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Abstract. We study decay properties of solutions y of the Schrodinger
equation (— A+ V)p=Ey. Typical of our results is one which shows that if
V=o0(x|~ 1/?) at infinity or if Vis a homogenous N-body potential (for example
atomic or molecular), then if E<0 and o>]/—E, e™yp¢L*(R"). We also
construct examples to show that previous essential spectrum-dependent upper
bounds can be far from optimal if 1 is not the ground state.

I. Introduction

In recent years there has been much interest in the asymptotic behavior of
L*-solutions to the Schrodinger equation

(— A+ Vyp=Eyp. (1.1)

By far, most of the effort has gone into proving upper bounds to solutions of
(1.1) with E outside the essential spectrum of — 4+ V. Recent work on this subject
can be found in [1-3, 12, 19]. The results of Agmon [1, 2] for the N-body problem
are the most general. Agmon shows that solutions y of (1.1) satisfy (under certain
conditions)

lp(x)] = C exp(— (1 —e)og(x)) (1.2)

for ¢>0, where gg(x) is (in principle) an explicitly computable function. This
generalizes the earlier result in [25] which states that for N-body potentials

lp(x)|=C, exp(—(1—¢)}/ 2 —Elx]), (1.3)
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where X is the bottom of the essential spectrum. (Actually, (1.3) is only proved in
an L? sense in [25]. This defect was remedied in [32]. For more recent work on
going from L2-bounds to pointwise bounds the reader should consult [1, 4].)
Obtaining lower bounds to solutions of (1.1) has proved to be a more difficult
endeavor. However for the positive groundstate of — A+ ¥V with V an N-body
potential, a recent result [8] shows that (1.2) is best possible in the sense that

| jlignoo —(Inp(x))/ep(x)=1. (1.4)

For earlier results of this nature on special systems the reader should consult [3,
10, 20, 23].

One of the difficulties in obtaining lower bounds to solutions of (1.1) is the fact
that in general the set {x:y(x)=0} is unbounded and very poorly understood.
This difficulty was dealt with in the one-body problem by Bardos and Merigot [6]
who proved lower bounds on the quantity

F(r)=([lp(ro)*dw)'’?, (L.5)

where dw is Lebesgue measure on the unit sphere. The naturalness of this quantity
is shown by the fact that if E is below the essential spectrum of — A+ V, F(r) >0 for
all large r unless 1 has compact support. This follows from the fact that [1, 27]

2= lim inf{(,(—A4+V)p): e C({x:[x|>R}), [ ol =1}, (1.6)

so that we can choose ¢>0 with ¥ — E—¢>0 and R large enough that
(@,(—4+V—-E)p)2(Z—e—E)|ol|* (L.7)

for all pe CY(R"By). (Here and in what follows, B ={x:|x|<R} and By is its
closure.) Thus the Dirichlet problem in the region R"\By is uniquely solvable given
i on dBg. Hence if =0 on 0B, =0 in R"\B,.

For VeC*®(R") with Illim (V(x)|+|x-VV(x))=0, Bardos and Merigot [6]

show that for large r and E<O

F(r)zC exp(—()/ —E—e¢)), (1.8)
for all small ¢>0.

Our approach to the problem gives results which say that under certain
circumstances

explor)pé¢L?. (1.9)

This is a rather crude result in comparison to (1.8), however we can prove it in more
general situations than those considered by Bardos and Merigot. In addition, it
may be the case that a result such as (1.9) in combination with other information
yields a statement such as (1.8). This will be the subject of further study.

In Sect. IT we consider the one dimensional Schrodinger equation. We develop
techniques not available in higher dimensions which enable us to prove rather
strong results. One of our results may have application to random Schrodinger
operators.
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In Sect. III we extend the virial theorem to show that for certain potentials
(including homogeneous N-body potentials), each negative energy eigenfunction
satisfies

exp(or)p¢L?; oa>]/—E. (1.10)

We also show that no solution to (— 4+ V)py=Eyp, where V is a “reasonable”
N-body potential, can decay faster than at some explicitly computable (at least in
principle) exponential rate.

In Sect. IV we give examples of solutions to the Schrédinger equation which
decay more rapidly than existing upper bounds might lead one to think. One of
our examples shows that in a certain sense (1.10) is optimal.

Our methods show that to a very large degree the three problems of unique
continuation, embedded eigenvalues, and L?-exponential lower bounds are in-
timately related. Indeed the techniques used here and in [14] to deal with the latter
problem are to a large extent motivated by techniques which have been used
previously to deal with the former problem. This is especially evident in Sect. II1.

This is the first of three related papers. In the second paper [15] the methods of
Sect. IIT are used to extend the Kato-Agmon-Simon [27] theorem on non-
existence of positive eigenvalues while in the third [14], related methods are used
to prove a variety of lower bounds to solutions of the 1-body Schrdodinger
equation including the case of nonnegative eigenvalues.

II. One Dimension

The Schrodinger equation in one dimension is special because it is an ordinary
differential equation. In this section we will use two techniques, one based directly
on the differential equation and the other on ideas of Combes and Thomas [11].

Let p=—id/dx in L*(R) and H y(ix)=e"p*e” ™ =(p—a)?, acR. Define the
analytic family of operators

{H (o) =(p+in)*:aeC}, D(H,(x))=2D(d*/dx?). (2.1)

Then an easy computation shows that for o real, the spectrum of H,(o) is a
parabola:
o(Hy(®))={zeC:Rez= —a*+(Imz)*/40?}. (2.2)

In this context, the difference between one and higher dimensions is that an
analogous computation in more than one dimension shows that if H () =(p + ier)*
and a is real, o(H (o)) also contains the inside of the above parabola [11]. One of
the ways in which (2.2) can be used for the purpose of proving L? exponential
lower bounds is to note that if V is bounded (in some rough sense), then adding V
to H,(e) should not change the spectrum much, at least for large o. If y is an L?
solution of the Schrodinger equation with eigenvalue E and e*yeL? then
assuming we can show e*pe P(H () + V), we have E€ o(H () + V), since formally
(Ho()+ V)e**p=Ee™y. For large « it is plausible that E¢o(H (o) + V) and this is
in fact what we will prove.

We will assume in what follows that ¥ is a (not necessarily real) tempered
distribution  such  that for some f>0, the quadratic form
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(p*+ ) 12V(p2 + B>~ V% with domain Z(R)x F(R) extends to a bounded
operator with bound smaller than one. It is a standard matter to use form
techniques [21] to construct an m-sectorial operator H with

(¢, Hp)=[§'y'dx+ V(py)
for @, pe #(R). We abuse notation and write H= —d?/dx*+V=p*+V.

Theorem I1.1. Define H= —d?/dx*+V as above and suppose Hyp = Eyp with y not
identically zero. Then

(i) ReE+B?>0 and if y(E)=(B>+|E|)*'?, then exp((E)x)p¢L*(R).

@) If (p*+1)"Y2V(p>+1)"Y2 is compact, then exp(ax)w¢L*(R) whenever

o>|Im )/E|.

Remarks. (1) V can be rather wild looking and still satisfy the compactness
criterion in (ii). For example, let {x,:n=1,...} be dense in R and {c,}2 ;| a

sequence of complex numbers with Y |c,|<oo. Then if V(x)= ), ¢,0(x—x,),

n=1 n=1
(p*+1)"Y2V(p? +1)" Y2 is compact. If, however, V is a reasonable real-valued
function, then comparison methods for ordinary differential equations should
suffice to prove (ii).

(2) It also follows from the Combes-Thomas method [11] that in case (ii), if
0=« <|[Im }/E|, then exp(ax)pe L*(R).

In the next result we single out real-valued bounded potentials which do not
necessarily approach zero at infinity. We do this partially because such potentials
occur naturally in the study of random media. Certain bounded “random
potentials” have been shown [9, 18, 24] to produce pure point spectrum dense in
an interval [E,, co) almost surely, with exponentially decaying eigenfunctions. In
the following theorem we find explicit bounds on the rate of exponential decay
which can be much better than those in Theorem II.1.

Theorem I1.2. Suppose V is a real-valued function on [0, co) with || V|| , < co. Define
VO = x}gi—rpoo ” VX[xo, ) H w °

where y 4 is the characteristic function of A. Suppose v is a real-valued function on
(0, 00) satisfying (—d*/dx*+ V)yw=Ey and that v is not identically zero. Define

(VVo—E; E<V,2
a(VO,E)—{VO/zVE; Ve, (2.3)

and let o(x)=(px)|* +|w'(x)|*)*/>. Then

(i) liminfx~ " Ing(x) 2 — (¥, E),
and

(i1) ¢ L*((0,00) if a>a(Vy, E).

Proof of Theorem 11.1. Since — ReV Za(p?+ %) for some a<1, it is clear that
ReE+ f?=(1—a)f>>0.
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Define the analytic family {Hy(«):0eC} as in (2.1). For ¢, and ¢, in S(R)
define the sesquilinear form Q(¢,,®,;®)=(¢,, Hy()@,)+ V(P ¢,). Because
(p?+ B*) V2V (p® + )~ /2 extends from Z(R) x F(R) to a bounded operator with
bound less than one, it is easy to see that Q is sectorial, closable, and that its
closure 0 has domain 2(d/dx) x 2(d/dx). It is a standard result [21] that there is a
unique m-sectorial operator H(e) such that Z(H(x))C 2(d/dx) and Q(¢,, ¢, ;)
=(¢,, H®)p,) for all ¢, P(d/dx)and ¢,€ Z(H(x)). In addition ¢,€ Z(H(«x)) if and
only if @, € Z(d/dx) and there is an he L(R) such that Q(¢,, ¢,; &) =(¢,, h) for all
@, €(R). In this case h=H(x)p,.

Let v be as in the theorem and suppose exp(cox)p =1, € L*(R) with oy =y(E).
We will show this leads to a contradiction. Our first task is to show that
V,,€ Z(H(xp)) and

H(ao)wao = EU'JaO : (24)

Suppose xe C3(R) and ¢, ¢,€ Z(d/dx). Then it is easy to see that
01, 1923 0)= 001, 0250+ (1, { =22/ 0+ 20x = 1)}
Suppose ¢, Z(H(x)). Then for all ¢, € P(d/dx),
001, 1023 0) = (@ 1 xH@ @) + (@1, { =220y + (2ox = 1), }),
and hence x¢,e 2(H(x)) with
H(o)xg, = 1 H(@)py =2y 95+ Qoy' = 1) -
Thus if e C3(R), we have yy, € 2(H(x,)) and
H(00) XYooy = EX o= 1" W0y = 22 eXp(2ox)y’. (2.5)
From (2.5) it is easy to calculate that for y real

Re QAW MWaq %) = 10,0 {RE Ex? + (1) + 200y Ydx .

Let x(x)=1,(x)=x,(x/m) with y,(x)=1 if |x]<1 and x,eCg. Then clearly
YnWay ™ Voo A0NA R€Q() W00 XmWaos %o) 18 bounded. Thus [21] y, e Z(d/dx). If we
similarly take y =y, in (2.5) and let m— oo, we see that y, € Z(H(x,)) and that (2.4)
holds.

Now let N2 be some square root of H(eo)— E=(p+ix,)*—E which com-
mutes with p. It is not difficult to justify the formula

H(zy)— E=N'"?(1+N"12VN~12)N/2 (2.6)

as long as min {|(& +io,)? — E| : £eIR} >0, so that N'/? is invertible. We will prove
that

(p*+pH)VENT12| =1, (2.7)
so that

HN— 1/2 VN~ 1/2”
=[(p?+ AN TVH(p? + BTV + 7)) (P + B2 VEN T <L
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This will show that H(x,)— E is invertible, contradicting (2.4). The proof of (2.7) is
a calculation to show that

sup{I(&2+ )€ +in)* — E) [ :LeR} =1

The calculation is simple and we omit it.
To prove the second result of the theorem, suppose e***pe L*(RR) for some o,

with o, >|Im ]/E]. Then as in (2.4), y, is an eigenvector of H(x) with eigenvalue E
for all «e[0,a,]. Consider the operator

KO)=((p-+i2)* = E) *V{(p+inf'~F)" 12, (28)

where o€ I;={xeC: Rea>|Im |/E|}. We define the operator ((p+ix)>— E)~ /2 in
this region by

(p+i)? —B)" V2 f =F (& +io) — E) 27 S,

where & is the Fourier transform and the branch of the square root with positive
imaginary part is taken. Then K(x) is an analytic compact operator-valued
function on I} so that by the analytic Fredholm theorem [287, 1+ K(«) is either
nowhere invertible on I; or has a meromorphic inverse there. We know from our
previous considerations that if Rea is large enough, || K(x)| <1 so that 1+ K(«) is
invertible except for a discrete set in I Thus from (2.6) E cannot be an eigenvalue
of H(x) except for a discrete set of o€ I;. However, by assumption H(a)y,= Ey, for

all we[0,0,], where o> |Im VEI. This contradiction proves the result. []

Proof of Theorem I1.2. To prove (i) it is enough to show that for each ¢>0, g(x)
2 ¢, exp(—a(V, +¢, E)x) for some ¢, >0. Choose x>0 so that ||V, o)l =Vo+e.
By changing the definition of ¥ it is enough to show that g(x)=ce *VoB* for
some ¢ >0 under the assumption that |V(x)| <V, for x=x, and some V,>0.

Let  hy(x)=lp(x)>+ B "ly'(x)>. We will choose p>0 so that
(exp(2xa(Vo, EDhy(x)) 20 for x=x, This gives hy(x)=exp(—2auV;, E)x— X))
“hy(x,), which clearly implies the result because g(x)*=(1+f~") ™ 'h,(x). Now

(e***hy) = (2ahy + hp)e*™
=(Qahy+2yy'(1+ (V- E))e’*
Z(2u—|B"2+ 7 VAV = E))hye®™, 29)

where we have used [2yy'| < /2 |y|? + 7 2[y'|> = f/%h,. Define
f(By=sup |BP+BTVe—E).

—Vost=Vo

A short calculation gives
o= [PER V=B 0<psE

B~V Vo—E)+p'?;  ESP

and

inf  f(B)=f(Bo),
0<B<ow
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where

; _{VO—E; E<V,)2
T \E; E>V,/2.

Since evidently f(8,) = 2x(V,, E), (2.9) implies (exp(2xo(Vy, E))hy ) =0 and thus (i) is
proved.

To prove (ii) assume e™pe L*((0,00)) for some o>V, E) and note that
from (i)

(f) (p))* + ' (x)*)e* ¥ dx = o0 . (2.10)

Choose peC*((0, c0)) with ¢ =1 for large x. Then

{(—id/dx+in)*+V—E}pe™~yp=f,

where f=—(¢"p+2¢'y)e**e LA(R). Thus elementary considerations show that
pe**e 9(d/dx) which implies pe**y’e L*(R). This contradicts (2.10) and hence the
proof is complete. [

II1. An Extended Virial Theorem

The virial theorem, which says that under certain conditions (— A+ V)p=Eyp
implies (y,(24+x-VV)y)=0, has been an important tool in understanding the
nature of the spectrum of Schrodinger operators. We mention only the recent work
in [26] where it is used to prove discreteness of o, | (— 4+ V) away from thresholds
in N-body systems and to prove o, .(H)=0 and in addition its use in proving
absence of positive eigenvalues. References to the latter work can be traced from
[29]. Recent proofs of the virial theorem under general conditions can be found in
[22, 26].

In the following we will use the notation D for the operator V. Let H= —A+V
and for «>0 define H(x)=H+aB—o? where B=D-(x/r)+(x/r)-D. Formally,
H(o)=exp(ar) Hexp(—ar), and thus if v, =exp(ar)ype L* and Hyp=Ey we have
(again formally) H(«)y,=Ey,. If V is a relatively compact perturbation of 4, then
it is not difficult to show that o, (H(x)) is the closure of the interior of the parabola
given in (2.2). If E4+a*>0 we thus see that E is an eigenvalue embedded in the
essential spectrum of H(x). Similar considerations lead to the same result in the
N-body problem. It is not surprising then that an extension of the virial theorem
can be used to prove non-existence of such eigenvalues. [However, one must not
push this analogy too far because for example if V=0, o(H(—a))=0(H(®))
=0, ,(H(—a)) as is easily seen. ]

The above idea is exploited in its simplest form in Theorem 111.1 and Corollary
IIL.2. In Theorem II1.4 we expand on the idea to prove more general results.

Theorem I11.1. Suppose V is a real-valued function on R", n=2, which is A-bounded
with bound less than one. Suppose the distribution W=x-VV has the property that
(—A+1)"TW(=A+1)"1 extends to a bounded operator on L*(R"). Suppose y is an
eigenfunction of H= — A+ V with ¢"pe L*(R") for some 0. =0. If n=3 let y,=e"y
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and if n=2, p,=e"%y with 0,=(*+¢e*)"* and ¢>0. Let A=(x-D+D-x)/2. Then
Y, DUA), (ofr)"*p,€ D(A) and

A Aler/r)" 2,17, n
40r/e) 2 Al/r) P 17 + (s fi), 1

where f=ae?(2r*—e*)o, >+ 20%e*ro, *.

v

(w, QA4+ W)yp,) = { (3.1)

3
2’

Proof. We first give the proof for n=3 where it is simpler and then indicate the
modifications for n=2. Define B=D-(x/r)+(x/r)- D=2(x/r)-D+(n— 1)/r. A simple
computation shows that y, satisfies the differential equation

(—A+V+aB—a?)yp,=Eyp, (3.2)

in the sense of distributions. Since B is 4-bounded with bound zero (here we use
n=3), the operator

H(y)=—A4+V+yB—y*, 2(H(y)=2(4)

is closed and CZ(IR") is a core for H(y). In addition H(y)* = H(—y) for y real. The
fact that (3.2) is satisfied in the distributional sense means that (H(—a)e,y,)
=(H(a)*@,p,)=E(p,p,) for all peCF(IR" so that since Cy is a core for H(— ),
v, P(H(2)=2(4) and
H()y,=Eyp,. (3.3)
For >0, let #,=%((—A+1)"?) with inner product (f, g),=((— 4+ 1)",
(—4+1)P?g) and denote its dual by #_, Our assumption on the dis-
tribution W means that we can consider W as a bounded map of s, , into
H_,. Let U(O)=e"" be the dilation given by U(0)p(x)=e""?¢(e’x). Define W(0)
=U(0)WU(—0). Since U(0) : #,— #, is bounded for any 8, W(0) is well defined as
a bounded map from #, ,—»#_,. Let V(0)=U(O)VU(—0) [as a bounded map

from #,,—L*R"]. An easy computation gives d%( £, V(@)g)=(f, W(0)g) for
f,ge F(R"), so that )
(£, VO =(f,Vg)+ | (f, W(s)g)ds . (3.4)
0
We now note that because U(0) is strongly continuous in 0 as a map from 7#;— 7,

W(0) is strongly continuous as a map from 3, ,—#_,. Since (3.4) clearly extends
to f,ge#,, we have the identity between operators from #, ,—#_,,

V)=V + f Wi(s)ds.
0

Hence as an equation between operators from 5, ,—#_,

S;ljl(’)n Vo) -1r)/o=w. (3.5)

We now assume o>0. The case « =0 corresponds to the usual virial theorem
the proof of which we omit. Let 0<y<a and note that since e*Vpel?,
r=12y e P(A). Suppose that we have proved (3.1) with « replaced by y for
all  ye(0,2). It is easy to see that lilgl Ap,=Ayp, so that
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(v, QA+W)p)>(p,, 24+ W)y,). Thus lim [4r~ "2y || exists. Since
! Yt

1 —1/2

r~ Y2y —r7 2y, this implies in particular that »~'?y,e 2(4). From this one
easily sees that Ar™ ">y, —A4r~ >y, and hence that (3.1) holds.
It remains to prove (3.1) with o replaced by y and 0 <y <a. Since H(y)y, = Evp,,

0™ (w,, LUOHM)U(—0)— H(—=7)1U@O)p,)=0
=(p,, [—4(e™ > = 1)/0+(V(0)~ V)/0+7(B(0) + B)/0IU(O),) ,
where B(0)=e ’B. Since B is antisymmetric, Re(yp,, By,)=0, and thus
Re(yp,. (Y(B(0) + B)/O)U(O)y,) = —y Re((B(O) + By, (UO)— 1)0 " 'w,),

which converges to —2yRe(By,, Ayp,) as 0—0. Here y e%(A4) because y<o.
Taking the limit of the real part of (3.6) as 0—0 and using (3.5) thus gives

(w,, 24+ W)y, )=y Re(By,,24y,).

We now notice that 24=rB+1 so that Re(By,, 2Ay,)=|r'*By, || =4r" !/
(A=1/2)p,[1> =4[ Ar~ 2y |2

(3.6)

For n=2 define g=r/o,, B=%x~D+D~xg/r and H(y)=—A4+yB+V—7y%g%

for ye[0,a]. Then B=2g(x/r): D +(n/o,)—r?*/0? is A-bounded with bound zero so
that as before it is easy to show that p, =e’*€ 9(4) for ye[0,a] and
H(y)y,=Eyp,.

A calculation similar to the one above gives for y€(0, ) (0.>0)

(W, 24+ W) =4yg" 2 Ar™ 2y, 12 +(p,, fw,), (3.7)
where f(r)=ye*(2r* —&%)g, > +2y%c*r?g, *. Note that

g P Ar Py, = A0, Py, — (o, P+ x Vo, Py,
Since (— 4+ 1)y, —(— 4+ 1)y, as yTo we conclude from (3.7) that o, '"*y,e Z(A).

&

From this it is easy to conclude that r~"/?y,e 9(A4) and that Ar~ "2y, —Ar~ 2y,
Now letting y T« in (3.7) gives (3.1). [

Remark. 1If (= A+1)"2W(—A+1)" Y% extends to a bounded operator, we can
take ¢ 0 in (3.1) (for n=2) and the equation which holds for n=3 also holds for
n=2 in a quadratic form sense.

Corollary IIL.2. Suppose V and W satisfy the hypotheses of Theorem II1.1 and n=?2.
Suppose in addition that for some be(— c0,2] and AeR

(0.[2=b)a+W+bV]Ip)<bAle|? (3.8)

for all peP(4). Suppose y is a non-zero eigenfunction of H=—A+V with
eigenvalue E such that exp(or)pe L*(R") for some o>0. Then

bA>bo*+E). (3.9)

In particular if V is homogeneous of degree — f with fe(0,2] and E <0, then for
any non-zero solution to (— A+ V)p=Eyp we have exp(]/ — Er)y¢L*(R).
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Proof. The proof is basically that in [29]. For n=3, (3.1) implies
(v, 24+ W)p,)>0. (3.10)

The strict inequality holds because o >0 and because Ar~'/?y,=0 implies y,=0.
For n=2, (3.10) also holds for small ¢>0 as can be seen as follows: Since |f(r)|
<const/r uniformly in ¢>0 and lir% f(r)=0, we conclude from the dominated

convergence theorem that lim (y,, fip,)=0. It is also easy to show that
>0
lim [ (/g,) /2 Ar~ e = || Ar 2|
el 0

Thus for small >0, (3.10) holds. Since H(a)y,= Ey, we have
(Vo (— A+ V +0B)p,) =(E+o) [y, 1%,

which in view of the antisymmetry of B implies

(W (= 4+ V) =(E+a?) |, /|7 (3.11)
Multiplying (3.11) by b and adding the result to (3.10) gives

(o (2= D) A+ W+DbV]w,) > WE+a*)w,]?,

which together with (3.8) yields (3.9).

To prove the last part of the corollary just note that W= — fV so that (3.8)
holds with b=f and 4=0. []

We remark that Corollary 111.2 applies to atomic and molecular systems.

Let n=2 and suppose 7, ...,n,, are non-zero orthogonal projections on R"
with dim(Rangen;))=n, Following Agmon [1] we introduce a Schrddinger
operator somewhat more general than that encountered in the N-body problem.
Let v; be a real-valued measurable function on R™ such that v(—4,+1)"" is

compact on L*(R™), and define
M

V(ix)= Y vimx); H=—-4+V. (3.12)

i=1
We give the following general result about such operators:

Corollary ITL3. Suppose H is as in (3.12) and each v;=v{" +v{® with
(1) iV and v'® Ai-bounded with bound zero and real-valued,
(2) lim || [y[of"(—4,+9%)"12] =0,
y—
(3) lim ||y Vo2 (= 4, 49%) 7 12| =0,
Y=
then there exists a A, so that all eigenvalues of H are <A, and if we denote o(E)
= |/(Ay—E), then Hyp= Evy implies that either =0 or
exp(ax)weEL*(R")  for all a>u(E).

Proof. Let b=1 in Corollary II1.2. Tracing through the proof of this corollary we
see that if as quadratic forms on 2(4) x 2(A)

—A—xVV=VZ—4,, (3.13)
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then if Hy=Ey with p+0 we must have exp(xx|)p¢L*(R") if «=0 and
o?+E> A, To show that (3.45) is satisfied for some A, it is sufficient to show that
for each ¢>0

xVV.£—-ed+c,, (3.14)

V.S —ed+c,. (3.15)

Inequality (3.15) follows from (1) and to see (3.14) note that x-VV(x)=(m;x)
-(W,)(m;x), so that it is sufficient to have y- v, < —ed;+c¢,. From (3) this is clearly
true for v{?. To see the result for v{") note

y: Vivgl)z[}/'D, Uﬁl)]:y'Dvgl)—UEI)y'D

=D-yvt) — My D — o)

‘21 [(Dj(ij(il))— (ijs‘l)Dj)_ Ugl)]
i=

< —ed/2+ QAP — nt?
< —ed;+e,.

Here we have used (1), (2), and the inequality [D;, 1< —eD3/2+(2/e)f> for f a
real-valued function. The latter follows from

(0,[D;, f19)=2IID;0l | foll &I Dj0l1/2+ /o) fol*. O

The next result is in some ways a generalization of Theorem III.1. Here we
consider solutions to (— 4+ V)y=Ewp outside a compact set and introduce form
hypotheses:

Theorem II1.4. Suppose V=V, +V, is a complex-valued function on
Qp,=1{x:|xI>R,} with V, real-valued. Denote by Ay, the Dirichlet Laplacian in
LX(Qpg,), and let #, ={f :(4p+1)"*f]| <0} with #_ its dual. Let yp be the
characteristic function of Qg={x:|x|>R}. Suppose be(1, ©) and

(@) IxI"?xxVi(—4p+1)" Y2 is bounded for all R=R, and converges to zero in
norm as R— oo.

(b) |V, is — A4, form bounded with form-bound zero.

(c) The distribution x-VV, extends from Cg(Qg)x Cg(2g,) to a bounded
operator from H,,—H_, with x-VV,< —edp+C, for all ¢>0.

Define the self-adjoint operator

hb)=—(b—1)A,—3bx-VV,—V,

by means of quadratic forms. Let 2(b)=info  (h(b)). Suppose v is a distribution
solution to (— A+ VYyp=Ey with EER in the sense that e HL (Qg ,) and for each
peCy(Qg,)

[(Vo-Vp+@(V—E)yp)d"x=0. (3.16)

Suppose >0, o?>+ E+X(b)>0, and exp(olx|)pe LZ(QRO). Then ¢ must vanish
outside a compact set.

We supplement this result with a unique continuation theorem which is
tailored for Theorem 111.4.



276 R. Froese, I. Herbst, M. Hoffmann-Ostenhof, and T. Hoffmann-Ostenhof

Theorem I11.5. Suppose V is a complex-valued function on R" which is Laplacian
bounded with bound less than one. Suppose V=1V, +V, with V, real-valued and for
each real-valued ne C3(R") with <1

(a) lim [n¥,(—4 +7%) 7| =0.
(b) The distribution x-VV, satisfies n*x-VV,< —24+c,.

Suppose (— A+ V)w=Ey and that y has compact support. Then p=0.

Remark. Condition (a) of Theorem IIL5 1is implied by V,eLl (R"),
p=Max(2,2n/3). Georgescu [17], using other methods, has shown that Theorem
I11.5 is valid under the assumptlon that Ve L] (R"), p=Max(2,(2n—1)/3). See also
[5, 7, 30, 31] for other unique continuation theorems.

Proof of Theorem I11.4. Suppose that exp(ulx|)ye L*(Qg, ) for some o>0 with
o?+ E+ X(b)>0. By decreasing o if necessary we can assume that with F(x)=alx|
+ BIx|* /(1 —5), exp(F)ype L*(Qy,) for all >0 and 6€(0,1). Define H=—4,+V
as a sum of forms and let 7 be a real function in C*(Qy ) with y(x)=1 for [x|>R,
and y(x)=0 for |x|] <R, where Ry<R; <R,. Let 5 be in CF(R"), real, and n(x)-—l
if |x| <1, #(x)=0 if |x] > 2. Define ng(x)= n(x/R) and &= YN g eXp(F).

As distributions, it is easy to compute

(—A+V—E)p=(—Aa&p—2VE- (7). (3.17)

Note that by assumption o (Ep)e L(Q, ,), so that by (a) and (b) |V|”2§1pe L*(Qg,).
Hence by (3.16), éwe@(H) and since —(A(f) 2WE.D=—(VE-D+D-VE), we have
from (3.17)

(H—E)yp=—((V&-D+D-(Vd)p. (3.18)
We thus have
&y, (H— E)ép) = — (&p,(VE-D+D-V)y),
and taking the real part of both sides we find
Re(&y, (H— E)Zy) = [ (V&) y[2d"x. (3.19)

If we take R— oo, the right side of (3.19) remains bounded while Etp—»étp in
LZ(QRO), where we have set =yexp(F). Thus V(éw)eLz(QRo). We now rewrite
(3.18) as

(H—E)éy
=—{D-V(yng)+V(yng)-D+(D-VF +VF-D)yng—2V(yng)-VF — yng(VF)*}
-exp(F)y, (3.20)

and take R— 0. Using the fact that exp(F)y and V(y exp(F)y) are in I:Z(QRO), it is
not hard to see that the right side of (3.20) converges in L*(Qy o) Since ¢y — <&y and
H is closed, we have ype P(H) and (H— E)ép—(H— E)&y. Thus from (3.19) we
have the important equation

Re(Ew, HEp)=(p, (ES* +(VE)*)y). (3.21)
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Let H(F)=H+VF-D+D-VF—(VF)*=H+B—(VF)* with 2(H(F))=2(H).
From (3.20) we have

(H(F)—E)eyw=—{D- W+ W -D}exp(F)yp+2Vy-VF(exp(F))y. (3.22)
We now claim that with VF=xg and y,=exp(F)y we have
2Re(ALy, ViEy)=(Ey, 24, + Wy)y)—4llg"? ALy ®
+(Cw, {(x-V)?g = (x-V)VF)*}Ew)
- iZjZ(@iwp x(?);0,%5) + (g, Gp), (3.23)

where W,=x-VV,, (ép,(24,+ W,)Eyp) is interpreted in the form sense and
G=02x-W)Vy-VF)=2yx-V(Vy-VF)
+n(pdy+ () +x-V(yAy) +2Vp-V(x-7y). (3.24)
We remark here that the reason for the condition that |V;| be essentially
o(|x|~1/?) is that ¢g'/? behaves like |x|~*/? at infinity. The relevant estimate occurs
in Eq. (3.30).
The proof of (3.23) is similar to the proof of Eq. (3.1) so it will only be sketched.
First note that because v is always multiplied by y or ¥y the Dirichlet boundary

conditions in (3.22) and (3.23) are irrelevant. The method of proof of (3.1) can thus
be used here. Note also that since Véy is in L2 for all B, épe D(A). We have

};ilng 07" Re{(&y, UONH(F)— E)sp)— (H(F)— E)sy, U(O)¢w)}
= Lif% 0~ " Re(&y, (U(0)— U(=0)(H(F) — E)$y)
= —2Re(Aly, (H(F)— E){w)
=2Re(A4ly,(D-Vy+Vy-D=2W-VF)p,). (3.25)
A short calculation gives
2Re(A&yp,(D-Vy+Vy-D—=2Vy-VF)ypg)
=2 (0w x{(%);0,9) — (Wp, Gyy). (3.26)

ij
Going back to the first line of (3.25) we isolate the contribution from 7 :
})ilng 0~ Re{(Cw, UOWV, &) — (Vi &y, UO)Ey)}
=1im 0~ * Re((U(—0)— U0))&w, V, &)

610
= —2Re(Aly, V p). (3.27)
We must now calculate
Lifg 0~ Re(&y, {UO)— A4+ V,+B—(VF)>)U(-0)
—(=A4+V,=B=(VF)’)}U(0)y)
= }allng Re(&y, (A(1—e™2)/0+(V,(0) - V,)/0

—((VF)*(0)—(VF)*)/0+(B(60) + B)/O)U(0)& )
=(Cw, 24+ W, —x-V(VF)*)éyp) — 2Re(BEy, ALy). (3.28)
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Since B=VF-D+D-VF=gx-D+x-Dg=2gA+(x-Vg), we easily find

2Re(BEy, ALy)=4lg' 2 ALy >~ (Ey,((x V)g)Cw). (3.29)

Combining (3.25) through (3.29) yields (3.23). We remark that in deriving (3.23) we
have only calculated the formal expression (y,[EAE H—V,]y) in two different
ways.

We now assume that y is a radially symmetric increasing function. Then the
matrix (x,(Vy?) ;) is positive semidefinite so that the corresponding term in (3.23) is
negative. We also use the Schwarz inequality to find

2Re (48w, Viép) =2lg* Ay -lg™ 2V Ly
<4lg'?Alp|2+5lg™ 2V wl?. (3.30)
Combining (3.30) with (3.23) we have
(p,(=24,=W,— g~ "WV, P[4+ x-V(VF)? = (x- V)’ g)ép) < (p, Gyy) . (3.31)
From (3.21) we have
(&, (= 4p+ReV)Ey) 2 &y, (VF)* + E)y). (3.32)
Multiplying (3.31) by b/2 and subtracting (3.32) gives
(&, [(W(b)—Re ¥V, —bg ™ |V 1*/8) +((VF)* + E+b{x- V(N F)* = (x-V)?g}/2)1¢w)
<b(pp. Gpp)/2. (333)
Choose 0 so that bd<1. Then a short calculation shows that in Qp , for large
enough f, (VEY +bix-V(VE) —(x-V)?g} 22 0.
Since g=alx| '+ B(x) " 9>ux| ! we have
(v, (h(b)—Re V; —bo™ x| [V, 12/8)Ew) + (o® + E)| Ep [ S by, Gyyp)/2. (3.34)
Given ¢>0 we can choose R> R, so that if suppyCQ,
(&, (h(b)— Re ¥V, — b~ x| [V, 1?/8)Ew) = (X(b) — &) | £ ||*. (3.35)

To see this choose A so that h+A=h(b)—ReV,+A=1. By assumption
(h+A)"2yelx| 1V,)*(h+ A)" 20 in norm as R—oo. Thus given ¢,>0 we can
find R, so that for suppyCQg,

(&, (h+ A—ba™ x| [V, 12/8)Ep Z (1 — &), (h+ A)Ey). (3.36)

It is easy to see that (—4,+1)""?|V}|(— 4,+1)""/? is compact and thus g, (h)
=0, (h(b)). Hence we can find an R, =R, so that if R=R,

(Ep, hew) 2 (Z(b)— &)l Ew 12 (3.37)
if suppy CQg. Combining (3.36) and (3.37) we find
(&, (h(b)—Re V; —ba™ x| |V, 17/8)Cy)
Z [(1—eo)(Z(b)—eg) — g0 AT 1IEWI?,
which for small enough ¢, >0, yields (3.35).
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Choose ¢>0 small enough so that a®+ E+ X(b)—é&=c,>0. Then combining
(3.34) and (3.35) gives

2¢ol1Epl1? = by, Gyy). (3.38)

We now take f to infinity. If y(x)=1 for |x| = R, then from (3.38) we have for large
pand R,=R;+1

2o [ lefplPd'xse, | leMylPd'x, (3.39)

|x|Z R4 |x| <R3

where F(x)=F(x)—F(R4x/|x|). If | |pl*°d'x>0 then the left side of (3.39)
[x|ZRy4
converges to 400 as f—oo while the right side converges to zero. Hence

[ plrdx=0. [

[x|ZR4
Proof of Theorem IIL.5. By replacing V; by V,—E we can assume that E=0.
Suppose Q is a bounded open set with suppy CQ. Let ne C3(R") with <1 and
n=1on Q. Let pe C7(Q) and define & =exp(x|x|?/2). Let W, =x-V'V,. We compute
2Re(A<e,EHe)
=2Re(Alp,nV Ep)+2Re(Alp, (— A+ V, + 204 — o?|x|*)Ep)
=2Re(ALp, V,Ep)+4ul ALo|> + (L@, (— 24— W, + 20 x|*) o)
Z4al|Alo|? = 2[Ale - Vil - C,lIEp]* + 20| IXIEo|?
=202 |xlE@)* — [V ¢ */4a~C, I (3.40)
Since V is A-bounded with bound less than one, CY is a core for H. It is thus not

difficult to see that we can choose ¢, Cy(Q) so that ¢,—»y, (He,»EHyp=0,
Aép,— Aly, and V, Ep,— V,Eyp. Thus from (3.40) we have

1V, Ewll? /4o = 202 [ E]xlwp > — Cli w2 (3.41)

Suppose p=+0, and define ¥, =<Ey/||Syll. It is easy to see that for some §>0,
|| |x|¥,| = so that from (3.41)

V¥, 0 zca? (3.42)
for some ¢, >0 and all large o. On the other hand, just as in (3.19) we have
(P (— 4+ ReV)¥,)=a*(¥,, IxI*?,),

so that again for large o

VPl =c,o. (3.43)
In addition,

(= A+ V¥, =(—20A+*x]?)¥,,

so that from (3.43)

AP, < cs0? (3.44)
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for all large o. From (3.44) we have for all >0 and all large «
1%, [=1, (3.45)
l(= A+, ScdPe +97). (3.46)
Interpolating between (3.45) and (3.46) we have

(= A+, | Sc (e®+77)*,
and thus
VLW S V(= A+9) 73 ey +92)%* . (3.47)

If we choose y so that ¢, [|nV,(—4+72%)73*| <c,, (3.47) contradicts (3.42) for all
large o. [
If we combine Theorems I111.4 and IIL.5 we have the following corollary:

Theorem II1.6. Suppose V=V, +V, is a complex-valued function on R" which is
A-bounded with bound less than one. Suppose V, is real-valued. Let yp be the
characteristic function of {x:|x|>R}. Suppose

(@) [Vy(= 4472 34| >0 as y— oo,

(b) there is an Ry>0 so that the operator |x|*'?yxVi(— A+ 1)~ % is bounded for
all R> R, and converges to zero in norm as R— co.

(©) |V,| is — A form-compact.

(d) £x-VV,Sc(—A44+1) for some ¢>0 and the positive part of the operator
(—4+ D)"Y x ¥V (— A+ 1)" Y2 is compact.

Suppose (— A+ V)p=Ey with E€R and w+0. If a>0 and o*> —E, then
exp(afx|)yp¢ LAR").

Proof. Because of (b), (c), and (d) the assumptions of Theorem I11.4 are satisfied. It
is also not difficult to see that our compactness assumptions imply X(b)=0. Thus if
exp(alxyye L2 (R") with «>0 and «*>—E we conclude that y has compact
support. In view of assumption (a) above and Theorem IIL5, y=0. This
contradiction proves the result. []

The question of whether |V(x)|=o(]x|~ */?) is a border-line case or whether in
fact |V(x)|—0 as |x|— co implies the result of Theorem IIL.6 as in one dimension is
still open. Note that if x-VV,e L}, and +x-VV,<c(—4+1) then form compact-

loc

ness of (x-V'V,), implies condition (d).

1V. Examples

Let H= — A+ V be the Schrodinger operator introduced in (3.12) and suppose y is
defined on Q= {xeR":|x|> R} and satisfies

(—4+V)p=Eyp 4.1)

in the distributional sense. Suppose in addition that we L*(Qy). Then according to
a result of Agmon [1, 2], if E<ZX =info_(H), then

€ss

exp(ax))pe L*(Qy), oa<|/X—E. 4.2)

Actually Agmon proves stronger results [1, 2] which we will discuss later.
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One might conjecture that (4.2) is best possible in the sense that

exp(alx)p¢LX(Qp), a>]/2—E, (4.3)

but this is not the case. We give two examples to illustrate how (4.3) can go wrong.
The first example is trivial but must be taken into account in thinking about (4.3).
(The example was known to Simon [33] and perhaps to many others.)

Example 4.1. Let H = — A4V, where Ve CZ(R"). Suppose E,=infa(H ) <0 and
that H, has an eigenvalue E, with E,>2E,. Suppose H,yp, =E, 1y, with y, =*0.
Let H=H, @I +1®H and p(x,x,)=y(x)yp,(x,). Then Hp=Eyp with E=2E,.
Note X =info (H)=E, so that ]/Z—E= [/E0—2E1. It is easy to see that

€ss

exp(elx)pel?, a<])/—E,,

explalx)p¢Ll?, a>]/—E,,

so that (4.3) is violated because ]/~E > ]/EO——2E i
To understand example (4.1) from the viewpoint of embedded eigenvalues,
consider the operator

H(@)=—V,—a)*—=(V,—a)* + V,(x,)+ V,(x,).
It is not difficult to see that if |u|* < — E,, then
0 (H@)NR={E,—|a*+1:20}.
Suppose o] < ]/——E1 Then exp(o-x, +0-x,)pe Z(H(x)) and
(H(x)—2E ) exp(o-x, +a-x,)p=0.

Thus while E=2E, is not an embedded eigenvalue of H, it is embedded in the
essential spectrum of H(x) whenever — E, >|a|?*>E,—2E,.

We know that while negative eigenvalues embedded in the continuous
spectrum of (self-adjoint) N-body Schrédinger operators can exist (see [29]), it is
widely believed (and has been proved in some cases [29]) that positive eigenvalues
do not exist for a large class of such operators. In analogy with this situation we
make the following conjecture.

Conjecture. Suppose H is the Schrodinger operator defined by (3.12) and
(1+1y)2v(— 4,+1)"*"? is compact on L*(IR™). Suppose 1 is a non-zero solution

of (—A+V)p=Ey in Q, with E<0. Then if a> |/ —E
exp(alx)pé¢ L3 ().

Note Added. After completion of this work, special cases of this conjecture along
with absence of positive eigenvalues were established in [13].

We will show in Example 4.3 that in some sense one cannot do better than the
conjecture. For now note that Example 4.1 is not sufficient to show this, for if
P(xp, X,)=p (x)p,(x,) with (=4;+V)yp,=Ejp, then we always have
exp(ax|)p¢ LA(R?") if o> |/ —E/2 where E=E, +E,. This follows from the fact
that if for example |E,|<|E,|, then when x=(x,,0) y decays as exp(— |/ — E,|x|)
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zexp(— |/ —E/2|x|]). In the example we are about to construct the decay is
arbitrarily close to exp(— |/ — E[x|) in all directions even though X is arbitrarily

close to (but perhaps greater than) E. To prepare for this example we need the
following lemma

Lemma 4.2. If o and B are given numbers with >a>0, then there exists a real-
valued even function ge C3(R) so that if the point spectrum of —d*/dx*+q is
labelled E,<E,<E,<...<E,, we have Ey= — % E,= —a?

Proof. The following short proof was kindly supplied by Simon [33] to replace our
original longer proof: Suppose we find a real-valued even Cg function ¢, so that
E,/Ey=(c/B)* Then we can easily arrange the result in the lemma by scaling, since
under the latter transformation the operator

P3(—d?/dx*+q,(x))

with point spectrum {y?E, y*E,y*E,, ...} is unitarily equivalent to
—d*/dx* +y%q,(yx).

For >0, let E;4),j=0,1,2,... be the eigenvalues of h, = — d?/dx?+ Aq, where
¢q is a non-zero even function in C(IR) with ¢<0. If h, has only j cigenvalues, let
E(4)=0 for [>j—1. Define (1) = E,(A)/Ey(4). Then for small enough 2>0 r(1)=0
while a simple min-max argument gives lim E;(1)/2=min {g(x):xeR} and thus

A=
lim r(4)=1. Since r is continuous, r(4,)=(2/B)* for some A,>0. []
A= 0
Example 4.3. Suppose E and X are two given negative numbers and 0 <e< 1. Then
there exists
(a) a real-valued function ge C7(IR),
(b) aninteger M and orthogonal projections z, ..., 7, mapping R*—IR which
M

define a potential V(x)= ) ¢(m,x) on R?,
i=1
(c) a number L>0 and a function pe C®({x:|x|>L}), such that

0] (—A+Vywyw=Eyp for |x|>L,
(ii) [p)|=Cexp(—(1—¢)]/ —E|x]), (4.4)
(i11) Y=info (—A4+7V).

The construction proceeds as follows. Let f?= —X and o, = |/ — E sin(n/N),
where N is an even integer >2 chosen so that cos(n/N)=1—¢, and a? <p> Let

%, =]/ —E cos(n/N) so that o} + a3 = — E. Choose g as in Lemma 4.2 so that the
lowest eigenvalue of —d?/dx?+q is — > and —d?/dx*+q has an even eigenfunc-
tion ¢(x) satisfying

(—d*dx*+qp=—dle. (4.5)
Note that we can choose 4>0 so that suppgC(— A4, A) and
px)=e ", x|z 4. (4.6)
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Fig. 1. The region Q, is shown for the case N= utside the shaded area V=0

In (4.6) we have chosen a particular normalization for ¢. Let R(6) be a clockwise
rotation by 0 in the plane. Thus R(0) is given by

< cos0 sinB)

—sinf cosf
Let 7; be the orthogonal projection onto the line
RQn(j— 1)/N){(x1. x,)€R? 1 x,=0}

for j=1,2,...,N/2. Thus the number of potentials is M=N/2, and if
R;=R(2n(j—1)/N) and e, =(1,0) we have

q(mix)=q({Rje;,xp); j=1,2,....M, 4.7)
where {x,y>=x,y; +Xx,y,. Let
Q={xeR?:|x|>24/sin(n/N)},
Q, =0n{xeR?: [ e,,x)|<|x|sin(n/N)},
and Q;=R;Q,, j=1,2,...,N/2. The situation is depicted in Fig. 1. Define
wi(xy,x)=e " lg(x,),

(4.8)
p(x)=p,(R; 'x), xeQ;.

To see that i is well defined and smooth on Q= U Q,, first note that pe C*(IR)

J
and thus y, is smooth in a neighborhood of Q,. Clearly v is smooth in the interior
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of Q. Suppose x,€Q2,nQ,. Then x,=Aw with w=(sin(n/N),cos(n/N)) and
|4 >2A/sin(n/N). If A>0 then for x in a neighborhood of x,

i(x)=exp{— (o, 0), (X1, x,)0 ),
(R 'x)=exp{—<(—oy, 05), R(=271/N)(x, x,)>
Since R(2n/N)(—ay,0,) =(at;,,) by our choice of o, (see Fig. 2), p,(x)=v,(R5 'x)
in a neighborhood of x, if A>0. A similar argument works for all points
Xo€Q;NQ;if i=j, and hence pe C*(Q). If x,€Q2,nQ;, i#] then in a neighborhood
of x,

4.9)

w=exp{<(i% iaz)aREI(X1>X2)>}
M
for some choice of signs so that —Ay=Ewp. Since V(x)= Y, g(m;x)=0 in a

i=1
neighborhood of such a point we have (— 4+ V)p=Ew in a neighborhood of x,,.
By construction, if xe2;, g(m;x)=0 unless i=j so that for xe 2,

(= A+ V)p(x)=(=4+q(ey, R} X)) (R} 'x),
=(=4+4(y) v,(y), where y=R;'x,
= Ey(x).

Thus (— 4+ V)y=Eyp in Q.
In Q, we have

lp(l =e 2 lg(x )| < Ce*tlmle 7l
= Cexp{— (o, %), (Ix;], [x,1)>
< Cexp{—|/o+0o3 x| cos(n/N)}
=Cexp{— |/~ Elx| cos(n/N)}
<Cexp{—(1—e)x|}/—E}. (4.10)
By symmetry, (4.10) holds in all of Q giving (4.4).
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It remains to show that X =info,
We omit the proof.

A few comments about Example 4.3 are in order:

1. Note that we need not have E < ZX. In fact 2 does not play an essential role. If
we demand, however, that E <X, then Agmon [1, 2] gives an upper bound

[p(x)| Sce” 7@ x=|xlw, §>0. (4.11)

(— A+ V). This follows easily from (1.6) [1].

€ss

One might expect that at least for some weS?, the bound (4.11) may give a good
estimate. To see that this need not be the case we calculate o(x). From [1, 2], o(x) is
the distance from x to the origin in the metric

(ds)* =(2(x/Ix])— E)(dx)* +(dx,)?), (4.12)
where

Z(w)= lim lim inf{(¢, (= 4+V)p): peCoIk o), o] =1}.
Here Iy, is the truncated cone {x:[x|>R, {(x,w)>(cos)x|}. X(w) is easily
calculated [1,2]. We give the result for w=(sinf,cosf) with |6]<n/N. The
function Z(w) can be calculated for other values of @ by symmetry:

X, 0=0
Z(“’)Z{o; 0<l6|<n/N.

With the parametrization x =|x|(sinf, cosf) (note we are measuring 6 from the x,
axis) a simple calculation using (4.12) gives for [f|=7/N

Q(x)z{l/—Ele; cosO< )/ (X—E)/|)/ —E “4.13)
() =Zlsinl+ |/ (Z—E) cosO)|x|; cosd=)/(Z—E)/)/—E.

Choose N large enough so that cos(n/N)= |/(2—E)/]/ —E, and so that

|/ —Z sin(n/N)+ ]/ (2 — E) cos(n/N)<cos(n/N)|/ —E .

By symmetry and (4.13) these conditions imply g(x)<|x|]/ — E cos(n/N) for all
x=0. From (4.10), [p(x)| < Cexp(—|x|]/ — E cos(n/N)) so that y(x)exp(e(x)) de-
cays exponentially in all directions.

2. As it stands Example 4.3 suffers from the (slight) defect that (— 4+ V)y=Eyp
is satisfied only outside a ball. In a preliminary version of this paper we
conjectured that a bounded potential ¥, of compact support and a function
P:R*>R with =1y for large |x| could be found so that (—A4+V+V,)p=Ep.
This has now been proved by Gérding [16].

3. The high degree of symmetry in this example is not really necessary. One can
produce the same result, for example, by changing ¢(n;x) to g,(m;x) if

(1) g€ C3(R),

(2) info(—d*/dx*+q,)= — B,

(3) —d?/dx*+q; has an even eigenfunction with eigenvalue —o;.

4. The fact that the region where |V| is large disconnects R? may be an
important factor in examples of this type.
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