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Abstract. The formalism developed in a previous paper is applied to yield a
phase cell cluster expansion for a hierarchical φ\ model. The field is expanded
into modes with specific renormalization group scaling properties. The present
cluster expansion for a vacuum expectation value is formally the natural
factorization of each term in the perturbation expansion into the contribution
of modes connected to the variables in the expectation via interactions, and
that of the complementary set. The expectation value is thus realized as a sum
of contributions due to finite subsets of the modes. We emphasize the following
additional features:

1) Partitions of unity are not used.
2) There are essentially no cut-offs.
3) The expansion is developed directly, without an initial need to prove an

ultraviolet stability bound, the most difficult part of the traditional approach.
Our main interest in the present phase cell cluster expansion is founded in

the belief that it may be the right vehicle for proving the existence of a non-
trivial four-dimensional field theory.

0. Introduction

Techniques developed in the study of φ\ should eventually be useful in other
directions - in statistical mechanics, in fluid mechanics, in the study of turbulence.
We here restrict our sights to further applications in field theory, in particular to
the construction of non-trivial four-dimensional field theories. For us the study of
03 is taken in this light. For convenience we divide the bulk of work on φ\ into five
tracks.

1) The first important contribution was the establishment of the ultraviolet
bound by Glimm and Jaffe [9]. This most difficult paper indicated the importance
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of phase cell localization and foreshadowed (block spin) renormalization group
techniques. Feldman and Osterwalder [7], and Magnen and Seneor [12] applied
cluster expansion techniques, using the results of [9], to establish field theory
axioms for φ\.

2) Gallavotti et al. introduced renormalization group (block spin) ideas to
provide a new proof of the ultraviolet bound [4]. Gawedzki and Kupiainen
adapted these techniques to study infrared lattice models [8]. Our first efforts in
using phase cell cluster expansions were inspired by this work.

3) Brydges et al. have used random walk and correlation inequality techniques
to obtain bounds on expectation values for φ\ [5].

4) Using the results in [9] Y. M. Park has shown that the lattice approxima-
tion to φ\ converges to the continuum theory [13]. In [1, 2] Balaban has given a
new proof of ultraviolet stability for a lattice φ\, with bounds independent of
lattice spacing. The technique used is that of block spin transformations and the
renormalization group, making rigorous ideas of Wilson an'd Kadanoff in this
setting. This effort borrows heavily from some ideas in 2).

5) Here we include our present treatment. The phase cell cluster expansion was
first applied in an infrared lattice setting [6]. In [3] we applied the expansion to
two dimensional models but in fact much of the work of that paper was general,
independent of spatial dimension, and immediately applicable to φ\. (An error in
this reference will be corrected herein.)

All of the above approaches except 3) use phase cell localization in an
important way. Approaches 1), 2), and 4) each have as the first and most difficult
step the establishment of ultraviolet bounds. In viewing extensions to further field
theories, the techniques in 3) may be limited by special requirements on a theory to
yield necessary correlation inequalities. Baίaban has already extended his treat-
ment to handle gauge theories in two and three dimensions. In future papers we
will extend the present work to include the actual φ\ model, and to treat Y2. Work
is also underway to treat gauge field theories. We feel the approaches of 4) and 5)
are the most promising for establishing the existence of non-trivial four-
dimensional field theories. The phase cell cluster expansion is perhaps the most
natural setting within which to treat non-superrenormalizable models - although
difficult and still untested, it seems possible to renormalize this cluster expansion
by the traditional subtraction procedures of theoretical physics. (By the use of
interpolation and "removal of contours" [10] numerical factors similar to mass
inserts and vertex inserts are developed inside terms in the cluster expansion.
Individually some of the factors may be infinite, but the cluster expansion is
organized so that only finite differences of such factors appear. Asymptotic
freedom seems essential.)

We now describe the models to be considered. We will use a label k to describe
our expansion functions with the same notation as in [3, Sect. 2], so that the
expansion function uk(x) and variable ak are associated to a cube, say Δk. However,
uk(x) need not necessarily be given by Eq. (1.4) of [3] ! There is here, as there, a
fixed integer s. We write
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Let dμ0 be a probability measure on continuous functions of the αf in which the α
are Gaussian variables distributed with covariance Cip i.e.

y f ί « j (0-2)

We write

<->o = J</μo( ), (0-3)

and set

with normal ordering defined with respect to dμ0. We write /' as

/' = ]Γ w(l,2,3,4) :α 1 α 2 α 3 α 4 :
1,2,3,4

+ 48 £ w(r,2/,3')w(l,2,3,4,5):α4α5:C i rC22,C33.
1,2,3,4,5

+ 12 X w(l,2,3,4)w(l /,2 /,3 /,4 /)C i rC2 2,C3 3.C4 4 / (0.5)
1,2,3,4

with

w( 1,2,..., n) = A J M xu 2 . . . MΠ . (0.6)

[We here use a formalism appropriate to d = 3. If d = 2 we would keep only the first
term in (0.4).] It will be convenient to define for A, a subset of the fc, ΓA, by
restricting the sums in (0.5) to the subset A and φA, by restricting the sum in (0.1)
to the subset A.

We will be interested in two cases.

1) The φ\ model Here we pick

uk = Lkψk, (0.7)

using the notation of [3] for Lk and ψk, and

with

M ~ l .

We may alternatively expand in terms of uk = L\~a- 2 ( 1 / 2 ) α φ / c with

and sufficiently small.

2) The hierarchical φ\ models. In this case we set

C i Γ δ i r (0.10)
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Thus we may later work with the measure, proportional to μ0,

We require the uk to satisfy the following four requirements, I-IV (stated for d = 3).

I. Boundedness

^ H (o.ii)

S ^ d>Lk, (0.12)

where d is the distance from x to the center of Δk.
k.

(0.13)

II. a-Stability

For any set A of variables, with cardinality \A\

III. a-Positivity

For any ε>0 there is a c>0 such that

IV. oί-Renormalίzability

For any ε > 0

I w(l, 2,3,4,5) w(l, 2,3) - w(l, 2,3,4) w(l, 2,3,5)|

( o i 5 )

provided Lx ^ L 2 ^ L 3 < L 4 , L 5 . The notation for /z and dt- is as in Sect. 3 of [3].
We will show in Sect. 1 that the choice uk(x) = Lkψk(x) satisfies all these

properties.
We set

-ΓΛp{*)9 (0.16)

with p a polynomial in the {a^ieA}, and

ZΛ = [1~]Λ, (0.17)

and finally

<P>Λ = lpT/ZA. (0.18)

We state results for φi and for the hierarchical φ% as defined in 1) and 2).



Phase Cell Cluster Expansion 267

Theorem 0.1. There is a λ0 >0, such that if 0 ^ λ ^ λ0, and p is any polynomial in the
variables {α.|ΐe®}, 2) an arbitrary finite subset of the fe's, then

limit < p / = <p> (0.19)

exists. Here the limit is over an increasing sequence of sets containing 2) and
exhausting all fe's.

The center of our attention is a cluster expansion. Let J Γ be a finite subset of
the fe's. Let 2ι be the set of variables in a polynomial p(α), the distinguished
variables. (We here let Q) be a certain subset of the fe's, and also the set of variables
they label.) Then we write

= Σ κAip)z*-λlz* (0-20)

Formally we expand \jΓf into a perturbation expansion in A, evaluate the
Gaussian integrals, and factor each individual term (sums in Γ left undone) into
the product of the contribution of variables connected to Q) by the interactions
and covariances arising in the integration, and the contribution of the com-
plementary variables. This is the usual product into a connected contribution and
a disconnected contribution in these variables. Connected contributions with
connected variables A are resummed into KA(p). [Any term in (0.5) is understood
to couple all variables in its labelling, whether or not all the variables are present.]
Of course, KA(p) may be defined (and is in the paper) without the use of a
perturbation expansion. Our main result is the following:

Theorem 0.2. Let c1 be fixed, then there is λQ(c1)>0 such that if O^X^l^cJ and p
is any polynomial in variables in 2, then

Σ \KA(p)\eCllA^c(p). (0.21)

The paper is devoted to proving this result for the hierarchical φ* model.
Standard machinery can then be used to obtain

<P>= Σ KA(p)ZAe/Z9 (0.22)
3>QA

where ZAc/Z is defined as the solution of a Kirkwood-Salsburg-like equation.
There are no cutoffs in (0.22). Some generalization of this may be useful in the
gauge theory situation where it is hard to find gauge-invariant cutoffs.

We will prove these results for the actual φ\ in a future paper. There is an
unfortunate error in [3] : Eq. (3.7) is incorrect, and thus also α-positivity as stated
there. Actually [3] provides a proof for hierarchical models as defined above (with
obvious changes from d = 3 and d = 2). The paper should be read excluding Sects. 6
and 7, and with uk translated by Lkψk. Proofs of α-stability and α-positivity are as
in Sect. 1 here. Reference [3] is an important paper, although flawed.

Preparatory to reading this paper it is recommended that one become familiar
with portions of [3] and [6] as follows:

1) Read Sects. 3 and 4 of [6]. This provides the construction of the \pk in a
lattice situation. Then read Sect. 2 of [3] to see the continuum ψk, easily derived
from the lattice situation.
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2) Study well factorial estimate ll.B of [6]. This easy estimate plays a very
central role in the proof of convergence.

3) Read Sect. 8 and Appendices A and B of [3]. Estimates with tree graphs,
along with factorial estimate ll.B of [6], handle the combίnatoric aspects of the
convergence proof. These estimates are the most characteristic feature of phase cell
cluster expansions, and have an intrinsic beauty of their own. They should be
useful in other situations in field theory and statistical mechanics.

4) Now read the rest of [3] exclusive of Sects. 6 and 7 with the understandings
mentioned above.

The extension of the work of the present paper to the treatment of the actual
03 model represents an increase in complexity, but no fundamental innovations
are required. The present paper is an interesting warm-up for φ\, but phase cell
cluster expansions with diagonal Ctj as here are also of importance. The Yukawa
model will be treated with a diagonal boson covariance. If one could find a basis

φk for L2{R3), labelled as our expansions functions, for which uk= =Φk

y-Δ+M2

satisfies I-IV above then the present paper would include the φ\ model. This
although unlikely should be investigated. (Some variations on these properties are
permitted.)

1. uk = Lkίpk Satisfy I-IV

We study these properties but not in order.
I) Boundedness is immediate for this choice of uk. In fact the right side of

(0.12) may be set equal to zero.
Ill) We follow [3, Sect. 6] with the formal substitutions: j->0, r->4,

D 1 ~ j φ k -^—ψ k . In fact with these substitutions the proof is considerably simpler
Lit

and there is no kinetic term.

II) We first consider the normal orderings in (0.5)

: α 4 α 5 : = α 4 α 5 - ( 5 4 5 , (1.1)

Sym :α 1 α 2 α 3 α 4 : = α 1 α 2 α 3 α 4 - 6δ?)Aaιa2 4- 3(512<534, (1.2)

where Sym in (1.2) indicates the relationship holds when substituted into
expressions symmetric in 1,2,3,4 as (0.5). We write the three expressions on the
right side of (0.5) as EVE2,E3. We first note

£ 3 ^ 0 . (1.3)

We write

^ ^ (1.4)

E2 = λ2\c(x)φ2

A{x)-λ2d. (1.5)

Clearly
(1.6)
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We would be through, by completing the square in the terms involving φΛ(x), if we
could show

\d\ύc\A\, (1.7)

\\a{x)\2^c\A\, (1.8)

\\c(x)\2ύc\A\. (1.9)

Equation (1.8) is equivalent to

(l.io)

(l.ii)

1,2

where sums are understood to be restricted to A.
One easily has

from which (1.10) follows. Inequality (1.7) is equivalent to

Σ L^L^jlφ^^lίlφ^^^l^^l (1.12)
1,2,3,4

If in (1.12) one fixes one of the indices and sums over the others, but, as in (1.11),
restricts the edge lengths to be greater than or equal to that of the fixed length, the
sum is ^cL2~\ where L is the fixed edge length. This establishes (1.12).
Equation (1.9) is equivalent to

Σ L\L\L\L\L\L\ \ |φ1v?2ip3| \ lw/>5φ6| J hPiV^VVWel = C\A\ ( L 1 3 )
1,2, 3,4,5,6

This is established similarly, fixing a given index and summing with like edge size
restrictions. Lieb has generalized the α-stability inequalities of [3] in [11].

IV) We look at

|w(l,2,3,4,5)w(l,2,3)-w(l,2,3,4)w(l,2,3,5)|, (1.14)

and note that

^λ2\dx\dy Π (L^x)) Π L5\ψ5(x)-ψ5(y)\>

with the restrictions L1^L2^
We have in turn

( u 6 )

We note that in (1.15) the integrand is zero unless x and y are in the same octant of
the cube associated to ψ5, in which ψ5 is a pure polynomial.

It is interesting that none of the counterterms are necessary for stability that
the mass counterterm and the second order energy counterterm are necessary for
convergence of the cluster expansion, but not the third order energy counterterm.



270 G. A. Battle III and P. Federbush

Although we have not carried through the details, it should not be difficult using
the results of this paper to derive a form of ultraviolet bound if we include the third
order energy counterterm. One would compute the partition function including all
the θίk associated to cubes with centers in a given volume V and with edge size
greater than some Lo and obtain an upper bound of the form ecV, c independent of
Lo.

2. Basic Expansion Scheme

We introduce a multi-index notation as in [3, Sect. 10] so that (0.5) becomes

Σ gi(τ):aτ:+ £ g2(τ',τ"):uτ':+ £ g3(τ), (2.1)
τ:Jτ = 4 τ',τ": τ:Jτ = 4

ft' = 2,
K = 3

with |τΞΞ Σ τ(fe) and (for M(τ) as in [3])

gi(τ) = λM(τ)\u\ (2.2)

g2(τ', τ") = 4Sλ2M(τ') M(τ") (J uτ> + τ") (J uτ"), (2.3)

m 2 M ( τ ) ( j V ) 2 . (2.4)

As in [3] the only ingredients of our cluster expansion are interpolation ((4.1) of
[3]) and integration by parts ((4.2) of [3]). For p a polynomial in the cell variables,
we expand <p(α)> ( = <p(α))5f, for notational simplicity) by repeated use of these
two operations. The variables in p(α) are the distinguished vertices, and a move is a
choice of a right hand side term of either (4.1) or (4.2) of [3]. A unit, defined slightly
differently from in [3], is one of the kinds of objects we encounter in a move,
specifically one of the following:

g χ (τ): ατ: (or derivatives), J τ = 4, (2.5)

g2(τ\ τ"):α τ ': (or derivatives), j τ' = 2, J τ" = 3, (2.6)

0 3 M j τ = 4, (2.7)

each multiplied by some monomial in the interpolation parameters. Any unit of
the form (2.5) [respectively (2.6) and (2.7)] will be called a form ί (respectively
form 2, form 3) unit. After a given sequence of moves applied to <p>, the interior
vertices are the distinguished vertices together with the vertices appearing in units
introduced as a result of all moves the exterior vertices are the complementary set.

The first term in the right hand side of (4.1) of [3] is the decoupled term, and an
expression obtained by some sequence of moves from <p) whose last move is an
interpolation choosing the decoupled term is a completed term. Any other allowed
sequence of moves yields a remainder term. Moves choosing a unit give rise to a
remainder term (which represents a branch point in the expansion) and calls for
another move.

With J Γ a finite set, our rules for moves will dictate that the iterative
construction eventually terminates, and we may collect completed terms to obtain

KG(p). (2.8)
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The history of moves is indexed by G, and AG is the set of interior vertices at the
end of the history. Expression (0.22) is obtained from

) = KA(p). (2.9)
G

AG=A

3. Interpolation of the Interaction

The interpolation of the :</>4: term in the interaction is identical to the treatment
in [3, Sect. 5]. The interpolation of the remaining two terms in (0.5) is different, to
facilitate the mass renormalization cancellations. The first interpolation has 3) the
set of distinguished vertices as interior vertices. The interpolated interaction is

+ 48 X w(
1,2,3

where

+ \2λ2 J dx j dy(φxχ&(x) (3.1)

and

i \iΛUA M

0, otherwise.
The first-order term, in :</>4:, is interpolated at all stages as in [3]. We now

describe the succeeding interpolations of the second-order energy counterterm.
Let W{sv...,sn_1) be the (n— l) s t interpolation of the energy counterterm, and
Γ(On) be the set of interior (exterior) vertices at the onset of the move correspond-
ing to the nth interpolation. Here W(sv ...,sn_ί) is a convex combination of terms
of the form

12λ2$dxjdy(φA(x)φA(y)yQ and the nth interpolation replaces W(sv ...,sπ_1)

with

W(sv...,sn) = s2

nW(sv...,sn_ί) + (l-s2

n)W(sv ..,sn_1), (3.4)

where W is obtained from W by the replacement

m 2 j dx ί dy(φA(x) φA{y)y0^\2λ2 J dx f dy(φAnIn(x) φΛnIn(y)>t

+ m 2 j dx J dy<ΦA n 0,(χ) ^ n On(y)>S

The (n— l) s t interpolation of the second-order mass counterterm has the form

48 X w(l,2,3)jdxu1{x)u2(x)u3(x)\φ123(x;sv...,sn_1)
2:, (3.5)

1,2,3
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where Φ123(x\sv...,sn_ί) denotes a convex combination of terms of the form
δ^23φA(x). The nth interpolation is obtained from (3.5) by replacing
φί23(x;sί,...,sn_1)vήth

-sJφ123(x;sv...,sn_i), (3.6)

where φ123 is obtained from φ123 by the replacement

It is important for us that generalized α-stability holds for the interpolated

interactions. If O ^ α . ^ 1 and £ α . = l, then ( Σ α i 0 i ) 2 ^ Σ α A 2 From (3.1) the term

which with (3.1) and results in Sect. 1 yield generalized α-stability for the first
interpolated interaction. This process iterates.

4. Integration by Parts

In this section we give the rules by which we decide when to integrate by parts this
will specify allowable histories of moves. First we collect some generalized
integration by parts formulas that we will treat as generating single moves. Let
P(α) be an arbitrary polynomial in the cell variables and let vv...,vm be vertices
(not necessarily distinct) such that a1 =otvι does not appear in P(oc). Then

[:α 1 . . .α m :P(α)]= : α 2 . . . α m : P ( α ) ^ -

where

= - Σ
τ : J τ =

Σ g2{τ',τ"):a.τ':,
τ', τ": Jτ' = 2 J τ " = 3

(4.1)

(4.2)

and we have suppressed the interpolation parameters that are also brought down
from the exponent, which is an interpolation of the interaction. Equation (4.1) is
the same kind of formula that we used in [3], and in that case this was the only
integration by parts that was necessary. To control the singular behavior of the
hierarchical φ\ model, however, we will sometimes need to integrate by parts in a
more complicated way. Let υ2, v3, ί/2, ι/3, ι/4 be vertices such that the corresponding
variables (X2,oί3,oίf

2,a3,a'4 do not appear in P(oc). Then

[:α 2 α 3 : :α2α3:

d \ d
- : α 2 α 3 : P(α) —doc doc'.

a , a , : α 2 α 3 : ) P ( α ) | ' (4.3)
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[ :α 2 α 3 : :α'2 :α 2 α 3 : :α'3α'4: P(α) — Q(a)

K2

d2

da'

(4.4)

\_a2:a'2a'3oc'4:P(<χ)'] =
da'

da'
β(α) (4.5)

When we speak of a ίerm on the right hand side of any one of these integration by
parts formulae, we do so with the understanding that (4.2) has been plugged in.

Notice that the last term on the right hand side of either (4.3) or (4.4) assuming

Pi \

that
da'2 da'3

: α 2 α 3 : φ θ is the only term that does not involve the introduction of

another unit. Any move that chooses such a term will be called a mass insertion;
any other move involving (4.3) or (4.4) or any move involving (4.5) will be called a
Class 3 (b) move, while any move involving (4.1) will be Class 3 (a). Class ί and
Class 2 moves are as in Sect. 9 of [3].

Now we adopt an arbitrary but fixed scale-lexicographic order on j f i.e., if k
precedes k\ then Lk, ^ Lk. If τ is a nonnegative-integer-valued function on 3C and
}τ = m, let (τ19...9τm) denote the unique m-tuple of vertices which respects the
reversal of our linear ordering and whose weight function is τ. (Hence
Lτi ^ .. ^ LτJ) We are now ready for a case-by-case description of our rule. As we
have already indicated in the preceding section, the first move will always involve
interpolation, so assume that we have made n—\ moves resulting in a remainder
term.

There are many cases the concept of the "form" of a move introduced after
(2.7) is important. Loosely speaking, one integrates by parts some vertices that are
newly introduced and of a smaller scale than previously introduced variables they
are coupled to in the corresponding unit. This must be done at least often enough
to allow mass inserts (of small scale variables) to develop. A set of rules that works
is fairly complicated, as follows:

Case ί. The (n— l) s t move chose a form 1 unit whose weight function τ has the
property that Lτi<Lk for any /tesuppτ that was interior at the onset of the (n— l) s t

move. Let σ be the restriction of τ to those vertices that share this property with τv

In this case we require the nth move to involve an application of (4.1), where m= j σ
and uf = σf.

Case 2. The (n— l) s t move chose a form 1 unit that violates Case 1, but the (n — 2)nd

move chose a form 1 unit that satisfies Case 1 with respect to that move. Let σ' and
σ be the restrictions of the weight functions of our (n— l) s t and (n — 2)nd units,
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respectively, to those vertices whose scales are strictly smaller than Lk for any h in
either unit that was interior at the onset of the (n — 2)nd move. By Case 1 our
remainder term has the form

σ ' δ ί : ί — :α σ ' : j P(α) =σ'{σί) [\aσ~δ ι: \aσ'~δί: P(α)], (4.6)

where <5t is the delta function located at σx and P(α) does not depend on any of the
ock for which /cEsuppσusuppσ'.

Case 2a. j σ + j σ' < 6. In this case we require the nth move to be either Class 1 or
Class 2.

Class 2b. j σ + j V ^ 6 and σ'1ή^σ1. Since σ^suppσ ' and is the last vertex in
suppσ, it follows that σ'^suppσ. In this case we require the nih move to involve
(4.1), where we absorb :aσ"δl: into P(α) and set ^ = σ .

Class 2c. J σ + Jσ'Ξ>6 and o'ι=σv Since J σ < 4 , we know that j σ ' ^ 3 , and since
j σ' ̂  4, we know that j σ ̂  2. If we set vt = σt and υ\ = σ'i9 then the possibilities for
(4.6) are precisely the left hand side of formulae (4.3)-(4.5). In each case we require
the nth move to involve the appropriate formula.

Case 3. The (n— l) s t move chose a form 2 unit whose pair (τ'? τ") of weight
functions has the property that Lτί<Lk for every feesuppτ'usuppτ" that was
interior at the onset of the (n— l) s t move and τ\ precedes τ\ with respect to our
order on vertices. In this case we require the nth move to involve (4.1), where i^—τ'.

and m— 1 or 2 depending on whether - — :ατ : or :ατ : appears in the unit I.

Case 4. The (n— l) s t move chose a form 2 unit whose pair (τ\ τ") of weight
functions violates Case 3. In this case we require the nih move to be either Class 1
or Class 2.

Case 5. The (n— l) s t unit chose a form 1 unit violating Case 1 and the (n — 2)nd

move chose a form 2 unit whose pair (τ', τ") of weight functions satisfies Case 3
assume further that L τ , < L τ Γ Let σ (respectively σ;) be the restriction of τ'
(respectively weight function for the form 1 unit) to the set of vertices whose scales
are strictly smaller than that of every vertex in either unit that was interior at the
onset of the (n — 2)nd move. By Case 3 our remainder term has the form (4.6), and
we consider exactly the sub-cases that were considered in Case 2. Our instructions
for Cases 5a and b are exactly what they were for Cases 2a and b, respectively. In
Case 5c the only possibility is j σ = 2 and j σ' = 4, and so we require the nth move to
involve (4.5), where vi = σi and ι/ = σ' .

Case 6. The (n— l) s t move either chose a form 3 unit or was a mass insertion. In
this case we require the nth move to be either Class 1 or Class 2.

Case 7. The (n— l) s t move chose a form 1 unit violating Case 1 and the (n — 2)nd

move;
7a. Chose a form 1 unit violating Case 1,
7b. Chose a form 2 unit for which Lr, > L,, and/or Case 3 is violated,
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7 c. Either chose a form 3 unit or was a mass insertion.
In all of these cases we require the nth move to be either Class 1 or Class 2.
By inspection, we see that our rules cover all possibilities.

5. Representation 1 Graphs

Having defined our cluster expansion of the expectation <p(α)> of an arbitrary
polynomial p(α) in the cell variables, we write this expansion in terms of
representation 1 graphs as we did for our expansion of expectations in [3]. In this
case, however, the expansion rules do not admit a one-to-one correspondence
between representation 1 graphs and completed terms of the expansion, so the
terms that are possible for a given graph must be collected.

There is also more than one kind of basic graph to consider. In this analysis the
elementary graphs are the nonnegative-integervalued functions T on X such that
j τ = 4 (form ί graphs), the pairs (τ',τ") of functions where J τ' = 2 and Jτ" = 3
(form 2 graphs), and the pairs (τ, 3) such that j τ = 4 (form 3 graphs). Obviously
we intend a form i graph to label some form i unit associated with that elementary
graph. (Which such unit is labeled would be determined by what differentiations,
if any, fall on the undifferentiated unit when the move introducing the graph and
the move following that introduction take place.)

Definition 5.1. Let Q) be the set of distinguished vertices. A representation ί graph
rooted on 3) is a sequence G = (GV...,GN) of elementary graphs and sequences of
elementary graphs with vertices assigned to them - called the chains of G - such
that the following properties hold:

(a) The sequence G = {Gι,...,Gn) of elementary graphs induced by G if one
ignores the chain structure is introduced by some allowed sequence of moves
corresponding to a completed term.

(b) Every elementary graph in G and the first elementary graph in every chain
of G are introduced by Class 2 moves, and no vertices are assigned to such graphs.

(c) If an elementary graph lies in a chain of G and is not the first elementary
graph in the chain, then it is introduced by either a Class 3 (a) move or a Class 3(b)
move, and the vertex assigned to it has been integrated by parts by that move.

Remark. Although mass insertions do not introduce elementary graphs, repre-
sentation 1 graphs implicitly record such moves.

The expansion is

Π ί d
I \0 / keAG \-oo

•expf-i Σ al)Y\Bι

G(a)Ubι

G(s)p(a)e-v^'a\ (5.1)
\ keAG ) I I

where the summation is over all representation 1 graphs G, g(Gι) is one of gx{τ\
g2(τ\ τ"), or g3(τ), bι

G(s) is the product of interpolation parameters brought down
from the exponent by the move or sequence of moves introducing Gx (and respects
equivalence classes of completed terms because interpolation moves are uniquely
determined by the elementary graphs they introduce), FG(s, α) is the form of the
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interaction for the completed term (and also respects equivalence classes because it
has only been interpolated), and Bι

G{a) is the combination of all (equivalent)
products and differentiated products of cell variables that are generated by the
moves or sequences of moves introducing the same Gv

The bι

G{s) and Bι

G{oί) are implicitly defined by our expansion rules. Since most of
these factors will be over-estimated in a gross manner, we will not compute the
expressions for them except in those cases where they affect the combinatorics of
the second-order renormalization cancellation.

6. Combinatorics of the Mass Cancellation

Before beginning our estimation of (5.1) we must group together the terms whose
ultraviolet (small scale) divergences will cancel against one another. This is the
combinatoric content of the second-order mass and energy renormalization.

Definition 6.1. Let G be a representation 1 graph rooted on <2). A type ί
(respectively type 2) composite graph of G is a pair (G\ Gι+1) of consecutive
elementary graphs in G such that & is form 1 (respectively form 2), Gi+1 is form 1,
and the introduction of G ι + 1 has given rise to Case 2 (respectively Case 5).

Remark. The elementary graphs in a composite graph of G clearly occur in a chain
of G.

Definition 6.2. For a given representation 1 graph G rooted on <3), an exact graph
of G is type 1 composite graph (G ι ',G ί + 1) of G such that G\ = G\+\ G^G?1,
Gι

3 = G ι

3

+1, the scale of G\ is strictly less than that of any vertex in

( s u p p G ' u s u p p G ' ^ W ^ u (J suppG Λ, and Gi+1 is the last elementary graph of

the chain.

Definition 6.3. A local graph of G is a form 2 graph Gι = (τ\ τ") in G such that τ\
precedes τ 3 and Lτ,, is strictly less than the scale of any vertex in

s u p p G ' n / ^ u (J suppG A.

We now let G denote the structure obtained from G by considering the
composite graphs of G as single elements. We also consider the following
operations on {G}:

(a) Replace an exact graph (τ, σ) of G with the form 2 graph (τ'5 τ") such that
τ"i~τv τ"i= τ2> τ 3 = τ 3 ' a n ^ τ' is t n e weight function of the pair (τ4, σ4) of vertices.
The resulting graph is G7, where G is representation 1 and (τ\ τ") is a local graph of

(b) Replace a local graph (τ', τ") of G with a pair (τ, σ) of form 1 graphs such
that τ ^ σ ^ τ ', i= 1,2,3, τ' is the weight function of (τ4,σ4), and τ 4 is an interior
vertex at the onset of the move introducing (τ', τ"). The resulting graph is G77, where
G" is representation 1 and (τ,σ) is an exact graph of G".

(c) If in case (a) [respectively case (b)] τ = σ (respectively τ + 2τ" = 2τ) and the
exact graph (respectively local graph) is the first element in a chain of G or occurs
in G, then replace it with the form 3 graph element (τ, 3).



Phase Cell Cluster Expansion 277

(d) If a form 3 graph (τ, 3) has the same scale properties as an exact graph, then
either replace it with the exact graph (τ, τ) or replace it with the corresponding
local graph.

Now ΓQ is the structure obtained from G by replacing each exact, local, or case
(d) form 3 graph of G with the set of all graphs that operations on G can replace it
by. Such a set is called a cancellation graph of Γ& We are grouping together terms
that will combine to exhibit the mass renormalization cancellations. [A cancel-
lation graph may contain one or two exact graphs and possibly a form 3 graph in
addition to a local graph. If ((?, Gi+ *) is both an exact graph of Γό and a chain of G

and ( 7 4

+ 1 e ^ u (J suppG7', then (G ι + 1 ,G ι ) is also an exact graph of Γg.]

Definition 6.4. A representation \\ graph rooted on 3) is Γά for some representation
1 graph G rooted on 2).

We may rewrite (5.1) as

Π (ϊ
keAΓ \-oI \0 JkeAΓ \-oo / V keAΓ

We are now ready to state the fundamental combinatoric result.

Theorem 6.5. Let Γ = (ΓV ...,ΓN) be a representation \\ graph rooted on 3). For
l^l^N there are polynomials &ι

Γ(a) in the ak and monomials S-ι

Γ{s) in the
interpolation parameters such that

Σ Π (- Φ)) Π B» Π bι

G{s) = Π &M Π 4(s) Π S{fμ), (6.2)
G:ΓG = Γ ί I I I I μ

where Γ is the sequence of elementary graphs, composite graphs, and cancellation
graphs induced by Γ if the chain structure is ignored, and

ί
— g(Γμ), Γμ is an elementary graph,

gφ1) g(Gί+ x), Γμ is a composite graph (G\ Gί+ x) of Γ. (6.3)
λ2\uσ\uτ-λ2\uτ' + τ"\uτ\ Γμ is a cancellation graph of Γ.

Remark. In the definition of J>(fμ) it is understood that (τ1, τ") is the local graph
and that (τ, σ) [respectively (τ, σ) and (σ, τ)] is (respectively are) the corresponding
exact graph (respectively exact graphs).

The proof of this theorem is the content of Appendix A, and a crucial role is
played by the way we have chosen to interpolate the mass counterterm. Suppose
that we are building a completed term for whose representation 1 graph G we have
Γά = Γ; suppose that we have done n—ί interpolation moves and are confronted
with the nih interpolation. The set of interior vertices at the onset of this
interpolation is given by

n- 1 n-ί

\J suppGz = ̂ u (J suppJ] (6.4)
1=1 1=1
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while a form 2 unit g2(τ', τ") :ατ : in the exponent is multiplied by some product of
the interpolation parameters sv ...,sn_v By inspection of (3.3), (3.6), and (3.7), we
see that (assuming that suppτ"cθ")

(a) if suppτ'C/", then the nth interpolation introduces an s^ factor for the unit,
(b) if suppτ' meets both Γ and 0", then the nth interpolation introduces an sn

factor,
(c) if suppτ'cO", then the nth interpolation introduces no factor.
We are assuming that suppτ"Cθ" because this is the only case in which (τ'5 τ")

can possibly be a local graph of G. It is obvious from (6.3) that there is no
combinatoric work to do unless there is a cancellation graph involved at a given
stage.

7. α-Stability, α-Positivity, and the Tree-Graph Estimation

Combining (6.1) with (6.2), we obtain

(7.1)
Γ μ ^

where the sum is over all representation \\ graphs rooted on S>, <f(Γμ) is defined by
(6.3), and

1 \ / oo

μSι) π H
0 / keAΓ V - oo / V keAΓ

( 7 2 )

The basic idea is to apply this expansion to the problem of showing that for
sufficiently small λ the expectation <p(α)> converges as the cut-off in volume and
scale represented by JΓ is removed. As we pointed out in [3], the crux of such a
problem is to prove:

Theorem7.1. There is an ε > 0 and a λo>O such that for O^λ^λ0,

Γ μ

The proof of this theorem is the content of the sequel. As in [3], the
preliminary step is to apply α-stability and α-positivity, which are preserved under
interpolation. Combining this with the Schwarz inequality, we see that

\HΓ(p)\ S <p(α)2>i/Vl^l Π ^ » 2 Ar Π (ί dsι
I I \0

where < >0 is the free (λ = 0) expectation and [ ~]A is the expectation with respect to
the measure

-ίΣ«* 2 -<*Σ^ 1 + ι >J w )Π<fa i k . (7.4)
keA keA ) keA
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Now we define the nonnegative-integer-valued function Γμ by

Γμ, fμ is a form 1 graph

τ', Γμ is a form 2 graph (V, τ"),

0, fμ is a form 3 graph,

τ', Γμ is a cancellation graph of Γ with (τ\ τ") as local graph,

τ + σ, Γμ is a type 1 composite graph (τ, σ),

τ' + σ, fμ is a type 2 composite graph ((τ'5 τ"), σ).

It follows from inspection of cases that

Γμ = \ (7.5)

where

άfc = max{l,|αfc|}

and nΓ is the length of the sequence Γ. Hence

1/2

(7.6)

(7.7)

ΓΠίJΠ^) (7.8)
z \o / /

because \AΓ\ ̂  | ^ | + 8nΓ.
The next step involves the general tree graph identity that was stated and

proven in [3]. The point is that

^ ) ^ , r ( r s <-. . (7-9)

where ηΓ is the tree graph associated with the sequence (suppΓ1?..., suppΓN) rooted
on St. This inequality follows from throwing away the unnecessary factors in the
monomial bι

Γ(s) via the inequality O^s ^Ξl.

Definition 7.2. A representation 2 graph rooted on Q) is the set of elements occurring
in some representation \\ graph rooted on Q).

For a given representation \\ graph Γ we will denote the associated repre-
sentation 2 graph by TΓ; it follows from Theorem B.3 of [3] that for a given
representation 2 graph T rooted on 2),

Σ π
Γ:TΓ=T I

We have an inequality instead of an identity because of the restrictions on possible
graphs imposed by our rules for integrating by parts. Now, in view of (7.8)—(7.10)
we see that Theorem 7.1 will follow from:

Lemma 7.3. There is an ε>0 and a λo>0 such that for 0^λ^λo,

2ZHV2

where the sum is over all representation 2 graphs rooted on 2, Γτ is an arbitrary but
fixed representative of T, and Λτ = AΓτ, nτ = nΓτ.
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8. Attachments and "New Variables"

Throughout our proof of Lemma 7.3 our arbitrary choice Γτ for each repre-
sentation 2 graph T will remain fixed. For a given element Γτ ι of T we define the

attachment of Γτ x (relative to T) as the last vertex in suppΓx tn(@u (J suppΓΓ A
I j<ι ' /

with respect to our scale-lexicographic order on the vertices, unless Γτ z is a chain
for which (with Γ£ the last element in the chain) the set

suppi^n (Siu U suppΓΓ A (8.1)
V j<ι ' /

is non-empty. In this case the attachment is the last vertex in

(supp/^Γxusuppffin [3)\j (J suppΓr A.
I j<ι ' /

Chains with non-empty set (8.1) are called "extraordinary," other chains
"ordinary."

Definition 8.1. For a given representation 2 graph T rooted on @, let
(f^+ \ ..., f™ + n) be a chain of Γτ and let v be the vertex to which this element of T
is attached relative to T; set

t = max {j \m<j^m + n9 υe supp/^}.

Then Γj is the attachment graph of the chain.
Our notion of attachment graph is identical to that used in [3] we must also

introduce a notion of new variable as we did in [3] - i.e., nonnegative-integer-
valued functions σμ

τ for l^μ^nτ. If Γ£ is the attachment graph or the last element
of a chain Γτ x of ΓΓ, then

\ !<l (8.2)
[0, otherwise.

Otherwise,

ίf£(fc), kφ9κj [j suppf^,

' {<1 (8.3)
[0, otherwise.

Old variables are the complementary set to the new variables.

Lemma 8.2. For a given representation 2 graph T rooted on S>,

f σ"T(k)Sc, (8.4)
μ=l

(8.5)
3, otherwise.

Since the rules for integrating by parts are more complicated here than in [3],
we will find it convenient to supplement the notion of "new variable" represented
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by σμ

τ with an additional nonnegative-integer-valued function χμ

τ defined as
follows: if Γ% either occurs in Γτ or occurs as the first element of a chain of ΓΓ, then
Xj = 0, and otherwise, (with ΓTΛ as the chain)

Γμ(k)-σμ

Ύ{k), kφ@v [j suppΓ T m and Lk is strictly less

than the scale of the vertex that was integrated by parts
by the move introducing fμ,

0, otherwise.

Lemma 8.3. For a given representation 2 graph T rooted on Θ,

Σ iW^c. (8.6)

Let

Ωj(k)= Σ ίfτ(k)-σμ

τ(k)-χμ

τ(k)-] (8.7)
μ=l

it follows from (8.5) that

(8.8)

As in [3], we apply the Schwarz inequality to estimate out the integration
variables contributed by the weights subtracted out in (8.7) with the free part of the
interaction represented by the product measure [ ~\Aτ and estimate out the other
variables with the other part of the exponent. By (7.4), (8.4), (8.6), and (8.7), we have

Σ Π
T μ

(8.9)

1 +ε' 1
where βf= , β= -. The right hand side is dominated by

Σc n τ λ n τ ε " Π ^{Γμ)x ~ε Π lL-β'Ωτ(k)(Ωτ(k)!/] , (8.10)
T μ k

where JS?(Γ£) denotes
(a) the bound (3.6) of [3] on j μx if fμ is a form 1 graph τ,
(b) the corresponding bound on μτ' + τ" \ μτ" if Γμ is a form 2 graph (τ',τ"),
(c) ^ ( τ ) 2 if Γ£ is a form 3 graph (τ, τ),
(d) the bound (0.15) on j μτ j μσ - j μτ'+ τ" j μτ" if JΓ̂  is a cancellation graph with

local graph (τ\ τ") and exact graph (τ, σ) and/or (σ, τ).
(e) ^ ( G 1 ) i f (G2) if fΓ

μ is a composite graph (G1, G2). The powercounting for λ
has worked as follows: if Γμ is not a composite graph, then \{Γμ — σμ

T — χμ

T)^l> by
(8.5), so the contribution to the power of λ is λ1 ~ελ~3β> if Γ^ is a composite graph,
then (8.5) gives only j (fμ-σμ

τ~χμ

τ)^6, but ι/(Γ£) contributes A2, so the power of λ
is /l 2 ~ 2 ε /T 6 / r in this case.
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We have reduced the problem of proving Lemma 7.3 to that of bounding (8.10)
with a constant independent of the cut-off in scale and volume. Now for a given
representation 2 graph T rooted on ^ , consider the sequence of attachments
relative to T induced by ΓT = (ΓT V...,ΓT Ή) and extract the subsequence of first
appearances. For each such vertex list every element of T attached to that vertex in
some arbitrary order and adjoin the sequences in the order that their attachments
appear in the subsequence. Such a re-ordering of (Γτ l 5 ...,ΓΓ J V) is a representation
3 graph rooted on Q). (As in [6], we could have defined a representation 3 graph as
a set of sequences instead of an adjunction of them, because the ordering of the
elements of T attached to a given vertex is the ordering that we really wish to
introduce. The "first appearance" ordering is just a convenience, as it was in [3].)

For a given representation 3 graph J rooted on Q), let 7} denote the unique

representation 2 graph associated with it and let Yj{k) denote the number of

elements of 7} attached to k relative to 7}. Obviously, f^r^fc)! is the number of
k

representation 3 graphs that 7} is associated with, so we may trivially rewrite (8.10)
as

Σ cnj rrτ^λnjε" Π w o 1 "ε Π iL;β>aΛkWkm > (δ.ii)
j l[rj{κ)l μ k

k

where n3 = nTj, Ωj = ΩTj, and J is the sequence of elementary graphs, composite
graphs, and cancellation graphs induced by J if we ignore the chain structure (and
is therefore a permutation of f T j ) .

9. Counting (Including the Number Divergence)

In this section we carry through the final numerical estimations, quite as in
Sects. 16 and 17 of [3]. The nomenclature we have introduced in this process
(attachment, pinning, new variable, etc.) is quite natural we feel anyone studying
the "topological" description of terms in the cluster expansion would create similar
concepts.

9.1. Pinning and the Hook

In this subsection we define "pinning" and the "hook" the first of these is a
generalization of "pinning" as in [3], the second a new complication we did not
need to consider there.

We here fix a representation 3 graph J. Let (τ),...,τnf) [respectively
( ρ j , . . . , ^ ) ] be the permutation of (f^,..., ffi) [respectively {σ1

Tj + χ ^ , . . . , σ ^
+ χj^)] whose action takes ΓTj to J. We first define the "hook":

Definition 9.1.1. Let J be a representation 3 graph rooted on the set 2 of
distinguished vertices and consider a chain ( Γ + x,..., Jm + n) = (f^+ 1,..., f^n) of J

m + n- 1

(i.e., of ΓTj). The hook of the chain is the last vertex in supp Jm + nn (J supp Jμ

μ = m + 1

with respect to the scale-lexicographic order on vertices. If v is the hook of the
chain and . f , , ~u,

t = mm{μ\m<μ<m + n,vesuppJμ} ,
then f is the hook graph of the chain.
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We define the pinning of Jμ as the vertex pμesupp Jμ such that
(I) If Jμ occurs in J, then pμ is the attachment of Jμ.

(II) If Jμ occurs in a chain of J and
(Πa) if Jμ is the attachment graph of the chain, then pμ is the attachment of the

chain.
(lib) If Jμ is the hook graph in a chain when the last graph in the chain is the

attachment graph, then pμ is the hook of the chain.
(Πc) If Jμ violates (lib) and if Jμ occurs before the attachment and/or after the

hook graph, but is not the last graph, then pμ is the vertex that was integrated by
parts giving rise to Jμ+1.

(Πd) If Jμ is the last element of the chain and is not the attachment graph of the
chain, then pμ is the hook of the chain.

(He) Jμ violates (Πa)-(Πc), then pμ is the vertex in Jμ~ι that was integrated by
parts giving rise to Jμ.

We also define the bottom oϊJμ as the last vertex in suppJμ with respect to the
scale lexicographic ordering on vertices.

Lemma 9.1.2. No vertex can be the pinning of more than one case (IΙb)-(Πe) graph.
Moreover no vertex can be the bottom of more than one composite graph.

Lemma 9.1.3. Lp^ is less than or equal to the scale size of every vertex in
supp(τ^-ρ^).

9.2. The Number Divergence - An Abstract Discussion

For a fixed representation 3 graph J we assume a set of positive numerical factors

f(kJ)J,keJΓ satisfying ^/(/c,j)^c. Let (k19 ...,kN) be a sequence of vertices such
k

that the first j(τj — Q\) vertices have weight function τj — ρj, the next litf — Q2})
vertices have weight function τj — o], etc. Each "occurrence" of a vertex in this
sequence is said to "occur" in Jμ if the occurrence is in the segment associated with
τj~Qr We have a mapping NDF : {1,..., JV}->(0, oo) of a special nature so that
any occurrence of vertex j has as an image an element of the set

An occurrence of vertex j is said to be singly bound to k if its image is f(kj) and
jointly bound to k and k' if its image is f(kj)ί/2 f(k'J)1/2. The weight of a binding is
1 for single bindings and 1/2 for joint bindings. Referring to (8.7), (8.11), and [3] or
[6], we see the numerical factor

Π(NDF(ί)) ϊ + Ljl, (9.2.1)

with the ith occurrence an occurrence of vertex j{i\ is sufficient to control the
number divergence provided that the sum of the weights of all bindings to vertex k
is dominated by

4~rj(k) + c, with J + 4~ = l, for all fc.

Remark 1. In [3] all bindings were single.
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Remark 2. As we find numerical factors to serve as our f(k,j), they will arise as
(with s = cs)

If the application of the ideas in this section to [3] is understood (with trivial
modification due to the change in dimension) the application to the hierarchical
φ\ is immediate.

9.3. Assignment of Numerical Factors

From the consideration of the last section we need only specify the nature of the
bindings to see what numerical factors (NF) we are using to control the number
divergence. We give rules NF 1) and NF2) to specify the bindings.

NF 1) An occurrence of a vertex in a graph, that is in a chain but neither
a) the attachment graph

nor
b) either of the last two graphs in an extraordinary chain, is bound to one of

the new variables in the same graph of highest scale size.
NF 2) Let S be either
a) a graph not in a chain

or
b) the two last graphs in an extraordinary chain

(Essentially the two last graphs in such a chain are here being treated as a single
graph.)
or

c) an attachment graph of an ordinary chain.
Let vx be the attachment and υ2 one of the largest scale new vertices in S. Let v

be the largest scale vertex of υι and v2 (or v2 if they are the same scale). Any
occurrence of a vertex in S is bound singly or jointly to v1 and v2. This is done so
that the sum of the weights of the bindings to υ (of such occurrences inside S) is as
large as possible, subject to the limitation that if v — υι the sum must be ^3.5.

The assignment of numerical factors by rules NF 1) and NF 2) ensure that the
restriction on the sum of weights of bindings to each vertex given in the last section
is satisfied. We now have knowledge of the numerical factors we will use to control
the number divergence. As in [3] and [6] we divide numerical factors into two
parts, one for counting, and one for controlling the number divergence. Factors of
h and λ will never be a difficulty we will only keep track of factors of Vs.

9.4. Numerical Factors Needed for Counting

Counting estimates are performed by the usual sums into sups procedure. Similar
to [3] and [6] we sum in an iterative manner over:

a) the number of attachments to a vertex,
b) whether an attachment is a chain or a graph not in a chain,
c) the length of a chain,
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d) which graph in a chain is the attachment graph and which the hook graph,
e) the case and subcase of moves that gave rise to a graph,
ί) the bottom of a graph once its pinning is known,
g) the remaining vertices (with multiplicities) in a graph once its bottom is

known,
h) for each vertex in a graph, whether it is a new variable, a hook, or a pinning

of another graph in the same chain.
The sums in a)-e) and h) may all be handled by a factor of λ°+ borrowed from

each unit. The sum in g) may be compensated by a factor of LB

+, where LB is the
edge size of the bottom. The sum in f) may be controlled by a factor

where LB and Lp are respectively the edge sizes of the bottom and pinning. Thus to
control counting we need a factor

// \3 +

i Bί\ r0 +

U j LB> '
for each graph, an overall factor

IT. \ 3 +

 +

L%\ (9.4.1)

where the product is over all graphs.
Here as in Sect. 1 simple geometric estimates of sums and integrals replace the

usual power counting techniques. Thus in summing over possible bottoms of edge
size LB for a given pinning of edge size L we are concerned with compensating a

factor of ( — I , the number of cubes of side LB in a cube of side Lp. Including

summing over size of LB we have c p

3

Such considerations yield (9.4.1).

9.5. Finding the Numerical Factors

We must now show that the numerical factors generated in the cluster expansion
provide sufficient powers of L to do the counting, (9.4.1), and to handle the number
divergence, (9.2.1). The basic results we have for graphs will now be presented. The
bounds will involve a parameter ε > 0 that may be picked arbitrarily small [by
adjusting ε' in (7.4)]. We will present bounds for classes of graphs, where in each
case we have already divided out the numerical factors assigned to the number
divergence in Sects. 9.2 and 9.3 for occurrences inside the given graphs. These
bounds are derived by a case by case study each case is easy to analyze but there
are many cases. Inequality (0.15) is used to study cancellation graphs. Appendix B
contains a representative derivation of one of our bounds.

9.6. Bounds on Graphs After Dividing Out Factors for Number Divergence

We separate our graphs into a number of types. To a graph we associate a number,
dv with dί = l if the graph is form 1, and dλ=2 otherwise. If a vertex was
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integrated by parts to introduce a graph we will call it the graph's "entering"
vertex, and similarly a graph's "exiting" vertex is the entering vertex of the very
next graph. For our first four bounds below, Bound 1-4, we let Lp, LB, Lv and L2

be the edge sizes of the pinning, bottom, entering vertex, and exiting vertex,
respectively.

Bound ί. A graph that is not in a chain

7*) LBL~p

5\ (9.6.1)

Bound 2. The last graph in an ordinary chain

Bound 3. Not one of the last two graphs in an extraordinary chain, and either
a) before the attachment graph

or
b) after both the hook graph and the attachment graph but not the last graph

in the chain

(9.6.3)

Bound 4. Not one of the last two graphs in an extraordinary chain and neither
a) before the attachment graph

nor
b) after both the attachment graph and the hook graph

T \S(T \ 3

^p\ l±B_\ τετ-5ε
I r
\L2

where

13/2 if graph form 1,

1 if graph form 2,

1/2 otherwise.

For extraordinary chains we must consider the last two graphs in the chain in
greater detail. Let T be the last graph and JV the next to last graph in the chain. Let
LB l, LBi? L, Lw and Lo designate the edge sizes of the bottom of AT, the bottom of
T, the entering vertex of T, the hook, and the attachment, respectively.

Let d and d be the dx values of N and T, respectively, S1 and S29 the number of
bound occurrences in N and % respectively.
Bound 5. N, if L g L 0

( fγ(ίl2)\Sί-ί
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where y = d if graph is not the first graph in the chain, and y = 3 — s if the graph is
first in the chain, with s as in Bound 4. If L>L0, we use (9.5.3) with L2, LB, dγ

replaced by L, LBi, d.

Bound 6. T

(3/2 )r(3/2)

\ 3 . 5 - S i / 1 \ S i + S 2 - 3 . 5

(zH ' Lo^L,S1+S2^4 (9.6.6)

)

with LM the minimum of Lo and LH.
Once the tedious task of compiling the table of values (9.6.1)—(9.6.6) is behind

us, verifying that one has sufficient numerical factors to control the counting is not
difficult. The product of factors from the table, for any given chain, is smaller than
the product of factors from (9.4.1) contributed by the same chain. [For a graph not
in a chain, the contribution from the table, (9.6.1), is trivially smaller than the
factor for this graph in (9.4.1).] As we proceed to verify this, for a given chain,
careful attention will have to be paid to the positions of the attachment graph and
the hook graph in the chain.

We first treat an ordinary chain. We divide the graphs of the chain into a
number of segments, S1-S4, some of which may be empty:

51, graphs that precede the attachment graph
52, graphs that precede the last graph in the chain, but follow both the

attachment graph and the hook graph
53, the attachment graph if the hook graph does not follow the attachment

graph. If the hook graph follows the attachment graph, then S3 is the hook graph,
the attachment graph, and all graphs between these two

54, the last graph in the chain.
For each of these four sets we compute bounds for the "excess" factor. This will

be defined as the quotient of the product of factors from the table for each graph in
the set by the product of factors from (9.4.1). Provided the product of the excess
factors for SI, S2, S3, S4 is less than c the numerical factors are under control.

For the sets S1 and S2 the excess factors are easily seen to be ^ c. If d! is the dx

value for the last graph in the chain, and L' is the edge size of the entering vertex of
the last graph in the chain, then the excess factor for S4 is ^L'd". We let the last
graph in the set S3 have exiting vertex of edge size L. We find the following bound
for the excess factor for the set S3:

1

where s is function defined after (9.6.4) for the last graph in the set S3.
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Notice that L' ^ L. We see from these bounds that the product of excess factors
is ^c except possibly when the last graph in S3 is form 1 or form 2. The last two
graphs in a chain cannot be a form 1 or form 2 graph followed by a form 1 graph.
This implies that in the situation we are worried about S2 must contain at least
one d1=2 graph. This will supply [by (9.6.3)] a necessary power of L. This
completes the study of ordinary chains.

Our last task is the treatment of an extraordinary chain. We must look at the
products of bounds for TV and T from our table of bounds. The case Lo <L is not
very troublesome. Our considerations for L0^L may easily be adopted to this
case. We now assume Lo ^ L. If T is the attachment we can bound the product of
our estimates for N and T [(9.6.5) and (9.6.6)] by (with L' = entering vertex of N)

Lε

BlL
c

B2^-~, (9.6.7)'(3/8)

where r = 0 if N is the first graph in the chain, and r=ί otherwise. If N is the
attachment, our bound for the product is

(9.6.8)

If TV is the first graph in the chain we rewrite (9.6.8) as follows

•L-JJJ I J-^j> \ I J—/Ώ~, \ .»- c -w- -*- -*-

B^B2 r 5ε r 5ε '

Clearly the excess factor for (9.6.8) and (9.6.9) are ^c and so the counting is under
control whenever N is the first element in a chain. Now suppose iV is not the first
element of the chain. If N is the attachment, we need only know that the excess
factor for that portion of the chain preceding TV is ^(Z/) ( 1 / 8 ) This follows from
(9.6.3) and (9.4.1). The case when T is the attachment graph and TV not the first
element in the chain is similar to the cases we have just considered.

Appendix A. Proof of Combinatoric Theorem

In this appendix we give the essential features of the proof of Theorem 6.3. Clearly,
the conversion of the left hand side of (6.2) into the right hand side is done
inductively with respect to the sequence (Γv ">,ΓN). Now, by (6.4) and the nature
of interpolation, fyΓu Γn_uGn> >GN)(S) ^S well-defined for l^n; moreover, it follows
from inspection of our integration by parts rules that ^ ( α ) depends only on the
chain or elementary graph Gv Hence, in combining the terms of the multiple sum,
we may work "from the outside in."

We assume that the left hand side of (6.2) has been transformed into

Σ Π (-
w - 1

1= 1
-(«) Π 4(

1 = 1

N

n- 1

μ = i
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where (Γ1, ...,Γ"~1) is the sequence of elementary graphs, composite graphs, and
cancellation graphs induced by (Γv ...,Γn_ 1). By the remark above, the remaining
multiple sum factors into [_nih sum depending on Γv . . . ,ΓJ

Σ ΓK-^WΠ^G'Cα) Π b{Γu_ΓnYG(s),
G' .ΓG' = (Γn+ι,...,ΓN) i V l = n+l

and the essential work is to examine this nth sum for each case that must be
considered for Γn. If Γn is either an elementary graph, a composite graph, or a
chain containing no cancellation graph, then the sum involves one term and we
need only set

The nontrivial cases in our combinatoric proof are:

Case 1. Γn is a cancellation graph.

Case 2. Γn is a chain terminated by a cancellation graph. We stipulate that the
vertices of any form 1 graph we consider in this argument have no multiplicity the
reader can easily check our proof against the other possibilities. The interpolation
defined in Sect. 3 splits Case 1 into three sub-cases.

Case l(a). Γn = {(τ, σ), (V, τ")}, where τ φ σ are form 1 and (V, τ") is form 2. In this
n-l

case τ 4 lies in 3)\) (J suppΓ^ and σ4 does not [otherwise (σ, τ) would be included
1=1

in ΓJ since τ' is the weight function of (τ4, σ4), it follows from our remarks at the
end of Sect. 6 (and our multiplicity assumption applied to the integration by parts)
that the nth sum is

(-Q1^))(-gi(Φη-'^n-1Gcτ4aσ4-g2(τ\τf\...sn_1ocτ4aσ4i (A.I)

where η is the smallest of all integers / such that τ 4 e suppΓz_ v with the convention
suppΓ 0 = 2. The first term in (A.I) indicates the development of the mass insertion
that terminates the two-element chain (τ, σ) and the Wick ordering in the second
term has been dropped because τ 4 φ σ 4 . By (2.2) and (2.3), (A.I) reduces to

[M(τ)M(σ) f uτ j u° - 48M(τ')M(τ") f uτ'+ τ" f u ^ \ . . . sn _ x aτ*σ4.

Since τj = σ., i = 1,2,3, it follows from our multiplicity assumption that M(τ)
= M(σ) = 4! and M(τ") = 3! moreover, M(τ') = 2 because τ 4 + σ4. Thus the com-
binatoric factors of the two terms match, and we have the desired result if we set
^ ( α ) = ( 4 \ ) \ a σ 4 and φ ) = sr]...sn_1.

Case ί (b). Γn = {(τ, σ), (σ, τ), (τ\ τ")}, where τ φ σ are form 1 and (τ\ τ") is form 2. In
« - 1

this case τ4, σ 4 G ^ | J | J suppΓ ί ? so suppτ' is contained in this set. By (a) of the
1=1

concluding remarks of Sect. 6, the nth interpolation introduces an si factor for the
unit 02(τ',τ"):ατ ': in the exponent. The nth sum is

2(-g1(τ))(-g1(σ))(sη..,sn_ί)(sε...sn)(xτ4ocσ4

- g2(τ', τ") {2sns
2

n_ lS

2

n_2... s2sε_lSε_2... s > τ 4 α , 4 , (A.2)
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where η (respectively ε) is the smallest of all integers / such that τ 4 (respectively σ4)
lies in suppΓ i_1 and we have assumed η^ε for definiteness. As before the Wick
ordering has been dropped from the second term because τ 4 φ σ4 the factor of 2 in
the first term arises from having a mass insertion for (σ, τ) as well as for (τ, σ), while
the factor of 2sn arises from the differentiation of s2 associated with the
interpolation move that brings the form 2 unit down from the exponent. Once
again we see that the combinatoric factors, the interpolation parameters, and the
cell variables match for the two terms, and we have the desired result if we set
^ ( α ) = 2 ( 4 ! ) \ A 4 and W = V Λ - Λ 2 - ^ A

Case ί(c). Γn = {(τ, τ), (τ',τ"), (τ,3)}, where τ is form 1 and (τ',τ") is form 2. As in
the preceding case, the nth interpolation introduces an s2 factor for the form 2 unit
in the exponent. In this case, however,

moreover, since representation one does not distinguish between a form 3 graph
and a two-element chain consisting of identical form 1 graphs, there are two terms
associated with (τ, τ). The nth sum is

{-gί^))\sη...sn_1){sη...sn)a2

4-g3{τ)(2sns
2_1s

2_2...s
2)

- g2(τ\ τ") (2sns
2

n_ Λ

2 _ 2 . . . s2)« - 1), (A.3)

where η is defined as before. By (2.2)-(2.4), (A.3) reduces to

[M(τ)2( ί M1)2 - 96M(τ")M(τ') J uτ' + τ" f u^

- 24M(τ) (J uψ - 96M(τ')M(τ")f t / + r"

s2... s2_

... s2_

Once again, by our multiplicity assumption, M(τ) = 4! and M(τ") = 3!; however,
M(τ') = 1 in this case, so the combinatoric factors match, and we have desired
result if we set J^(α) = (4!)2(ατ

2

4- 1) and 6n

Γ(s) = s2...s2_ ^
The nature of our expansion procedure splits Case 2 into three sub-cases as

well.

Case 2(a). Γn is a chain terminated by a cancellation graph {(τ,σ), (τ',τ")}, where
τ Φ σ are form 1 and (τ\ τ") is form 2. The nth sum factors into

ί(-g1(τ))(-g1(σ))sε...snaσ4-g2(τ\τyε...snaσJb(sv...,sn)P(a)

• Π W > (A.4)
μ-n^Λ + 1

where ε is defined as in Case l(b), b(sv ..., sn) is the total monomial of interpolation
parameters brought down by the preceding moves in the chain, and P(cή is the
total polynomial of cell variables brought down by those moves. The interpolation

parameters in the second term have no multiplicity because τ4φ@\J (J ^
1=1

and τ' is the weight function of (τ4, σ4). In both terms ατ4 has been differentiated out
because it is the variable with respect to which one integrates by parts to introduce
either τ or (τr,τ"). In the case where η — n-\-l, how does one rule out the
interpretation of (τ', τ") as the term where ασ4 is differentiated out? The answer is
the content of the following lemma:
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Lemma A.I. Let G be representation one graph rooted on & and (Y, τ") a local graph
of G that terminates a chain of G. Let (τ, σ) be a type 1 composite graph such that the
replacement of (Y, τ") with (τ, σ) yields a representation 1 graph. Thus τ' is the weight
function of (τ4, σ4) and the form 2 unit #2(Y, τ")aσ4 is associated with (Y, τ"). Here
(Y, τ") includes the form 2 unit g2(

τ\ τ " ) α

τ 4 if an^ on^y if t n e replacement of (Y, τ")
with (σ, τ) also yields a representation 1 graph.

The proof is a matter of inspecting the rules for integrating by parts. Applying
this lemma to the case at hand, we see that the form 2 unit g2(τ\ τ")aτ4 is ruled out
because our specification of the cancellation graph implicitly rules out the (σ, τ)
possibility. We have the desired result in this case because the combinatoric
factors are exactly as in Case l(a).

Case 2(b). Γn is a chain terminated by a cancellation graph {(τ, σ), (σ, τ), (Y, τ")},
where τ φ σ are form 1 and (τ', τ") is form 2. The nth sum factors into

[ ( - # i ( τ ) ( - # i ( σ ) K 4 + ( - # i ( < 0 - ^

.b(sv...,sn)P(ot) nj\ S(n, (A.5)
μ=n-1+1

where the terms in the brackets are dictated by Lemma A.I. The combinatoric
factors are exactly as in the preceding case, so we have the desired result if we set
^ ( α ) = (4!)2(ασ4 + ατ4)P(α) and όn

Γ(s) = b(sv ...,sn).

Case 2(c). Γn is a chain terminated by a cancellation graph {(τ, τ), (V, τ")}, where τ
is form 1 and (Y, τ") is form 2. The nih sum factors into

ί(-gi(τ))\4-g2(τ',τ")(2aJ-]b(Sv...,sn)P(a) π J{Γ% (A.6)
μ = rΓTί + 1

where the factor 2α in the second term arises from the differentiation of
T4

:α^ 4:=α^ 4— 1. As in Case l(c), M(τ') = l in this case, so the combinatoric factors
still match.

Appendix B. Representative Derivation

We derive Bound 2 here to illustrate the case-by-case reasoning involved in the
proofs of our estimates. Since Bound 2 deals with the last graph in an ordinary
chain, there are no occurrences in this situation, so nothing is extracted from

j V - ε for ^ e number divergence cancellation.

Case 1. J μ is a form 1 graph τ. The scale expression is (LβL~ ( 1 / 2 ) τ ) 1 - ε , which is
clearly dominated by Lι

B . But our integration by parts rules imply that

Lp = LH = LB in this case, so LB~ g(9.6.2). 1 We have naturally written Lτ= Y\Lτ

k

(k)

\ k

Case 2. Jμ is a form 2 graph (Y, τ"). The scale expression in this case is
(L^Lτ

3X~τ"~(1/2)τ')1~ε. Our rules in Sect. 4 imply that Lτ. ^Lτ,, and that Lp = LH
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(L \4~
Now, if Lτ,{ = LB, we obviously have the upper bound — I L2 . If Lτ,{ > Lβ, then

Lτi =LB, so LB = LH and we use p

r3 r3 r-t"-(l/2)τ' < r3r-( l/2) i '

instead to obtain Z^~ as an upper bound.

Remark. A form 3 graph cannot occur in a chain.

Case 3. Jμ is a cancellation graph whose local graph is (V, τ"). The expression is
^ ί ^ ' - 1 " ) 1 - . Since Lp = LH^

LγL-τ"-(l/2)r'L-l g j ^

/L \ ( 7 / 2 ) "
so we have the bound —- L* .

Case 4. J μ is a type 1 composite graph (τ, σ). We have

L3L3 /y-(1/2)σ~(1/2)τ<^3/2)/y(
1/2)

If Lτί>LB, then the integration by parts rules dictate Lp = LH = LB, and the
numerical expression is dominated by L2

V~. If Lτγ =LB, then our rules dictate that
the restriction of σ + τ to vertices whose scales are strictly smaller than Lp = LH has
weight g|5, so we use

r3 r3 r -(l/2)σ-(l/2)τ< r (7/2) r -(3/2)

/L \(7/2)-

instead to obtain the bound — I L^ .
5. J μ is a type 2 composite graph ((τ',τ"),σ) with Lτ,^LτV

j 3 r 3 r3 r -τ"-(l/2)τ'-(l/2)σ < r 3 r 3 r -(l/2)τ'-(l/2)σ

If Lp = LH<Ln, then LB = Lp, and we have the bound Lp

3/2rL[\/2)~ because the
part of τ' + σ with scale ^L τ , is at least 3 in weight. On the other hand, if Lp^Lτ[,
then our rules dictate LB = Lτi, in which case we estimate

r 3 r 3 j - ( l / 2 ) τ ' - ( l / 2 ) σ < r(7/2)r -(1/2)
^BW^ ~^B ^P

ίL \(7/2)"

because Lp = LH<L1 =Lτ,2; in this situation our bound is —- L | .

Case (5. J μ is a type 2 composite graph ((V, τ"), σ) with Lτ i > Lτ,{:
r 6 r 3 r - τ " - ( l / 2 ) τ ' - ( l / 2 ) σ < r 4 r(3/2)r - 2 r -(1/2)

because Lτ,^Lφ as our rules imply. If Lσ i <L τ Y, then LB = Lσί =LH = Lp and we
obtain the bound L{3/2)~L[3/2r. If Lσ i ̂ L τ ? , then LB = Lτ,, and we estimate

r 4 r(3/2)r - 2 r -(1/2) < r(7/2) r -(1/2)

because Lσχ^Lτ,χ and Lp^Lτi. In this case we have the bound
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