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Abstract. The random walk representation of the n-dimensional Ising model
exhibits the 2-point correlation function <σ(x)σ(y)> as a sum of positive
contributions of paths ω from x to y. We derive upper bounds on the
individual terms in this sum for low temperatures. Each term tends to zero as
/?-»oo, while the correlation function itself tends to 1. Therefore increasingly
more and longer paths contribute when β is lowered.

1. Introduction

This investigation was motivated by the Durhuus-Frδhlich [random surface]
representation [1] of the Wilson loop in lattice gauge theories: The expectation
value of the Wilson loop in an ^-dimensional theory can be written as an average
of the product of correlation functions of (n— l)-dimensional spin systems with
fluctuating couplings. For each of these correlation functions one uses a random
path representation of the kind that is investigated in the present paper. These
paths lie in hyperplanes above each other and vary independently. They can be
combined to a surface which has the Wilson loop as its boundary. The question
arises what surfaces will make a nonnegligible contribution to the Wilson loop at a
given temperature [coupling constant]. For instance one will expect that the
confining (high temperature) phase and the Higgs (low temperature) phase of a
pure TL2 lattice gauge theory in 3 or 4 dimensions [2] will be characterized by a
qualitatively different probability distribution of these random surfaces (compare
[3]).

In this paper the corresponding question for the correlation function of the
Ising model is investigated. A qualitatively different behavior at high and low
temperatures is found. At high temperatures it is immediately seen from the
random path representation that the shortest path makes the dominant contri-
bution. The main problem was therefore to analyse the multiple integrals that
appear in the random path representation at low temperatures. This problem was
solved with the help of a combination of high temperature (Mayer-) and low
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temperature (Peierls-) expansions, following the method of Bricmont et al. [4]. It
turns out that the contribution of each individual path vanishes in the limit of low
temperatures (T-»0). Therefore more and more, and consequently increasingly
longer, paths must contribute to the correlation function when the temperature is
lowered.

2. Random Walk Representation of the Correlation Function
in the Ising Model

We consider an Ising ferromagnet on a finite hypercubic lattice AQΈΓ with free
boundary conditions in n dimensions. Here A is chosen as a cube of side length λ.
A configuration σeTL\ fixes the values σ(x)= + 1 (spin up) or — 1 (spin down) of
the spin variables attached to every site x of the lattice A. The set Aι of links I in A
consists of pairs l = {x, y} of nearest neighbor sites in A. We define σ(ΐ) = σ{x)σ(y)
for such a link. The expectation value (A}β'Λ of the observable A at inverse
temperature β on the lattice A is defined by

(2.1)

A path ω of length n = |ω| is a sequence of n sites ωί9 ...,ωn such that {ω/? coi+1} is a
pair of nearest neighbours on A. We denote by Ωxy the set of all such paths of
arbitrary length between x = ωx and y = ωn. Here nω{z) is the number of visits of the
path ω to the site z, and ώ is the set of distinct sites that are visited by ω. The
length |ω| of the path and the number | |ω|| of distinct points on the path ω are

| ω | = X n j z ) ; | | ω | | = £ l . (2.2)
zeω zeω

The random walk representation of the 2-point correlation function reads [ I ] 1

/1\|ω|

Z(σ(xo)σ(yo)>=ΣU βH~' Π CM*)-I)!]" 1

ω \^J zeω

• ί Π dsy Y Π (1 - a " ω ( z > - 'dsz expίyS Σ s(θ| (2.3)
[ leΛχ

Summation runs over all paths ωeΩXoyo from x0 to y0. Variables sy attached to
sites y on the path ω are integrated over the real interval 0 ... 1, while for sites y not
on the path they are averaged over the two values + 1 and — 1.

The factor β^"1 in Eq. (2.3) will prove to be essential in the high- and low
temperature expansion.

By rescaling the spins sy with yeώ with the help of new variables βxe [0,1] one
can regain an Ising model. The contribution of a path ω appears then as an

1 A comprehensive introduction to random walk representations of classical spin systems was

recently given by Brydges et al. Related to these ideas is the work of Aizenman. For references, see [5]
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average over Ising models with fluctuating coupling strengths ββ(ΐ) the average is
weighted by Poisson distributions. β(ϊ) = βxβy for l = {x9 y}.

The variables βx with xeώ will be integrated from 0 ... 1, while we set βx = 1 for
sites x which are not on the path ω. Equation (2.3) takes the form

ω ^ ω

with

U Σ exp[j8 Σ
0 zeω W σeZf ί leΛi

The contribution of a path ω depends on ω through the numbers of visits nω{x) to
the sites x of A. Therefore we denote it by ^(nω).

It is straightforward to extend the representation (2.4) to the case of
+ boundary conditions (spins up outside A). For xeA let hx denote the numbers of
nearest neighbours of x in Έ1 which do not lie in A. Then the result for + boundary
conditions reads

(σ{x)σ(y)y Λ= Σ &+(nω) + βΣ Σ Σ Σ M i % 1 + » J

Here &+ is given by the same expression as ^, except that partition functions are
to be computed with + boundary conditions.

It is instructive to consider the simplest example of a lattice A of only two
(neighbouring) points x and y, with free boundary conditions. The contribution of
the (only) path of length Ik + 2 is found to be

coshβ^ n t V (2n)!\(2

When this is plotted one sees very distinctly that only the shortest path (/c = 0)
makes an essential contribution for high temperatures (small β\ while for β->oo
the contribution of any individual path tends to zero, so that increasingly more
and longer paths contribute to the correlation function <σ(x)σ(j;)>^'yl = tanh^ for
large β.

3. Expansions

We will interpret Z and Z ω as partition functions of suitably defined polymer

systems (in the sense of Gruber and Kunz [6]). We proceed in two steps. First we

replace Σ by a Peierls expansion. A configuration σ determines a set P of links /
σ

where σ(l)= — 1. Here P is coclosed, i.e. every plaquette on A contains an even
number of links in P. Such P are called Peierls contours. Conversely, every Peierls
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contour determines a configuration σ uniquely up to a global ^-transformation
σ(x)^ — σ{x). The Peierls expansion reads [7]

^ Σ ί Π d J 8 z ( i - j 8 z ) ' I ω ( z ) " 1 Π e " W ( Z ) + 1 ) Π ^ ( Z ) " 1 ) (3 l b )
W p 0 zeω ίeP ί£P

Summation is over all Peierls contours P on A.
The second step is a Mayer expansion for the /^-integral in Zω. We set

&=!-&, (3.2)

and consider β'x as the variable of integration if xeA\P. Here P is the set of sites on
the path ω which belong to a link in P. [This substitution is motivated by the fact
that if I = {x, y} is not in P, then σ(l) = + 1 and e

βkl)σ{l) is maximal for βx = βy = 1.]
For a point z on the path ω we denote by cz the number of links (in At) which
contain z and do not belong to P. Using the substitution (3.2), we obtain from
(3.1b)

zω=i- exp/?KiΣJ
W I J P 0 z

0 yeω\P

n f ^ (3.3)
iφP [ J

The reader is asked to bear in mind that β'x stands for l — βx for points x which

belong to P. Therefore the above integral does not factorize into J Π ( ) a n <^

J Y\ (...). Convergence of the Mayer expansion below will come from the last factor

M3.3).
Now we may apply the Mayer expansion

xeJi
)= Σ Γ K

Since β'x = 0 for sites x which do not belong to the path ω, we may restrict
summation to sets X of links that lie on the path ω.

The product to be expanded runs only over links IφP. Therefore in the Mayer
expansion we need only sum over subsets X of ω^P. This gives

| Λ l l F(ώ)(Z ω ) P o l y , (3.4a)



Probability Distribution 109

with

( Z J P o l y = l + Σ^ω(ΛX), (3 4b)
P,X

\
xeA 0

F(A)= Π \d~β'J2~β'x-~β'χ)n°'ix)~1e~2nβ~βlχ for Ago), (3.4c)

AJP,X) = F{PuX)-x

leP

( 3 4 d )
leX

In the sum over P,X in (3.4b), the term with P=X = & is to be omitted (it
contributes the extra 1). Thus X is the set of sites on ω which belong to at least one
link in X.

Now we are ready to interpret the partition functions (Z7)P o l y (ocZ), and
(Zω)P o l y (ocZJ as partition functions of polymer systems. Let us first consider the
Peierls expansion (3.1a) oϊ(ZI)Poly. Two Peierls contours (coclosed sets of links) P1

and P2 are called disjoint if there exists no plaquette (elementary square) which
contains link(s) both in P{ and in P2. Here P is called connected if it cannot be
split into two disjoint Peierls contours Pγ and P2. Temporarily, connected Peierls
contours will be called polymers. Every Peierls contour P can be decomposed
uniquely into connected pieces (polymers) P 1 ? ...,PΠ. The factor e~2β^ splits into a
product of activities

βM (3.5a)

and the Peierls expansion (3.1a) becomes

( Z 7 ) P o l y = l + Σ ΓU/(P) (3.5b)
P PeP

Summation is over nonempty collections IP of mutually disjoint polymers
(= connected Peierls contours) P.

Next we proceed in the same way for (Zω)P o l y. Consider pairs (P,X), where P is
a Peierls contour and X is a set of links that lie on the path ω. We call {P,X) and
(P\X') disjoint if they have no site in common (that is, if ( P u I ) n ( P ' u i ' ) = 0).
Now, (P,X) is called connected, or a polymer, if it is nontrivial (i.e. P o r l o r both
are nonempty), and (P,X) cannot be decomposed into two disjoint pieces (P1,X1)
and (P2,X2). From expression (3.4a) we see that Aω(P,X) factors on disjoint
arguments. Therefore Eq. (3.4b) gives

with activities Aω(P,X) as defined by Eq. (3.4d). Summation is over nonempty
collections IP of disjoint polymers P = (P,X). Equations (3.5) and (3.6) are the
desired representations as partition functions of polymer systems in the sense of
Gruber and Kunz (with monomer activity 1).
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4. Estimates of Activities Aω at Low Temperatures

We will show that the activities Aω decrease exponentially with the size of the
polymer. Define βc(ω) > 1 by the equation βc(ω) = (1 + |ω|) Inβc(ω). It is claimed that
there exists a constant Kω such that for all β > βc(ω)

^ 1 " 1 ^ 1 " 1 if PΦ0(i .e . | P | ^
x\ if P = 0. &Λ>

First we bound |F(XuP)| from below. From its definition

xeXuP 0

^ [ I \{2nβYnUx) if J 8 > 1 .

Here ^ ( X u P ) " 1 increases with a ω-dependent power of β. We will show that this
will be more than compensated by the other factor in Aω. Let

0 ze \

.ΓT g-wfto + i) Γf (/^^_i) Γf
leP leX xeXu

The factor ]^|e~^(/?(ί) + 1 ) depends on the Peierls contour. It will be bounded by
e~m. Moreover, l-β2

x = 2β'x-β'x
2^2β'x. Therefore

0 xeXuP leX

One has £*— 1 ̂ x^ x for x>0. Let dz be the number of links i n Z which contain z.
Then dz^cz. Therefore

Π
z'eP\X

The factor involving sites z in P\X can only be bounded by 1 because cz, may be
zero. (This happens when z! is entirely surrounded by links of the Peierls contour.)
Since O ^ j S ^ l one has βjy^(βx + βy). We insert this, write /}' for ββ' and use
that cξ^l if ξeX. Thus

ξeX

One has ^ dx = 2\X\. In n space dimensions we define
xeX

Ko> = (2n) |ω | 2 2 ( | ω | + l



Probability Distribution 111

Then the inequalities for F(XuP) and H combine to

This proves (4.1) for P = 0. If P Φ 0 we estimate the last factor by βH. If β>βc>l
and j8c = (l + |ω|)lnj8c, then β-He-/?|P|^e-/?[|P|-:u T h i s proves inequality (4.1).

5. Thermodynamic Limit

We combine the result (3.4) with the Peierls expansion (3.1a) for the partition
function Z of the Ising model, viz.

Z 2\2) - V v%- ΓΛ2

From the definition (3.4c) of F(ω) one obtains easily the bound

Therefore the contribution @>(nω) of a path ω to the 2-point correlation function
(2.4) is boundary by

{ ^ ^ W A (5.1)

The two partition functions have been exhibited as partition functions of polymer
systems in Sect. 3. Their activities are bounded by Eqs. (3.5a) and (4.1). The free
energy of a polymer system admits a linked cluster expansion [6]

(5.2)
Q

with

Summation is over all clusters Q = sets of not necessarily distinct polymers which
are linked in the sense that they cannot be decomposed into two clusters made of
disjoint polymers. Here a(Q) are combinatorial coefficients which are independent
of the lattice and the activities. Standard estimates [6] give a bound on the sum in
(5.2), given estimates on the activities. It follows from our estimates (3.5a) and (4.1)
that

g ^ ^ l as j8-oo (5.3)
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uniformly in the size of the lattice Λ, but nonuniformly in ω. Bound (5.1) together
with (5.3) is our final result. It shows that the contribution of every single path ω
tends to zero as /}->oo.
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