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Abstract. We give an algorithm for determining the topological entropy of a
unimodal map of the interval given its kneading sequence. We also show that
this algorithm converges exponentially in the number of letters of the
kneading sequence.

It is by now well known that iterated maps of an interval, when viewed as
dynamical systems, account for some of the irregular behaviour observed in
physics. There are three commonly used indicators for the complexity of such
systems: The metric entropy, the Liapunov exponent, and the topological entropy.
Here we shall discuss an efficient method for calculating the weakest of these
notions, namely the topological entropy.

A possible way of defining the topological entropy h(f) of a function / is given

h(f)= l im-log 2 N(/"), (1)
H-> oo γι

where /" denotes the nth iterate of/, and N(g) is the number of monotone pieces of
the graph of the function g. Thus the topological entropy, if positive, measures the
exponential growth rate of the number of laps of /" as n increases. If / is
continuous and has a single extremum, then h(f) takes values in [0, 1]. If h(f) is
positive, then the map / has complex behaviour in the following sense :

1) / has infinitely many different types of aperiodic and periodic orbits. In
particular, even if / has a stable periodic orbit, complicated transient behaviour
will be observed.

2) Although the topological entropy gives essentially no information about
attractors, it indicates, when positive, a sensitivity of the dynamical system to
external noise [2, 4].

In this note, we prove that h(f) can be computed efficiently from the orbit of
the critical point of /, using the so-called kneading determinant of Milnor and
Thurston [5].1 Our theorem below shows that h(f) can be computed with an error

1 See also [1] for background material
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Fig. 1. Kneading determinant Pκ N{τ) vs. τ for the mapping xn+ί = 1 — μx^ : (left to right in the picture)

μ = 2.0, 1.5436889..., 1.46610. The first value corresponds to the maximum allowed height of the map,

here Pκ N(τ) has a zero at τ = 1/2 and the topological entropy /?(/) = Iog2(l/τ) = 1.0. The second is the

parameter where two bands merge [2], PKtN{τ) has a zero at τ = l/J/2 and the topological entropy h(f)

= 1/2. The last value is in a regime where there are two distinct bands comprising the attractor and so

h(f)< 1/2. Each Pκ<N{τ) calculated with N = 40

which exponentially decreases with the number of iterates of the extremum.
Previous numerical calculations of h{f) have suggested that it can be computed
with several different, rapidly convergent algorithms [6]. Our theorem will be
based on the estimate of the smallest positive root τ(f) of a certain polynomial
(called the characteristic polynomial of /), for which it is known that h(f)
= -log 2 τ(/), (see e.g. [5]).

We present next the definition of characteristic polynomials for functions with
one critical point, as given in [5]. In the sequel, assume / is a continuous map of
[— 1,1] to itself, satisfying /(0) = 1, with / strictly increasing on x < 0 and strictly
decreasing on x>0. The kneading sequence K(f) = K1K2K3... of/ is the sequence
of symbols Kt defined by

(R if /'(()) > 0 ,

if /f(0) = 0,

U if /i(0)<0.

We also define, for i = 1,2,...

£• =z

+ 1 if

- 1 if

and, recursively

ε - Π ε iϊ K -C
i= 1

Finally, given K, the polynomials P κ N are defined by

n= 1 \j=l
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Given /, the analytic function
PK,/)M=]imi>K(/,>)

is called the kneading determinant [or (formal) characteristic polynomial of / ] .

Theorem 1 [5]. The topological entropy of f equals — logτ, where τ is the smallest
positive root of PK{fy

We shall show below that the smallest positive root of Pκ(<f) N rapidly
approaches τ, providing thus an efficient means of computing τ. We shall see that
the speed of convergence will depend (in a controllable manner) on K(/). To state
our result, we need the following definition. If A, B are two kneading sequences, we
shall say that A < B if there is an s such that Ai = Bi for z=l,2, ...,s and if

either Λs+ί<Bs+1 and an even number of A?s, i^s are equal to R,

or AS+1>BS+1 and an odd number of A?s9 i^s are equal to R.

This defines an ordering of kneading sequences, and one has

Lemma 2 [5]. If K(/)<K(#), then h(f)SKg).

Our main result is the

Theorem 3. // K is a kneading sequence and K>RLRCO, then Pκ N has, for every
Π ^ 1 8 a smallest positive root τ κ n. This root is less than one, and | τ κ — τ κ J
<18.6 2~π/2.

(Better bounds are sketched in the proof.)

Before indicating the algorithmic application of the theorem, we extend it to
. One defines [1], for any K

R*K = RKίRK2RK3...,

where

(Under technical conditions, if K(f) = R*A, then K(/(l)-1/°/(/(l) )) = A and /
exchanges two subintervals of [— 1,1].). Denote R*m = R*R*...*R (m times). We
have now the

Corollary 4. Let K be a kneading sequence and suppose K>JR*GO.
(i) One can decide from the first 2 m + 1 symbols of K whether K^JR*m*KLG0,

(ii) // K is in the interval R^'^RL00 ^ K > J R * m * i ^ L 0 0 , then | τ κ - τ κ n2m-,\

<18.6 2~"/2

; provided n ^ l 8 .

We now outline the algorithm for evaluating τ κ given K = K(/). Set K; = K,
m = 0, and perform the following steps.
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Fig. 2. Kneading determinant Pκ N(τ) vs. τ calculated with various numbers of terms at μ= 1.46610.
From left to right, for those P{τ) with P(l) = 1 in the figure, the number of terms are JV = 20, 40, and 50;
for those with P(l)= - 1, the number of terms are N= 10 and 30, respectively

Step 1. Check if K^K'^K^RLRR. If not proceed to Step 3.

Step 2. We must have K'^KLK0 0, and hence τ κ , ^ 2 ~ 1 / 2 . Apply Theorem 3 to K,
noting that

1

(cf. proof of Corollary 4).

Step 3. Increase m by 1. We now know

^ I ° g 2

(cf. proof of Corollary 4). Replace K' by K" which is defined by the equation R*K"
= K'. Proceed to Step 1.

The proof of Theorem 3 will be based on the implicit function theorem. The
main ingredient for the proof is Lemma 5 below. Denote by J 1 9 . . . , J 8 the finite
sequences given in Table 1. One can check [1] that every kneading sequence
K^RLR™ either starts out as J ... for some i or is equal to one of the "limiting
sequences" of Table 1. In this latter case, the root τ κ of P κ is equal to a root of a
polynomial of finite degree [5], and an approximate value for this root a • is given
in the last column of Table 1. Denote by n- the number of letters in Jr

Lemma 5. If K is a kneading sequence, andK = JjB for some je {1,2, ...,8}, then we
have for all n^n^

- P κ J _ 1 2 σ + 0 0 0 1 ] < - 0 . 1 3 .
dx '' ' J

The proof of Lemma 5 is a numerical verification of a finite number of cases, as we
shall sketch now. Consider K = J^B. Then, for n^np

ί = Π j + l
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Table 1

J,=RLR8

J2 = RLR6L

J3=RLR4L

J4 = RLR2L

J5=RLLRLLR

J6 = RLLRLR

JΊ = RLLRR

J8 = RLLL

Limiting
sequences

RLRX

(RLR8LΓ

{RLR4C):C

{RLR2CY

( Ώ T /^Ύ x

\S\l-jy^ )

{RLLRLQ*

(RLLRC)X

(RLLC)*1

RL*

Values of τ κ for limiting
sequence

σo = 1/1/2

σγ -0.6938106281

σ2 -0.6823278038

σ3-0.6609925319

aA = 2/( |/5+ϊ) ~ 0.6180339887

σ5 = σ4

σ6-0.580691832

σ7-0.5436890127

σ8 = l/2.
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with ζ.= ± 1. We bound the derivative of P κ π(τ) by

π

ί = Π j + 1

The first term on the right hand side of (2) is bounded explicitly, and the second
analytically. Putting in the corresponding choices of J J ? and σ. yields the result. (It
seems that any subdivision which is coarser than the one in Table 1 does not lead
to a strictly negative bound for the derivative.)

We need one more general result about kneading sequences for the proof of
Theorem 3.
Lemma6. [5]. (i) LetKbea kneading sequence. Then the smallest root τκ in modulus
of P κ is real, positive and less than or equal to 1.

(ii) // K^JLB with i} from Table /, then τ κ G[σ j _ 1 , σ^\.
(This latter statement follows also from Lemma 2.)

Remark. At first sight one could think of applying the lemma directly to the P κ n.
The following example shows that this is not possible. Consider a kneading
sequence K = RLR2L..., and try to show that the root with smallest modulus of
P κ 5, say τ κ 5 is positive. One could be tempted to consider K' = (RLR2LC)°°, and
then P κ , has a smallest root τκ, = τ κ 5, as is easily seen. Although P κ , has the same
smallest positive root as P κ 5, we cannot apply Lemma 6 because K' is not a
kneading sequence: No map / can have K(/) = K'.

Proof of Theorem 3. Suppose K = J 7 B.

We use the notation Gn(τ) = Pκ n(τ). By definition,

π ( τ ) - p κ M ) = P κ ( τ ) + Σ C/τj, (3)
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with ζj= + 1. Since P κ ( τ κ)~0 a n ( ^ τ κ < 2 ~ 1 / 2 by Lemma 6, we find
00

|G,,M^ Σ τ^2- ( « + 1 " 2 /(l-2- 1 / 2 ) . (4)
k = « + 1

On the other hand, by Lemma 5

3 (5)

for all τ e [ — \, σ. + 0.001]. These two estimates imply that Gn(τ) has a unique zero
in [—f, 0,. +0.001], provided we choose n so large that

|Gn(τκ)|<0.0076<0.001/0.13,

(n^ 18 is sufficient). This proves Theorem 3 (i). We also find, combining (4) and (5)

\τκ-τκJ<2~nl22"1/2/{(l-2-1/2)ΌΛ3)<lS.6'2-n/2.

Proof of Corollary 4. The point (i) follows by inspection of the definition of R*.
Now point (ii) is an obvious consequence of the fact that if K = R*m*K' with K'
^RLR™, then only every 2m-th digit of K effectively contributes to K'. But fitop(K)

= ~Ίn t̂op(K;) The result follows, by reduction to the case K' ^ RLR™ using Pκ(τ)

= Pκ,(τ)Q(τ), where all zeros of Q lie on the unit circle. Q.E.D.
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