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Abstract. We study decay properties of solutions ψ of the Schrόdinger
equation {—Δ + V)ψ = Eψ. Typical of our results is one which shows that if
V= o(\x\ ~1/2) at infinity or if V is a homogenous JV-body potential (for example
atomic or molecular), then if £ < 0 and α > j/^22, eφ{ψφL2(W). We also
construct examples to show that previous essential spectrum-dependent upper
bounds can be far from optimal if ψ is not the ground state.

I. Introduction

In recent years there has been much interest in the asymptotic behavior of
ZΛsolutions to the Schrδdinger equation

{-A + V)ψ = Eψ. (1.1)

By far, most of the effort has gone into proving upper bounds to solutions of
(1.1) with E outside the essential spectrum of — A + V. Recent work on this subject
can be found in [1-3,12,19]. The results of Agmon [1,2] for the JV-body problem
are the most general. Agmon shows that solutions ψ of (1.1) satisfy (under certain
conditions)

|tp(x) |^C εexp(-(l-ε)ρ£(x)) (1.2)

for ε>0, where ρE(x) is (in principle) an explicitly computable function. This
generalizes the earlier result in [25] which states that for JV-body potentials

(1.3)
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where Σ is the bottom of the essential spectrum. (Actually, (1.3) is only proved in
an L2 sense in [25]. This defect was remedied in [32]. For more recent work on
going from ZΛbounds to pointwise bounds the reader should consult [1, 4].)

Obtaining lower bounds to solutions of (1.1) has proved to be a more difficult
endeavor. However for the positive groundstate of —A + V with V an iV-body
potential, a recent result [8] shows that (1.2) is best possible in the sense that

lim -(\nxp(x))/ρE(x) = l. (1.4)
|x| -* oo

For earlier results of this nature on special systems the reader should consult [3,
10, 20, 23].

One of the difficulties in obtaining lower bounds to solutions of (1.1) is the fact
that in general the set {x:xp(x) = 0} is unbounded and very poorly understood.
This difficulty was dealt with in the one-body problem by Bardos and Merigot [6]
who proved lower bounds on the quantity

(1.5)

where dω is Lebesgue measure on the unit sphere. The naturalness of this quantity
is shown by the fact that if E is below the essential spectrum of — A + F, F{r) > 0 for
all large r unless ψ has compact support. This follows from the fact that [1, 27]

Σ= ]hninϊ{(φ,(-Δ + V)φ):φeC%({x:\x\>R}), \\φ\\ = l}9 (1.6)
#-•00

so that we can choose ε > 0 with Σ — E — ε > 0 and R large enough that

(1.7)

for all q>EC$(Rn\BR). (Here and in what follows, BR_= {x : \x\ <R} and BR is its
closure.) Thus the Dirichlet problem in the region 1R"\5Λ is uniquely solvable given
ψ on dBR. Hence if ψ = 0 on δBR, ψ = 0 in IRn\5Λ.

For FeC^IR") with lim (\V(x)\ + \x-VV(x)\) = 0, Bardos and Merigot [6]
\x\ ->oo

show that for large r and £ < 0

F(r)^C c exp(-(l/-E-ε)r), (1.8)

for all small ε > 0.
Our approach to the problem gives results which say that under certain

circumstances

exp{otr)ψφL2. (1.9)

This is a rather crude result in comparison to (1.8), however we can prove it in more
general situations than those considered by Bardos and Merigot. In addition, it
may be the case that a result such as (1.9) in combination with other information
yields a statement such as (1.8). This will be the subject of further study.

In Sect. II we consider the one dimensional Schrodinger equation. We develop
techniques not available in higher dimensions which enable us to prove rather
strong results. One of our results may have application to random Schrodinger
operators.
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In Sect. Ill we extend the virial theorem to show that for certain potentials
(including homogeneous JV-body potentials), each negative energy eigenfunction ψ
satisfies

Qxp(ar)ψφL2; α > | / ^ E . (1.10)

We also show that no solution to (— A + V)ψ = Eψ, where V is a "reasonable"
JV-body potential, can decay faster than at some explicitly computable (at least in
principle) exponential rate.

In Sect. IV we give examples of solutions to the Schrodinger equation which
decay more rapidly than existing upper bounds might lead one to think. One of
our examples shows that in a certain sense (1.10) is optimal.

Our methods show that to a very large degree the three problems of unique
continuation, embedded eigenvalues, and L2-exponential lower bounds are in-
timately related. Indeed the techniques used here and in [14] to deal with the latter
problem are to a large extent motivated by techniques which have been used
previously to deal with the former problem. This is especially evident in Sect. III.

This is the first of three related papers. In the second paper [15] the methods of
Sect. Ill are used to extend the Kato-Agmon-Simon [27] theorem on non-
existence of positive eigenvalues while in the third [14], related methods are used
to prove a variety of lower bounds to solutions of the 1-body Schrodinger
equation including the case of nonnegative eigenvalues.

II. One Dimension

The Schrodinger equation in one dimension is special because it is an ordinary
differential equation. In this section we will use two techniques, one based directly
on the differential equation and the other on ideas of Combes and Thomas [11].

Let p=-ίd/dx in L2(1R) and H0(ίa) = eiaxp2e~-iax = (p-a)2, α e R Define the
analytic family of operators

{ifo(α) = (p + ια)2 : α e €} , ®{H0{μ)) = ®(d2/dx2). (2.1)

Then an easy computation shows that for α real, the spectrum of Ho(oc) is a
parabola:

σ(H0{a)) = {ze<C: Rez = - α2 + (Imz)2/4α2}. (2.2)

In this context, the difference between one and higher dimensions is that an
analogous computation in more than one dimension shows that if iίo(α) = (p-f icή2

and α is real, σ(H0{cή) also contains the inside of the above parabola [11]. One of
the ways in which (2.2) can be used for the purpose of proving L2 exponential
lower bounds is to note that if V is bounded (in some rough sense), then adding V
to H0(α) should not change the spectrum much, at least for large α. If ψ is an L2

solution of the Schrodinger equation with eigenvalue E and eaxψeL2, then
assuming we can show eaxψe@(H0((χ) + F), we have Eε σ(H0(a) + V), since formally
(H0(oc) + V)eaxψ = Eeccxψ. For large α it is plausible that Eφσ(H0(a)+ V) and this is
in fact what we will prove.

We will assume in what follows that V is a (not necessarily real) tempered
distribution such that for some β>0, the quadratic form
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{p2 + β2Γ1/2V(p2 + β2Γ112 with domain ^ ( R ) x &>(R) extends to a bounded
operator with bound smaller than one. It is a standard matter to use form
techniques [21] to construct an m-sectorial operator H with

{φ, Hψ) = J φ'ψ'dx + V{φψ)

for φ,ψeSf(WL). We abuse notation and write H= -d2/dx2 + V=p2+ V.

Theorem Π.l. Define H= —d2/dx2 -f- V as above and suppose Hψ = Eψ with ψ not
identically zero. Then

(i) Re£ + β 2 > 0 and if y{E) = {β2+ \E\)1/2> then Qxp{y(E)x)ψφL2(]&).
(ii) If (p2 + l)~ 1 / 2 F(p 2 + l ) ~ 1 / 2 is compact, then exp(ax)\pφL2(lR) whenever

Remarks. (1) V can be rather wild looking and still satisfy the compactness
criterion in (ii). For example, let {x w :n=l, . . . } be dense in IR and {cn}™=ί a

00 00

sequence of complex numbers with £ |cM| < oo. Then if V(x)= £ cnδ(x — xn),
«=i «=i

(p2 + l )~ 1 / 2 F(p 2 + l ) ~ 1 / 2 is compact. If, however, V is a reasonable real-valued
function, then comparison methods for ordinary differential equations should
suffice to prove (ii).

(2) It also follows from the Combes-Thomas method [11] that in case (ii), if

0 ^ α < | I m |/E|,then exp(αx)φeL2(lR).
In the next result we single out real-valued bounded potentials which do not

necessarily approach zero at infinity. We do this partially because such potentials
occur naturally in the study of random media. Certain bounded "random
potentials" have been shown [9, 18, 24] to produce pure point spectrum dense in
an interval [Eo, oo) almost surely, with exponentially decaying eigenfunctions. In
the following theorem we find explicit bounds on the rate of exponential decay
which can be much better than those in Theorem II. 1.

Theorem Π.2. Suppose V is a real-valued function on [0, oo) with || V\\ ̂  < oo. Define

where χA is the characteristic function of A. Suppose ψ is a real-valued function on
(0, oo) satisfying ( — d2/dx2 + V)ψ = Exp and that xp is not identically zero. Define

v — F

\VJ2]/E\ VO/2<E9

and let ρ(x) = (|φ(x)|2H-|v?'(x)|2)1/2. Then

(i) liminfx-MnρW^-αί^E),

and

(ii) e«xψφL2((0, oo)) if α>α(F 0 ,£) .

Proof of Theorem II.ί. Since — ReF^α(p 2 H-β 2 ) for some α < l , it is clear that
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Define the analytic family {H0(α):αeC} as in (2.1). For φ 1 and φ2 in
define the sesquilinear form Q(φvφ2; u) = (φ1,H0{(x)φ2)+ F(φ 1φ 2). Because
(P2 + β2Γll2V(p2 + β2y 1 / 2 extends from ^ ( R ) x ^(R) to a bounded operator with
bound less than one, it is easy to see that Q is sectorial, closable, and that its
closure Q has domain 2${d/dx) x @(d/dx). It is a standard result [21] that there is a
unique m-sectorial operator H(oC) such that &}(H(cή)C@(d/dx) and Q(φvφ2;oί)
= (φvH{a)φ2) for all φ^^id/dx) and φ2e9{H(a)). In addition φ2e^{H{a)) if and
only if φ2e@(d/dx) and there is an heL2(W) such that Q(φvφ2;ot) = (φ1,h) for all
c ^ e ^ I R ) . In this case h = H{a)φ2.

Let ψ be as in the theorem and suppose exp(ot0x)ψ = ψaoeL2(W) with aQ = y(E).
We will show this leads to a contradiction. Our first task is to show that

Ψao = EΨθLo. (2.4)

Suppose χeC^(lR) and φ1,φ2e@(d/dx). Then it is easy to see that

Suppose φ2eS){H(μ)\ Then for all φιeΘ(dldx\

ρ ( φ 1 , χ φ 2 ; α ) = (φ1,

and hence χφ2e£)(H((x)) with

^(ΦΦ 2 =

Thus if χeC^(lR), we have χψaoeΘ(H(μo)) and

From (2.5) it is easy to calculate that for χ real

- 2 χ > 2 + (2αχ; - χ")φ2 .

Let χ(x) = χm{x) = χί{x/m) with χi(x) = l if | x | < l and χγeC™. Then clearly
XmΨao^Ψao a n d Reβ(xw^α 0 'Zm^αo;αo) i s bounded. Thus [21] xpaoe@{d/dx). If we
similarly take χ = χm in (2.5) and let m-> oo, we see that φ α o e^(ίί(α 0 )) and that (2.4)
holds.

Now let N112 be some square root of iϊ o(α o) — E = (p + i<x0)
2 — E which com-

mutes with p. It is not difficult to justify the formula

H(ao)-E = N1I2(1 + N-1/2VN~1I2)N112, (2.6)

as long as mm{\(ξ-\-ioto)
2 — E\: ξelR} >0, so that N112 is invertible. We will prove

that

|| ^ 1 , (2. I)

so that

||ΛΓ1/27ΛΓ1/2||

- il(p2 + yS2)1/2AT- 1 / 2 ((p 2 + yg 2)- 1 / 2K(P 2 + )82)~ 1 / 2 ) (P 2 + ^ 2 ) 1 / 2 iV- 1 / 2 i | < 1 .
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This will show that H(oto) — E is invertible, contradicting (2.4). The proof of (2.7) is
a calculation to show that

The calculation is simple and we omit it.

To prove the second result of the theorem, suppose eαoXψeL2(IR) for some α0

with α 0 > | I m ]/E\. Then as in (2.4), ψa is an eigenvector of H(ot) with eigenvalue E

for all αe[0, α o ] . Consider the operator

where αeΓ£ = {αe(C:Reα>|Im ]/ΐί"|}. We define the operator ((p + ioc)2 — E)~112 in
this region by

where J^ is the Fourier transform and the branch of the square root with positive
imaginary part is taken. Then K(ot) is an analytic compact operator-valued
function on ΓE so that by the analytic Fredholm theorem [28], 1 + K(α) is either
nowhere invertible on ΓE or has a meromorphic inverse there. We know from our
previous considerations that if Reα is large enough, ||K(α)|| < 1 so that 1 -\-K(oc) is
invertible except for a discrete set in ΓE. Thus from (2.6) E cannot be an eigenvalue
of H{a) except for a discrete set of αeΓE. However, by assumption H(a)ψOί = Expa for
all αe[0,α o ] , where α o > | I m j / £ | . This contradiction proves the result. •

Proof of Theorem 11.2. To prove (i) it is enough to show that for each ε>0, ρ(x)
^ e ε e x p ( - α ( F 0 + ε,£)x) for some c ε >0. Choose x0 > 0 so that || 7χ[JC0f ^J«, ^ F0 + c.
By changing the definition of Vo it is enough to show that ρ(x)^ce~a{V°'E)x for
some c > 0 under the assumption that | F ( x ) | ^ F 0 for x^x0 and some F 0 >0.

Let hβ(x) = \ψ(x)\2 + β~ί\ψ'{x)\2. We will choose β>0 so that
(exp{2x<x,(V0;E))hβ(x))'^0 for x^x0. This gives hβ{x)^exp{-2o>(Vo,E)(x-xo))
'hβ(x0), which clearly implies the result because ρ(x)2^(1 + β~Λ)~Λhβ(x). Now

= {2ahβ + 2φψ;(l + β~1{V- E)))e2ax

^ (2α - \β112 + β~ 1 / 2 ( F - E)\)hβe
2ax, (2.9)

where we have used \2\pψ'\^βll2\ιp\2 +β-1/2\ψ'\2 = βίl2hβ. Define

)= sup \βll2 + β'lί2(t-E)\.
V

A short calculation gives

lβ~
\β-ll2(V0-E)

and

inf f(β)=f(β0),
0<)3<oo
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where

_[V0-E;
P° IE; E>VO/2.

Since evidently f(β0) = 2α(F0, E), (2.9) implies (exp(2xα(F0, E))hβJ ^ 0 and thus (i) is
proved.

To prove (ii) assume eaxψeL2((0, oo)) for some oc>α(F0,E) and note that
from (i)

00

ί (IvMI2 + |y/(x)|2)e2αxdx = oo . (2.10)
o

Choose φeC°°((0, oo)) with φ = l for large x. Then

where / = — ((/)"tp + 2(pV)ea*e£2(IR)- Thus elementary considerations show that
φeaxψe£)(d/dx) which implies φeax\p'eL2(R). This contradicts (2.10) and hence the
proof is complete. •

III. An Extended Virial Theorem

The virial theorem, which says that under certain conditions (— Δ + V)ψ = Eψ
implies (ψ,(2A+x VV)ψ) = 0, has been an important tool in understanding the
nature of the spectrum of Schrόdinger operators. We mention only the recent work
in [26] where it is used to prove discreteness of σp p ( — A + V) away from thresholds
in JV-body systems and to prove σs c (H) = 0 and in addition its use in proving
absence of positive eigenvalues. References to the latter work can be traced from
[29]. Recent proofs of the virial theorem under general conditions can be found in
[22, 26].

In the following we will use the notation D for the operator V. Let H= — A + V
and for α > 0 define H(oc) = H + (xB — a2, where B = D'(x/r) + (x/r)-D. Formally,
H(ot) = Qxp(ar) Hexp( —αr), and thus if ψa = Qxp(ar)ψeL2 and Hψ = Eψ we have
(again formally) H(a)ψOί = Eψoc. If V is a relatively compact perturbation of A, then
it is not difficult to show that σess(H(cή) is the closure of the interior of the parabola
given in (2.2). If £ + α 2 > 0 we thus see that E is an eigenvalue embedded in the
essential spectrum of H(a). Similar considerations lead to the same result in the
Λf-body problem. It is not surprising then that an extension of the virial theorem
can be used to prove non-existence of such eigenvalues. [However, one must not
push this analogy too far because for example if F = 0, σ(H{ — α)) = σ(H(a))
= σpp(H(~oc)) as is easily seen.]

The above idea is exploited in its simplest form in Theorem 111.1 and Corollary
III.2. In Theorem III.4 we expand on the idea to prove more general results.

Theorem III.l. Suppose V is a real-valued function on 1R", n ^ 2 , which is A-bounded
with bound less than one. Suppose the distribution W = x VV has the property that
(— A + 1)~ ι W{ — A + 1)~1 extends to a bounded operator on L2(1R"). Suppose ψ is an
eίgenfunction of H= — Δ + V with earψ e L2(IR") for some a ̂  0. // n ̂  3 let ψa = earψ
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and if n = 2, ψa = eaQεψ with ρ ε = ( r 2 + ε 2 ) 1 / 2 and ε > 0 . Let A = (x-D + D x)/2. Then
l and

where f = αε2(2r2 - ε2)ρε~
5 + 2α 2 ε 2 r 2 ρ; 4.

Proof We first give the proof for n §: 3 where it is simpler and then indicate the
modifications for n = 2. Define B = D (x/r) + (x/r) D = 2{x/r) D + {n- l)/r. A simple
computation shows that ψa satisfies the differential equation

(-Δ + V + aB-ot2)ψa = Eψa (3.2)

in the sense of distributions. Since B is A -bounded with bound zero (here we use
n^3), the operator

is closed and C$(Rn) is a core for H(γ). In addition H(y)* = H(-γ) for y real. The
fact that (3.2) is satisfied in the distributional sense means that (H( — oί)φ,ψa)
= (H(a)*φ,ιpa) = E(φ,ψa) for all φeCo(IRn) so that since C£ is a core for £F(-α),

H(tt)ψa = Eψa. (3.3)

For β > 0 , let Jtfβ = 2({-Δ + lψ2) with inner product {f g)β = {(-Δ + l)βl2f
( — A + i)βl2g) and denote its dual by J^_β. Our assumption on the dis-
tribution W means that we can consider W as a bounded map of ^f+2 into
Jf_2. Let U(θ) = eΘA be the dilation given by U(θ)φ(x) = e?θ/2φ{eθx). Define PF(0)
= U(Θ)WU(-Θ). Since 1/(0): ̂ - > J ^ is bounded for any 0, W(θ) is well defined as
a bounded map from J^+2-^Jf_2. Let F(0)=l/(0)FU(-0) [as a bounded map

from JT+2->L2(IR")] An easy computation gives -1^{fV{θ)g) = {fW(θ)g) for
α0

fge^iWlso that

(/, ^(θ)^) = (/, Fgf) + j (/, W(s)g)ds. (3.4)
o

We now note that because (7(0) is strongly continuous in 0 as a map from J ^ - > ^ ,
W(θ) is strongly continuous as a map from Jf + 2 ->JfL 2 . Since (3.4) clearly extends
to fge3^+2 we have the identity between operators from J^+2—»Jf_2,

Θ

V(θ)=V+ΪW{s)ds.
o

Hence as an equation between operators from Jf+2-^^f_2

s-lim(F(0)-F)/0=W. (3.5)

We now assume α>0. The case α = 0 corresponds to the usual virial theorem

the proof of which we omit. Let 0 < y < α and note that since earVxpeL2,

r~ll2ιpye@{A). Suppose that we have proved (3.1) with α replaced by γ for

all ye(0, α). It is easy to see that lim Δψy = Δψa so that
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(ψy9 {2Δ + W)ψy)-+(ψa, (2Δ + W)ψa). Thus lim \\Ar~i/2ψ || exists. Since

r~ll2ψy-^r~ll2ψa, this implies in particular that r~ll2xpaeΘ{A). From this one
easily sees that Ar~1/2ipy-+Ar~ll2\pa and hence that (3.1) holds.

It remains to prove (3.1) with α replaced by γ and 0<γ<α. Since H(γ)ψy = Eψr

θ-\ψrtU(θ)H(y)U(-θ)-H(-yKU(θ)ψγ) = O

= (VV C-z1(β-2θ-l)/6> + (7(0)- F)/# + y(B(θ) + B)/0] [/(0)v>y),
 ( 1 6 )

where B(θ) = e~θB. Since B is antisymmetric, Re(ipy5Bi/;y) = 0, and thus

r (y(B(θ) + B)/θ)U{θ)xpy) = - 7 Re((B(0) + B)xpr (U(Θ)- l)θ~ xψy),

which converges to — 2yRe(Btpv,yli/j),) as θ->0. Here ψye<3(A) because y<a.
Taking the limit of the real part of (3.6) as θ->0 and using (3.5) thus gives

{ψy9 (2A + W)ψγ) = y R e ( B V y , 2Aψγ).

We now notice that 2A = rB+l so that R e ( £ φ y , 2Aψy)=\\r1/2Bψy\\2 = 4\\r~ί/2

For n = 2 define g = r/ρe, B=-x-D + D xg/r and H(y)= -A + yB+ V-y2g2,

for 7ε[0,α]. Then B = 2g(x/r)'D + (n/ρε) — r2/ρ^ is zl-bounded with bound zero so
that as before it is easy to show that \py = eyQεe$)(Δ) for y e ^ α ] and

A calculation similar to the one above gives for ye(0,α) (α>0)

(ψr(2Δ + W)ψy) = 4y\\gmAr-1i2ψJ\2 + (ψγ,fyψy), (3.7)

where /y(r) = yε2(2r2-ε2)ρ ε~
5 +2y 2 ε 2 r 2 ρ ε "

4 . Note that

Since ( —zl + l)φy->( — /! + l ) φ α as yΐ α we conclude from (3.7) that ρ~ll2xpaeΘ{A).
From this it is easy to conclude that r~1/2ιpae@(A) and that Ar~ίl2ψy->Ar~ίl2ψa.
Now letting yf α in (3.7) gives (3.1). •

Remark. If ( — zl + iyίl2W( — A + l)~1/2 extends to a bounded operator, we can
take ε | 0 in (3.1) (for n = 2) and the equation which holds for n = 3 also holds for
n = 2 in a quadratic form sense.

Corollary III.2. Suppose V and Wsatisfy the hypotheses of Theorem IH.ί
Suppose in addition that for some be(— oo,2] and AeJR.

(3.8)

for all φe^(Δ). Suppose ψ is a non-zero eigenfunction of H= — Δ + V with
eigenvalue E such that exp(αr)φeL2(IRπ) for some α>0. Then

(3.9)

In particular if V is homogeneous of degree — β with βe(0,2] and E<0, then for

any non-zero solution to (— Δ + V)ψ = Exp we have exp(|/ — Er)ψφL2(β.).
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Proof. The proof is basically that in [29]. For n ^ 3 , (3.1) implies

(xpa^Λ + W)xpa)>0. (3.10)

The strict inequality holds because α>0 and because Ar~1/2ψa = 0 implies ψa = 0.
For n = 2, (3.10) also holds for small ε>0 as can be seen as follows: Since \f(r)\
^const/r uniformly in ε>0 and lim/(r) = 0, we conclude from the dominated

convergence theorem that lim (ψ , fψ ) = 0. It is also easy to show that

lim \\{r/ρε)
ll2Ar' me^ψ\\ = \\Ar~ 1/2eccrxp\\.

ε |0

Thus for small ε>0, (3.10) holds. Since H(u)ιpa = Eιp0C we have

(ψa,(-A + V + aB)Ψa) = (E

which in view of the antisymmetry of B implies

2)\\ιpa\\2. (3.11)

Multiplying (3.11) by b and adding the result to (3.10) gives

which together with (3.8) yields (3.9).
To prove the last part of the corollary just note that W= — βV so that (3.8)

holds with b = β and A = 0. •
We remark that Corollary III.2 applies to atomic and molecular systems.
Let n^2 and suppose πv... , π M are non-zero orthogonal projections on IR"

with dim (Range n^ = nt. Following Agmon [1] we introduce a Schrόdinger
operator somewhat more general than that encountered in the iV-body problem.
Let vt be a real-valued measurable function on IR"1 such that ι;f( — At+ I ) " 1 is
compact on L2(IRWi)5

 a n d define

H=-Δ + V. (3.12)
i= 1

We give the following general result about such operators:

Corollary III.3. Suppose H is as in (3.12) and each Di = ι;(

i

1) + ί;(

i

2) with

(1) v[1] and v{2) Abounded with bound zero and real-valued,

(2) lim I M ^ Λ - z l + y T ^ H O ,

(3) lim | | |

then there exists a Ao so that all eigenvalues of H are ̂ ΛQ and if we denote oc(E)

= y(Λ0 — E), then Hψ = Eψ implies that either xp = O or

2 R") for all α>α(E).

Proof. Let b = 1 in Corollary III.2. Tracing through the proof of this corollary we
see that if as quadratic forms on Q){A) x @(A)

-A-X'VV-V^-A0, (3.13)
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then if Hxp = Eψ with φφO we must have exp(α|x|)φ^L2(IRn) if α^O and
α2 + E > Λo. To show that (3.45) is satisfied for some Λo it is sufficient to show that
for each ε>0

(3.14)

(3.15)

Inequality (3.15) follows from (1) and to see (3.14) note that x VVi(x) = (πix)
•(PbfX x̂), so that it is sufficient to have y Vv^ — ε l̂. + cε. From (3) this is clearly
true for v\2\ To see the result for v\1] note

= y Dv\l) -v\l)y D

= D yυ\1)-v\1)y D-niυ\1)

= Σ [(o i M
1 ) )-M l ϊ β i )- ι ' ! 1 ) ]

7 = 1

Here we have used (1), (2), and the inequality \_Dp / ] ^ - εDj/2 + (2/ε)/2 for / a
real-valued function. The latter follows from

{<p,lDj9f]<P)u2\\Dj<p

The next result is in some ways a generalization of Theorem III.l. Here we
consider solutions to (— Δ + V)ψ = Eψ outside a compact set and introduce form
hypotheses:

Theorem III.4. Suppose V=Vί + V2 is a complex-valued function on
ΩRQ = {X\\X\>RQ} with V2 real-valued. Denote by AD the Dίrίchlet Laplacian in
L2{ΩRol and let #>+1 = {f: \\{ΔD+l)ll2f\\ <oo} with π_γ its dual Let χR be the
characteristic function of ΩR = {x: \x\ >R}. Suppose be(ί, oo) and

(a) |x | 1 / 2 χ R F 1 (—zl D +1)~ 1 / 2 is bounded for all R^R0 and converges to zero in
norm as R-+co.

(b) \V2\ is —ΔD form bounded with form-bound zero.
(c) The distribution x VV2 extends from CQ(ΩRQ) X CQ(ΩRQ) to a bounded

operator from Jtf?

+1^M'_1 with x-VV2S -εΔD + Cε for all ε>0.
Define the self-adjoint operator

h(b)=-{b-l)AD-±bx-VV2-V2

by means of quadratic forms. Let Σ(b) = infσess(h(b)). Suppose ψ is a distribution
solution to ( — A + V)ψ = Eψ with £ E I R in the sense that ψeHloc(ΩRo) and for each

= O. (3.16)

Suppose α>0, a2 + E + Σ(b) > 0, and exp(a\x\)ψeL2(ΩRo). Then ψ must vanish
outside a compact set.

We supplement this result with a unique continuation theorem which is
tailored for Theorem III.4.
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Theorem III.5. Suppose V is a complex-valued function on IRM which is Laplacian
bounded with bound less than one. Suppose V=VιΛ-V2 with V2 real-valued and for
each real-valued ηeC^{W) with η^l

(a) lim

(b) The distribution x VV2 satisfies η2x-VV2^-2A + cη.

Suppose (-Δ + V)ιp = Eψ and that ψ has compact support. Then xp = O.

Remark. Condition (a) of Theorem III.5 is implied by Vί e Lfoc(IRn),
p = Max(2,2n/3). Georgescu [17], using other methods, has shown that Theorem
III.5 is valid under the assumption that FeLfoc(]R"), p = Max(2,(2n- l)/3). See also
[5, 7, 30, 31] for other unique continuation theorems.

Proof of Theorem III A. Suppose that exp(α|x|)φ eL2(ΩRo) for some α > 0 with
oc2 + E + Σ(b)>O. By decreasing α if necessary we can assume that with F(x) = a\x\
+ β\x\1'δ/(ί-δl Qxp(F)ψeL2(ΩRo) for all β>0 and <5ε(0,l). Define H=-AD+V
as a sum of forms and let y be a real function in C 0 0 ^ ^ ) with y(x)= 1 for |x| > R2

and y(x) = 0 for |χ| <RV where K 0 < R 1 < R 2 . Let ?/ be in C^(Rn), real, and η(x)=ί
if | x | < l , η{x) = 0 if |x |>2. Define ηR(x) = η{x/R) and | = ̂ Λ e x ρ ( F ) .

As distributions, it is easy to compute

(-A + V-E)ξψ = (-Aξ)ψ-2Vξ.(Vψ). (3.17)

Note that by assumption d {ξψ)eL2(ΩRo)9 so that by (a) and (b) \V\1/2ξψeL2{ΩRo).
Hence by (3.16), ξψeΘ{H\ and since -{Δξ)-2Vξ D= -{Vξ D + D Vξ\ we have
from (3.17)

(H-E)ξψ=-((Vξ)'D + D-(Vξ))ψ. (3.18)

We thus have

and taking the real part of both sides we find

ψ\2drx. (3.19)

If we take R-^oo, the right side of (3.19) remains bounded while ξxp-^ξψ in
L2(ΩRo), where we have set ξ = yexp(F). Thus V(ξ\p)eL2(ΩRo). We now rewrite
(3.18) as

(H-E)ξψ

(3.20)

and take R-^co. Using the fact that exp(F)φ and V(γexp(F)ψ) are in L2(ΩRo), it is
not hard to see that the right side of (3.20) converges in L2(ΩRo). Since ξψ^ξxp and
H is closed, we have ξψe^(H) and (H-E)ξψ-^(H-E)ξxp. Thus from (3.19) we
have the important equation

, Hξψ) - (φ, (Eξ2 + (Vξ)2)ψ). (3.21)
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Let H(F) = H+VFD + DVF-(VF)2 = H + B-(VF)2 with 2{H(F)) =
From (3.20) we have

{H(F)-E)ξψ=- {D- Vy+VyD) exp(F)φ + 2Py PF(exp(F))φ. (3.22)

We now claim that with VF = xg and ψF = Qxp(F)ψ we have

ιξψ) = (ξψΛ2ΔD+W2)ξψ)-4\\gV2Aξψ\\2

+ {ξψ,{{x V)2g-{x-V){VF)2}ξψ)

- Σ 2(diΨF, x,{Pf2)jdjΨp) + (ψF, GψF), (3.23)

where W2 = x VV2, (ξxp,(2ΔD+ W2)ξψ) is interpreted in the form sense and

G = (2x Py)(Py FT) - 2yx- V(Vy FF)

(x Py). (3.24)

We remark here that the reason for the condition that |FJ be essentially
o(|xΓ 1 / 2) is that g1/2 behaves like |x|~1 / 2 at infinity. The relevant estimate occurs
in Eq. (3.30).

The proof of (3.23) is similar to the proof of Eq. (3.1) so it will only be sketched.
First note that because ψ is always multiplied by y or Vy the Dirichlet boundary
conditions in (3.22) and (3.23) are irrelevant. The method of proof of (3.1) can thus
be used here. Note also that since Vξxp is in L2 for all β, ξιpeΘ(A). We have

lim θ~x Re{{ξψ, U(Θ)(H(F)- E)ξψ)- ((H(F)- E)ξψ9 U(θ)ξψ)}
04,0

= lim 0 ~1 Re{ξψ, (U(θ) - U{ - Θ))(H{F) -E)ξψ)

= -2Re(Aξψ,(H(F)-E)ξψ)

. (3.25)

A short calculation gives

2Re(Aξψ,(D Vy+Vy D-2Vy VF)\pF)

= 2 Σ (diΨF, Xi(Vy2)jdjWF) - (v?F, GψF). (3.26)

Going back to the first line of (3.25) we isolate the contribution from Vί:

^xp)-{V^xp, U(θ)ξψ)}

l / ( - θ ) - U(θ))ξψ, V,ξψ)
0|O

= -2JKe(Aξψ,Vίξψ). (3.27)

We must now calculate

= lim Re(ξφ, (zl(l - e~ 2Θ)/Θ + (V2{Θ) - V2)/θ

-((VF)2(θ)-(VF)2)/θ + (B(θ) + B)/θ)U(θ)ξψ)

2/1 + W2 - x • V(VF)2)ξψ) - 2 Re(Bξψ, Aξψ). (3.28)
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Since B=VFD + DVF = gxD + xDg = 2gA + (xVgl we easily find

2Re(Bξψ,Aξψ) = 4\\gmAξψ\\2-(ξψ,((χ.V)2g)ξιp). (3.29)

Combining (3.25) through (3.29) yields (3.23). We remark that in deriving (3.23) we
have only calculated the formal expression (ψ^ξΛξ^H—V^xp) in two different
ways.

We now assume that y is a radially symmetric increasing function. Then the
matrix (Xi(Vy2)j) is positive semidefinite so that the corresponding term in (3.23) is
negative. We also use the Schwarz inequality to find

(3.30)

Combining (3.30) with (3.23) we have

(ξxpΛ-2ΔD-W2-g-1\Vί\
2/4 + x-V(VF)2-(x V)2g)ξxp)S(ψF,GψF). (3.31)

From (3.21) we have

(ξψ,(-ΔD + ReV)ξιp)UξψΛ(VF)2 + E)ξxp). (3.32)

Multiplying (3.31) by b/2 and subtracting (3.32) gives

F F (3.33)

Choose δ so that bδ<l. Then a short calculation shows that in ΩRo, for large

e n ° U g h βi (VF)2 + b{x-V(VF)2-(x-V)2g}/2^a2.

Since ^ = α |xΓ 1 + j3(x)" 1~ ( 5>α|xΓ 1 we have

( ξ ^ W & J - R e ^ - f c α - 1 ! * ! ! ^ ^ ^ (3.34)

Given ε > 0 we can choose R>R0 so that if suppγCΏκ

1 \ \ 2 . (3.35)

To see this choose A so that h + Λ = h{b)— ReFx + Λ^ί. By assumption
(h + A)~ ll2χR\x\\Vί\

2{h + A)~ υ2 -+0 in norm as R->oo. Thus given ε o > 0 we can
find Rί so that for suppyCΩ^

(ξxp,(h^Λ-ba-1\x\\Vι\
2β)ξxpU^-^)(ζψΛh + Λ)ξψ). (3.36)

It is easy to see that (-z l j D +l)~ 1 / 2 |F 1 | ( -z l Z ) + l ) ~ 1 / 2 is compact and thus σess(h)
= σess(h(b)). Hence we can find an R2^R1 so that if R^R2

(ξψ,hξψ)UΣ(b)-εo)\\ξψ\\2 (3.37)

if suppyCΩR. Combining (3.36) and (3.37) we find

which for small enough ε o >0, yields (3.35).
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Choose 8>0 small enough so that α2 + E + Γ(b) — ε = co>O. Then combining
(3.34) and (3.35) gives

2co\\ξψ\\2^b(ψF,GψF). (3.38)

We now take β to infinity. If y{x)= 1 for |χ| ̂ R3 then from (3.38) we have for large
βand R^ = R3 + 1

2c0 f \epyp\2dnx^cj J \epψ\2dnx, (3.39)

where F(X) = F(X)-F(JR 4 X/|X |) . If j \ψ\2dnx>0 then the left side of (3.39)

converges to + oo as β-^oo while the right side converges to zero. Hence

ί \ψ\2dnx = 0. •
\x\^R4

Proof of Theorem 111.5. By replacing V1 by Vx — E we can assume that £ = 0.
Suppose Ω is a bounded open set with suppψCίλ Let ηeC^{W) with η^l and
η = ίonΩ. Let φe C^(Ω) and define ξ = exp(α|x|2/2). Let ̂ 2 = x VV2. We compute

2Re{Aξφ9ξHφ)

^4oc\\Aξφ\\2^2\\Aξφ\\-\\V1ξφ\\-Cη

2 2 2 4 α - C f 7 | | ^ | | 2 . (3.40)

Since V is zl -bounded with bound less than one, C^ is a core for H. It is thus not
difficult to see that we can choose φneC^{Ω) so that φn-^ψ, ζHφn-^ξHψ = 0,
Aξφn-^Aξψ, and V^(pn-*V^xp. Thus from (3.40) we have

l | F 1 ^ l l 2 / 4 α ^ 2 α 2 | | ξ M ι p | | 2 - C | | ^ | | 2 . (3.41)

Suppose φφO, and define Ψa = ξψ/\\ξψ\\. It is easy to see that for some δ>0,
Hlxl^J l^δso that from (3.41)

WV.ΨJ^c^12 (3.42)

for some cί > 0 and all large α. On the other hand, just as in (3.19) we have

so that again for large α

\\VΨJSc2a. (3.43)

In addition,

so that from (3.43)

\\ΔΨJSc3a
2 (3.44)
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for all large α. From (3.44) we have for all y > 0 and all large α

11̂ 11 = 1. ( 3 45)

\\{-Δ+y2)Ψa\\^\a2 + y2). (3.46)

Interpolating between (3.45) and (3.46) we have

and thus

-A+y'r^Wc^ + yψ4. (3.47)

If we choose y so that cJηV^-A+y2y3/4-\\<cv (3.47) contradicts (3.42) for all
large α. Π

If we combine Theorems III.4 and III.5 we have the following corollary:

Theorem III.6. Suppose V=V1 + V2 is a complex-valued function on W which is
Λ-bounded with bound less than one. Suppose V2 is real-valued. Let χR be the
characteristic function of {x:\x\>R}. Suppose

(a) \\Vί{-Δ+y2y3l*\\-+0 as y->ao,
(b) there is an Ro>0 so that the operator \x\ll2χRVλ{—Δ + 1)" 1 / 2 is bounded for

all R>R0 and converges to zero in norm as R->co.
(c) \V2\ is — A form-compact.
(d) ± x W2t^c(— Δ + ί) for some c>0 and the positive part of the operator

(-Δ + iy112 X'VV2{-Δ + iy112 is compact.
Suppose (— Δ + V)ψ = Eψ with £<ΞIR and ψ + 0. If α > 0 and oc2>—E, then

Qxφ\x\)\pφL2(W).

Proof. Because of (b), (c), and (d) the assumptions of Theorem III.4 are satisfied. It
is also not difficult to see that our compactness assumptions imply Σ(b)^0. Thus if
exp(α|x|)φeL2(IRn) with α > 0 and (X2>—E we conclude that ψ has compact
support. In view of assumption (a) above and Theorem III.5, ψ = 0. This
contradiction proves the result. •

The question of whether |F(x)| = o(|xΓ 1 / 2) is a border-line case or whether in
fact |F(x)|-»0 as |x|-»oo implies the result of Theorem III.6 as in one dimension is
still open. Note that if x-VV2eL\0C and ± x F F 2 ^ c ( — A +1) then form compact-
ness of (x W2)+ implies condition (d).

IV. Examples

Let H = — A + V be the Schrodinger operator introduced in (3.12) and suppose ψ is
defined on ΩR = {xeR": |x| > R} and satisfies

(-Δ + V)ψ = Eψ (4.1)

in the distributional sense. Suppose in addition that ψeL2(ΩR). Then according to
a result of Agmon [1, 2], if E < Σ = infσess(#), then

Qxp(oί\x\)ψeL2(ΩR), α < j A - £ . (4.2)

Actually Agmon proves stronger results [1, 2] which we will discuss later.
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One might conjecture that (4.2) is best possible in the sense that

Qxφ\x\)ψφL\ΩR), α> γΣ-E , (4.3)

but this is not the case. We give two examples to illustrate how (4.3) can go wrong.
The first example is trivial but must be taken into account in thinking about (4.3).
(The example was known to Simon [33] and perhaps to many others.)

Example 4.1. Let Hι = -Δ + Vi where F^C^IR"). Suppose £ 0 = infσ(iί 1)<0 and
that Ht has an eigenvalue Eί with EO>2EV Suppose H1ψί=E1ψί with ψ i + 0 .
Let H = i ϊ 1 ® / - h / ® f ί 1 and ψ(xvx2) = ψ1(xι)ψ1{x2). Then Hψ = Eψ with E = 2EV

Note Σ = infσess(H) = £ 0 so that ]/Σ-E= \/E0-2EV It is easy to see that

exp(α|x|)t/;eL2, α < ]/ — Eί,

Qxp(a\x\)ψφL2,

so that (4.3) is violated because γ — E1> ]/E0 — 2EV

To understand example (4.1) from the viewpoint of embedded eigenvalues,
consider the operator

It is not difficult to see that if | α | 2 < — £ 0 , then

Suppose |α| < y—E1. Then exp(α xx

 J\-oc-x2)\pe<3(H((x)) and

) — 2E1) exρ(α x t + α x2)ip = 0.

Thus while E = 2E1 is not an embedded eigenvalue of H, it is embedded in the
essential spectrum of H(a) whenever — E1 > | α | 2 > £ 0 — 2EV

We know that while negative eigenvalues embedded in the continuous
spectrum of (self-adjoint) iV-body Schrodinger operators can exist (see [29]), it is
widely believed (and has been proved in some cases [29]) that positive eigenvalues
do not exist for a large class of such operators. In analogy with this situation we
make the following conjecture.

Conjecture. Suppose H is the Schrodinger operator defined by (3.12) and

(1 + \y\)ll2vi{ — At+1)~ίl2 is compact on L2(IR"ι) Suppose ψ is a non-zero solution

oϊ(-Δ + V)ψ = Eψ in ΩR with E<0. Then if α> ]f^E

Note Added. After completion of this work, special cases of this conjecture along
with absence of positive eigenvalues were established in [13].

We will show in Example 4.3 that in some sense one cannot do better than the
conjecture. For now note that Example 4.1 is not sufficient to show this, for if

ψ(xvx2) = ψ1(x1)ιp2(x2) with ( —Aj+Vj)ψj = Ejψp then we always have

exp(α|x|)ψ<£L2(IR2") if α > j / - £ / 2 where £ = £ 1 + £ 2 . This follows from the fact

that if for example | E 1 | ^ | £ 2 | , then when x = (xv0) ip decays as exp(— ]/ — EJxl)
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( — ]/ — E/2\x\). In the example we are about to construct the decay is
arbitrarily close to exp(— {/— E\x\) in all directions even though Σ is arbitrarily
close to (but perhaps greater than) E. To prepare for this example we need the
following lemma:

Lemma 4.2. // α and β are given numbers with jβ>α>0, then there exists a real-
valued even function geC^(lR) so that if the point spectrum of —d2/dx2 + q is
labelled E0<E1<E2<...<Em, we have Eo=-β2, E2 = -a2.

Proof. The following short proof was kindly supplied by Simon [33] to replace our
original longer proof: Suppose we find a real-valued even CQ function qγ so that
E2/Eo = (θί/β)2. Then we can easily arrange the result in the lemma by scaling, since
under the latter transformation the operator

with point spectrum {y2E0,y
2Eί,y

2E2,...} is unitarily equivalent to

-d2/dx2 + y2q1{yx).

For λ>0, let Ej(λ\ j = 0,1,2,... be the eigenvalues oϊhλ= — d2/dx2 + λq, where
q is a non-zero even function in C^(IR) with q^O. If hλ has only j eigenvalues, let
£,(A) = 0 for l>j- 1. Define r{λ) = E2{λ)/E0(λ). Then for small enough λ>0 r(λ) = 0
while a simple min-max argument gives lim Ei(λ)/λ = mm{q(x):xe]R] and thus

Λ-»GO

lim r(λ) = l. Since r is continuous, r(/l0) = (α/β)2 for some λo>0. •
λ->oo

Example 4.3. Suppose E and Σ are two given negative numbers and 0 < ε < 1. Then
there exists

(a) a real-valued function geC^(IR);

(b) an integer M and orthogonal projections π 1 ? . . . , πM mapping 1R2->IR which
M

define a potential V(x) = ]Γ ^(π^) on IR2,
i = 1

(c) a number L > 0 and a function I/)GC°°({X: |x|>L}), such that

(i) (-Δ + V)ψ = Eψ for |
(ϋ) \ψ{x)\ ^ C exp(- (1 - β) | / - £ | x | ) , (4.4)

(in) Σ

The construction proceeds as follows. Let β2= —Σ and αx = ]/ — £ sin(π/iV),

where N is an even integer > 2 chosen so that cos(π/JV)^l — ε, and α 2<jβ 2 . Let

α 2 = ]/ — £ cos(π/iV) so that α2 + α?, = — £. Choose q as in Lemma 4.2 so that the

lowest eigenvalue of —d2/dx2-\-q is — β2 and —d2/dx2 + q has an even eigenfunc-

tion φ(x) satisfying

(-d2/dx2 + q)φ=-ot2

ίφ. (4.5)

Note that we can choose A>0 so that suppqQ(— A, A) and

W (4.6)
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Fig. 1. The region Ωx is shown for the case N = β. Outside the shaded area V=0

In (4.6) we have chosen a particular normalization for φ. Let R(Θ) be a clockwise
rotation by θ in the plane. Thus R(θ) is given by

cosO sinθ\

cosθ)'

Let π- be the orthogonal projection onto the line

R(2π(j-l)/N){(xvx2)eW.2:x2 = 0}

for 7 = 1,2,... ,JV/2. Thus the number of potentials is M = N/2, and if
Rj = R(2π(j- ί)/N) and eγ =(1,0) we have

ί?(πJ.χ) = ̂ « ^ 1 , x » ; ; = 1,2,...,M, (4.7)

where <x, };) = x 1 j 1 + X23
;2 Let

Ω = {xeR 2 : |χ| > 2^/sin(π/iV)},

Ωί = Ωn{xeIR2 : |<β1? x>| ^ |χ| sin(π/iV)},

and Ωj = RjΩ1J=l,2,... ,N/2. The situation is depicted in Fig. 1. Define

To see that t/? is well defined and smooth on Ω= \J Ωp first note that
j

and thus ψ1 is smooth in a neighborhood of Ω r Clearly tp is smooth in the interior
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( α 1 < α 2 )

Fig. 2.

of Ωj. Suppose x0eΩ1ΓλΩ2. Then xo = λw with w = (sin(π/JV),cos(π/iV)) and
\λ\>2A/sin(π/N). If λ > 0 then for x in a neighborhood of x 0

ψ^x) = exp{- <(αl9 α2), (x l 9 x2)>},
(4.9)

)>}

Since R(2π/N)( — α l 5 α 2 ) = (α l 5α 2) by our choice of aί (see Fig. 2), ψ1(x) = ψί(R2

 λx)
in a neighborhood of x 0 if λ>0. A similar argument works for all points
XQGΩ^ΩJ if zΦj, and hence ψ e C 0 0 ^ ) . If XQGΩ^ΩJ, Z'ΦJ then in a neighborhood
ofx 0

ψ = exp{<(±α l 5 ±α 2 ) ,RΓ 1 (χ l ί χ 2 )>}
M

for some choice of signs so that — Aψ = Eψ. Since V(x)= ^ g(π^x) = 0 in a
i= 1

neighborhood of such a point we have ( — A + F)φ = £φ in a neighborhood of x0.
By construction, if xeΩ , q(πix) = 0 unless i=j so that for

= (-A + q(y)) ψt(y), where y^RΓ 1 ^,

= Eψ(x).

Thus (— zl + K)φ = Eψ in Ω.
In ί21 we have

\ψ(x)\ = e - ^ ^ lφίxjl ^ c^" α i | x i l e" α 2 | x 2 !

= Cexp{-<(α lJα2),(|x1Ux2|)>

= C exp {- j / ^ l x l cos(π/Λ^)}

(4.10)

By symmetry, (4.10) holds in all of Ω giving (4.4).
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It remains to show that Σ = infσess( — A + V). This follows easily from (1.6) [1].
We omit the proof.

A few comments about Example 4.3 are in order:
1. Note that we need not have E < Σ. In fact Σ does not play an essential role. If

we demand, however, that E<Σ, then Agmon [1, 2] gives an upper bound

\ψ(x)\^cδe-{1-δ)QiωM; x = |x|ω, <S>0. (4.11)

One might expect that at least for some ωeS1, the bound (4.11) may give a good
estimate. To see that this need not be the case we calculate ρ(x). From [1, 2], ρ(x) is
the distance from x to the origin in the metric

{ds)2 = (Σ(x/\x\) - E)((dxx)
2 + (dx2)

2), (4.12)

where

>O
lim inf{(φ,(-Δ + V)φ):φeC%(ΓR Θ\ \\φ\\ =

Here ΓRθ is the truncated cone {x: |x |>R, <x,ω>>(cosθ)|x|}. Σ(ω) is easily
calculated [1,2]. We give the result for ω = (sin0,cosβ) with |0|^π/JV. The
function Σ(ω) can be calculated for other values of ω by symmetry:

Σ{ω)=\0;

With the parametrization x = |x|(sinθ,cosθ) (note we are measuring θ from the x2

axis) a simple calculation using (4.12) gives for | 0 | ^

ρ{x) =
" w - " "' */(2;-JE)cos0)|x|;

Choose N large enough so that cos(π/JV)^ ]/(Σ —£)/]/ — £, and so that

l / ^ ϊ sin (π/N) + ]/{Σ-E) cos (π/N) < cos (π/N) \Γ^E .

By symmetry and (4.13) these conditions imply ρ(x)<\x\]/ — E cos(π/N) for all

xφO. From (4.10), \ψ(χ)\<*Cexp(-|xll/-^E^cos(π/iV)) so that φ(x)exp(ρ(x)) de-

cays exponentially in all directions.
2. As it stands Example 4.3 suffers from the (slight) defect that (-A + V)ψ = Exp

is satisfied only outside a ball. In a preliminary version of this paper we
conjectured that a bounded potential Vι of compact support and a function
ψ : R 2 - > R with ψ = ψ for large |x| could be found so that ( — A + V+Vί)ψ = Eψ.
This has now been proved by Gar ding [16].

3. The high degree of symmetry in this example is not really necessary. One can
produce the same result, for example, by changing q(n{x) to q^πμ) if

(1) ^ G C - ( I R ) ,

(2) miσ(-d2/dx2 + qi)=-β2,
(3) — d2/dx2 + q{ has an even eigenfunction with eigenvalue — a\.
4. The fact that the region where \V\ is large disconnects IR2 may be an

important factor in examples of this type.
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