0 at the origin uniformly in n.

For each r > 0 we define χr = ~-l t_ r j + r ], and we remark that W satisfies (#) means

lim || W**J «,=().
r-» + oo

Then we set :

H*» = Wε' *(δ - χr)*...*(δ - χr) , (2.2)

/-times

where δ denotes Dirac's measure at the origin and f*(δ — h) stands for / — /*/?.
We define similarly W^''r} for each neΊL. In fact
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where h*k stands for h*...*h k-times. Now:

k=ί

* If

= Σ Uk = ι VK

£ If
La i,

k=l

\Wε'*γ I Iγv ΛI H

which goes to zero when r goes to infinity. Hence we can fix r>0 large enough in
order to have :

\\Wε'-W(ε'>r)\\00<ε/2. (2.3)

Once ε'>0 and r>0 are chosen we set W=W(ε''r] and Wn=W^''r] to drop the
dependence on ε' and r from the notations. Obviously, F^eC^(IR) for each n, W
satisfies (#) [recall (2.2) and Remark 2], i) is a consequence of (2.1) and (2.3), and
ii) is a consequence of our construction. Thus we concentrate on the proof of iii).
Since by (2.2) we have :

we need only check that:

is uniformly bounded in ίeIR and n^TL. This is clear once we remark that first, for
|ί| large

^ const

(where ||/||p stands for the Lp-norm of/) which is uniformly bounded in πeZ, and
second, for |t| small, expressions of the form

are bounded above by

dj~

dtj~

the second factor being finite provided £ is large enough, the first one being
uniformly bounded in n^TL by construction. Π

From now on for each real F, HF will denote the unique self adjoint extension

of the symmetric operator ~+Fx defined on the space C?(IR) (see for
ax
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example the unitary equivalence used in the proof below in the case FφO).
Moreover for any self adjoint operator A, we will use the notation EA(A) for the
corresponding spectral projection on the Borel subset A of R

The following result will play a crucial role in checking the assumptions of
Mourre's theorem.

Proposition 3. Let W be a bounded uniformly continuous function which satisfies:

lim sup ^ ί W(y)dy = 0. (#)

Then EΛ(HF) WEA(HF) is compact for each bounded Borel subset A of IR.

Proof. First we note that, without any loss of generality, we can assume that W
has all properties of the approximation function W given by Lemma 1. The
Fourier transform maps HF into a first order differential operator and the latter is
unitarily equivalent to its principal part (see [12, p. 425]). Combining these two
facts in the present situation we obtain that HF is unitarily equivalent to the
multiplication operator by Fx on L2(IR) via the formula Up 1HFUF = Fx, where UF

is the unitary transformation

where Aί denotes the Airy function (see [1, p. 447]). This fact is well known (see for
example [2]). Hence it is sufficient to prove that the operator
χΛ(Fx) UF

 1 WUFχΔ(Fx) is Hubert-Schmidt and the latter will be done by proving
that the operator U^WUp has a locally bounded kernel. In fact we will prove
that, for each bounded interval Δ ClR we have:

sup|Kπ(x ϊ3;)| = 0(|nΓ2)9 (2.4)
x,yeA

where Kn(x, y) denotes the kernel of the operator Kn = UF

 1WnUF. First we remark
that:

Kn = (2πΓ112 J
— oo

In our notations we have :

from which it is easy to deduce the formula (already used in [2]) :

where A stands for the operator i — . Using it we obtain
dx

+ 00

Kn(x,y) = (%π2Γ1/2 f dtΓll2e-ίtnWn(t)eiσ(t x'y},
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where we set σ(t,x,y) = (x-y + t2/F)2/4t-t?'/3F + ty. Now the estimate (2.4)
follows from property iii) of Lemma 1 and some integrations by parts. Π

Now we state and prove the main analytical result of the paper :

Theorem 4. Let V be a bounded real-valued function whose first derivative is
bounded, uniformly continuous and absolutely continuous and such that V" is
essentially bounded.

Then for each F Φ 0, the spectrum of the self-adjoint operator :

(2.5)

is IR and purely absolutely continuous.

Note that H is obtained from HF by a symmetric bounded perturbation.
Consequently H defined by (2.5) is self adjoint and C^(IR) remains a core for H.
Moreover it is "mere gardener work" to check that the spectrum of H is the whole
real line IR (say by constructing bounded generalized eigenfunctions).

Proof. The strategy of the proof is very simple : first we prove that Mourre's
theorem [11] applies to the present situation to rule out the possibility of having a
singular continuous component in the spectrum, and then we use classical O.D.E.
techniques (see Lemma 5 below) to show the emptyness of the point component of
the spectrum.

Let A be defined by 2(A) = {/e L2(1R) / absolutely continuous and /' e L2(1R)}
and Af = if whenever fe2(A). ^)n^(#)DC^(IR) which is a core for H. If
αelR, it is easy to check that:

on C^(IR). By the closedness of// and the boundedness of V, (2.6) extends to the
whole domain @(H), and from this we conclude that eίcίA leaves @t(H) invariant and

sup \\Hel«Aφ\\ ^ \\Hφ\\ +F+\\V\\ao<+π
|α |< 1

for each φε<2>(H).
Let 5̂  = y(IR) be the Schwartz space of rapidly decreasing functions.

Obviously yc®(A)n@(H), β^^C^7 for all αelR, Sf is a core for H and a simple
computation involving only integration by parts shows that

ilH,A]=F+V

as quadratic forms on <7. Hence, the quadratic form i[H, A] is closable and
bounded below and the corresponding s.a. operator is simply the bounded
operator of multiplication by F + V . Its domain [i.e. L2(1R)] obviously contains

so that we have :

by Proposition II. 1 of [11]. This proves that the quadratic form i[H,A\ on
Q)(A)c\Q)(lϊ) is closable and bounded below and that the corresponding self-
adjoint operator, say i[H, A]°, is the bounded operator of multiplication by F+ V .
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If φ,\pe@(A)π$>(H\ a simple computation shows that:

so that on @(A)r\@(H), the quadratic form [/[H,^4]0,y4] coincides with the
operator of multiplication by — iV", which is assumed to be bounded so that
(H + iΓίl2V"(H + iΓυ2 is a bounded operator on L2(IR).

If A is any open interval we have :

EΔ(H] i[ff , A]Q EΔ(H] = FE.(H) + EΔ(H) V'EΔ(H] ,

and since F φ 0, checking condition e) of Mourre's theorem reduces to proving that
EΔ(H) VΈΔ(H) is a compact operator on L2(IR). The latter is equivalent to the
compactness of EA(HF) VΈΔ(HF} because V is bounded [and thus 2(H) = ®(HF)~\
and V is bounded, and we conclude by using Proposition 3 above with W= V.
Since all the assumptions of Mourre's theorem are satisfied we know that the
spectrum of H has no singular continuous component and we are left with the
study of possible eigenvalues. This problem is solved by using the following lemma
which is stated without proof because the latter is that of Corollary 22, p. 1414, of
[5] up to some minor modifications. Π

Lemma 5. Let V be a bounded real valued function whose first derivative is bounded
and absolutely continuous in a neighborhood of — oo on which \V"(x)\ = 0(\x\a) for
some 0 ̂  α < 1/2.

Then, if F>0, no solution of — —^ +Fx+ V(x)\ψ = Eψ is square integrable
near — oo.

Remark. Theorem 4 can be extended easily in one direction: namely if
W(x) Ξ \61 V(x)\ goes to zero at infinity in all directions of IRV and V is C2 with || F|| ̂
and II^FI^ finite, for FφO, —A + V(x) + F-x has only a.c. spectrum with an
additional possibility of isolated eigenvalues of finite multiplicities. The applica-
bility of Mourre's theorem follows in that case from a result of Avron-Herbst [2]
that W( — A +F x + i)~1 is compact.

III. The Random Case

As explained in the introduction, we would like to provide the reader with a simple
example of a random potential {F(x, w);xeIR,weΩ} defined on a probability
space (Ω, α, IP) for which IP-almost surely in weΏ, the operator

H(w)=--j-2+Fx+V(x,w)

has dense pure point spectrum when F = 0 and purely absolutely continuous
spectrum when the electric field is turned on (i.e. F>0). The class of random
potentials we introduce below is such that for all we £2, the function x-»F(x, w)
satisfies the assumption of Theorem 4 above so that the case F>0 will not be
argued.
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Theorem 6. Let V(x,w) = Σ ζnM%(x — ri) for weΩ and xelR, where:
neTL

i) {ξn;nE%} is a sequence of independent identically distributed random
variables having a common density φ (i.e. ]P{ξnEdy} = φ(y)dy), which is continuous
and with compact support.

ii) χ is a nonidentically zero nonpositive function with support in [0,1].
Then, for ^-almost all weΏ, the self-adjoint operator:

on L2(IR) has pure point spectrum with eigenf unctions falling off exponentially
according to the upper Liapunov exponent of the Cauchy problem corresponding to
the eigenvalue equation.

Proof. Our proof will follow the lines of [3] for two reasons : first it is the only
approach in the continuous case that proved to be efficient in the present situation
and second, we want the exact rate of exponential decay of the eigenfunctions. At
this point we should pause and remark that [3] gives only an upper bound on the
fall-off of the eigenfunctions but as argued in [4], simple properties of the upper
Liapunov exponents imply the analogous lower bounds essentially for free.

We recall the strategy and the notations of the proof of [3]. For each we Ω, the
operator H(w) is in the Weyl limit point case, and by restricting to bounded
intervals [ — L, +L] and imposing boundary conditions at — L and +L we can
construct pure point spectral measures σ£ which converge vaguely as L— »oo to a
measure σw, which is measurable in w and "which contains all the spectral
information on //(w)." As explained on pp. 196-198 of the pedagogical part of [3],
it is sufficient (and almost necessary) to prove that for IP-almost all we £2 and
σw-almost all /ίeIR there exists a unit vector in IR2, say Θ^ λ, such that the
amplitude r±(x) = [y(x)2 + y'(x)2']1/2 of the solution of the eigenvalue problem

— y" + [.V(x,w) — λ]y = Q with initial condition "equivalent" asW,

x-^ + oo to e-*u>w)\x\ for some α(/l,w)>0 (which will then be identified with the
upper Liapunov exponent of the eigenvalue equation). This is implemented by
proving that for each bounded interval A contained in the spectrum of H(w\ and
for each ε>0, there is δ>0 such that:

inf J rλ(x)δeδ[a(λ}~ε]x dx }< + oo , (3.1)
Ω Δ β|| = ι \ o /

where we should recall that rλ(x) depends also on w and the initial condition <9,
and where we restricted to the case x-^ + oo, the case x—> — oo being treated
similarily. In order to prove (3.1) the strategy consists in (see Lemma 3.3 of [3])
first, restricting the integration in x to a finite interval [0,Z/], second substituting
an approximate spectral measure σ^ to σw with L > L', and getting rid of the inf by
picking a particular initial condition Θ for each λ which is charged by σ£, then
proving that the left hand side of (3.1) modified in this way is bounded above by a
constant independent of L' and L, and finally letting L^oo and then Z/->oo using
Fatou's lemma to conclude (3.1). Consequently we are left with the proofs of
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Lemmas 3.1 and 3.2 of [3] which correspond to a refined version of a well known
theorem of Furstenberg and to the crucial estimate alluded above. These proofs
are carried out in [3] under hypoellipticity assumptions taken from [6, 10]. We
now show how our present assumptions on the random potential V make possible
an argument avoiding these deep facts from the theory of degenerate elliptic
partial differential equations (see [8]). As usual, we introduce the so-called phase,
say θ(χ), of the solution of the eigenvalue equation :

0 (3.2)

by setting :

) = r(x)sinθ(x)

and (3.2) gives :

θ'(χ) = cos2 θ(x) + [λ- V(x, w)] sin2 θ(x) . (3.3)

If we let L-*oo and Z/-»oo through integer values, all is needed for the proofs of
Lemmas 3.1 and 3.2 of [3] is the fact that θλ(n) as a random variable (which
depends on λ) has a continuous density uniformly bounded in n and λ (which we
restrict to a bounded energy interval A). In contrast with [6, 10, 3] we do not need
to work with the joint process (potential, phase) to have a Markov process. Indeed,
by the independence of the ξn's and the definition of V, {θλ(n)ι neN} is a Markov
chain by itself: "if we know θλ(ή) and if we want to predict θλ(n+l\ we need only
to solve (2.3) in [w,w+l] with initial condition at n given by θ(n). The result is
random: it depends on the values of V in the interval [n,n+ 1], but this depends
only on ξn which is independent of the values of V(x) for x ̂  n"

At this point of the proof, everything reduces to proving the existence of a
function nλ(k9 θ, θ') which is continuous in (λ, θ, θ ' ) E A x S ' x S' for each integer fe, and
which is uniformly bounded in its four variables and such that :

j/(6)A(/c))dP = J f(θ')nλ(k, θ, θ')dθ' , (3.4)
Ω S'

where dθ' denotes the normalized measure of the projective space 5' of IR2, and
where θλ(k) appearing in the left hand side of (3.4) stands for the solution θλ(x) of
(3.3) at x = fe and initial condition at 0 given by θλ(0) = θ. Since {θλ(n);neHN} is a
Markov chain, by Chapman-Kolmogorov equation we need only to study the one
step transition and prove that nλ(θ9θ') = n λ ( l 9 θ 9 θ ' ) is jointly continuous (and thus
bounded) in λ, θ, and θf.

For each real ξ let us denote by Θλ(x9 ξ9 θ) the solution of the equation

Θ' = cos2θ + [λ-ξχ]sm2θ9 0(0) = θ (3.5)

evaluated at x. For fe= 1 the left hand side of (3.4) is equal to :

) = $f(θλ(l9 ξ, θ))φ(ξ)dξ , (3.6)
IR
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and we would like to perform the change of variable θ' = 0A(1, ξ, θ) in the right hand
Γlf)

side of (3.6). From (3.5) it follows that — satisfies:

(where prime stands for the derivation with respect to the variable x) which can be
integrated to give the following implicit formula:

dθ, ΐ „- ΪU-ξχ(u)- I]sin20λ(u,ξ,0)du
^(x,ξ,θ)=-^χ(S)sm2θλ(S,ξ,θ)e^ ds (3.7)
Gζ 0

because -̂  (0, ξ, 0) = 0, since 0λ(0, ξ, 0) = 0 independently of £. Since we are only

interested in the case x = 0 and since λ and ξ run through bounded intervals and
since χ is bounded, we have:

}[λ-ξχ(u)-ί]sin2θJi(u,ξ,θ)du
es _• C

for some constant C>0 independent of £,/l and SE[0,1]. Consequently [recall
(3.7) and #^0] one obtains:

dθ 1

—-(1, ξ, θ) ̂  -C J χ(s) sin2 Θλ(s9 ξ, θ)ds. (3.8)
vζ o

We claim that there exists a constant C0>0 such that for all λ in A, ξ in the
support of φ and θ in S' we have:

o

Let us first check that the proof can be completed modulo this claim.
For each λ and θ fixed, 0Λ(1, ξ, θ) is a monotone, strictly increasing function of ξ

and the above mentioned change of variables in the right hand side of (3.6) gives:

(1,0^(0'), θ)

where 0^ denote the reciprocal function of ξ->θλ(l, ξ, θ) restricted to the support
of φ. From this formula we can read off the joint continuity of the density [note
that the latter vanishes if θ' is not in the image of the support of φ under the
mapping ξ-*θλ(l,ξ,θ)~] and its uniform boundedness [by the conjunction of (3.7),
(3.8), and the claim (3.9) it is obvious that a bound like \\φ\\^/CCQ would do].

As a solution of a first order differential equation in x whose coefficients are
smooth in λ and ξ and whose initial condition is θ, θ is jointly continuous in λ, x, ξ,

i
and θ, so that the claim reduces to proving that Jχ(s)sin20A(s, ξ,θ)ds<0 for each

o
fixed λ, ξ, and θ. The latter is shown by noting that in view of (3.5), θ' = l at any
point where sin2 0 = 0, so sin20 has isolated zeros and

Jχ(r)sin2θ. D
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