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Abstract. The finiteness of the discrete spectrum of three body Schrδdinger
operators restricted to certain symmetry subspaces is proved. The symmetry
subspaces are those associated with nonzero angular momentum and those
associated with two or three identical fermions.

I. Introduction

Investigation of discrete spectrum energy operators of three-particle quantum
systems without bound subsystems showed that the discrete spectrum of such
systems can be infinite even if the potentials between the particles decrease
arbitrarily rapidly (Elfimov's effect). This possibility is realized (under some
additional conditions) for three-particle systems when energy operators /zα of two
or three two-particle subsystems have virtual levels [1, 2] (see also [3]).

The presence of the operator ha virtual level in this situation is connected with
the existence of such solution φ of equation haφ = Q so that \Fφ(x)\e^2(R3),

This article presents an investigation of the discrete spectrum of three-particle
operators in some symmetry spaces. It is proved that in these spaces Efimov's
effect is absent1 so that for short-range potentials the discrete spectrum is finite.

Our proof of the finiteness is founded, mainly, on the investigation of virtual
levels of two-particle Hamiltonians in the function subspaces from
J2?2GR3)ΘP(0)^2CR3) (see Sect 3) Tt is established, in particular, (Theorem 3.1), that
in these subspaces the presence of virtual levels of a two particle operator is
connected with the presence of its zero eigenvalue as distinct from the case when
the symmetry is not taken into account.

The main results of the work are Theorems 2. 1-2.5 which are formulated in
Sect. 2 and proved in Sect. 4. Theorem 3.1 is proved in Sect. 3. All auxiliary
assertions and their proofs are in Sect. 5.

1 In physics articles this assertion appeared earlier [4] but this fact was not proved mathematically
rigorously
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2. The Basic Results

Let Z1 be an arbitrary quantum system of 3-particles xt = (x(3l~2\ x ( 3 l~ 1},x(3l))with
masses mf, x = (xί9x29x3\ H0 be the energy operator of system Z1 written after
invariant separation of center of mass motion and after introduction an inner

3

product (x,x)l = Σ mi(χί'*i) It i§ easY to see tnat M
i= 1

where xij = xί — xp A0 - is the Laplacian on

ί 3

R0 = \x\x = (xl9x29x3)9 Σ m χ.
ί=ι

As to Vtj we shall assume that

ί l^/|xιl)l2Λcι-*0 if !*;!-> oo (2.1)

(that is Vij(xί)eQ(R3) [9]) and that

tVijφε&^R^); (2.2)

by virtue of [7] and condition (2.2) V(xί)=-\Vij{x1)\e#r = {V(xί)\V(xί)eQ9 Vε>0
the discrete spectrum of the operator — εz!1 + F(x1) is finite in £?2(R*)}. Since
V(xi)eQ the operator H0 with domain C$ is essentially self-adjoint in ^C2(R0).
With a slight abuse of notation we denote the self-adjoint extension of this
operator by jff 0.

Furthermore, given any invariant for H0, we denote by H$ the restriction of the
operator H0 to the symmetry subspace Bσ g ^f2(^o) of the given symmetry σ. Then
we denote for operator HQ the discrete spectrum as Jd(Hσ

Q\ the infinitely-multiple
point spectrum as ^poo(Hσ

0), the greatest lower bound of the essential spectrum
as/Λ

We suppose everywhere μσ = Q.2

As spaces Bσ we shall usually take spaces of the functions which are
transformed according to the multiplying irreducible representations of
Hamiltonian's H0 symmetry group. The spaces Bσ, used in the article, will be
constructed by projectors on the space of functions being transformed

i) according to the representation of the weight / of the group 0 + (3) - the
projector P(0 / = 0,1,...,

ii) according to the representation of the type α of the group S3 - the
projector Pαf i=l ,2; here 0^= (1,1,1) is the type of the antisymmetric repre-
sentation S3; α2 = (2,1) is the type of two-dimensional representation 53,

iii) according to the antisymmetric representation of the group S2 - the
projector Pαι(S2)

First we consider the system Z1 of three identical particles.

2 The case μσ<0 was investigated earlier [8,9,14,15]
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Theorem 2.1. Let Bσ = Pΰίi^2(R0). Then the spectrum ^d(Hσ

0) is finite and QφSpao(Hζ).

Theorem 2.2. Let £σ = Pα2P(0)J2?2CR0). Then the spectrum J^d(Hσ

0) is finite and

Suppose now that the particles i and j in Zγ are identical, and that the third
particle may or may not be identical to these two. Let S2 be the permutation
group of particles i and j.

Theorem 2.3. Let Bσ = PCίί(S2)P(0}^2(R0). Then the spectrum ^d(Hσ

0) is finite and

The next theorems do not require the presence of identical particles in the
system. Let 7 ̂  0 be any integer number.

Theorem 2.4. Let

B{ = {ψ(x)\ψ(x)e 3>2(R0\ v>(- *) = ( - 1)'+ V(x)}, B« = P^B, .

Then the spectrum J^d(Hσ

0) is finite and QφJfpao(Hσ

0).

Theorem 2.5. Let Bσ = P(l}^2(RQ). Then there exists a number L>0 such that 1>L
the spectrum ^d(Hσ

0) is finite and QφJpao(Hσ

0).

3. On Virtual Levels of Energy Operators for Two-Particle Systems

Let us consider the operator

, (3.1)
where the function FflxJ) satisfies the conditions (2.1), (2.2), εe [0,̂ ]. The operator
hε with the domain C^(R3) is essentially self-adjoint in =£?2(R

3). We henceforth
denote by hε the self-adjoint extension of this operator. We denote its domain by
D(hε). By virtue of Corollary 2.9 [10] D(hε) = D(h0). According to [7] we denote by
J2?2

1} the closure of space W2 in the norm M = III P^lll^^), ^(

2

l} is the complete
Hubert space with an inner product \_<p,y>] = (V<p, ^ψ)^2(R^ 3 Since Vfo>0

ί M^x^^jlφPlxJ-^x^^M2, (3.2)
\xι\£b

for ψeWϊ(R3), so this inequality holds for φe&^R3) too. Then
&£\R*)C&2tlws(R3) and therefore &£\R*)CW?\Ω) for any bounded region β.

We remark that due to [7] the embeding operator J^υ(£3) in ^2(R3;\V\) is
compact, that is

$\V\\ψm-ψo\2dXl^O if ιpm^ιp0 at &™(R*). (3.3)

Let e be an arbitrary set of non-negative integers /'. Let P(e) = Σ P(l'\ and let hε(e)
I'ee

be the restriction of operator hε to P(e)D(hε). The operator P(e) is a projector in
J£2(R3). It is easy to see that P(e) is a projector in W^R*) too and hence it can be
extended in &$\R*) as a projector. Let B(e)

3 Here and everywhere (Pφ, Vψ)g>2(R3) =
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Definition 3.1. We shall say the non-negative operator h0(e) has the virtual level if
the negative spectrum of hε(e) is not empty for any

Theorem 3.1. Suppose Qφe, and that the operator /z0(e)^0 has a virtual level. Then
i) the number λ0 = Q is an eigenvalue of the operator h0(e),
ii) the eigenspace *W corresponding to the number λ0 = Q is in P(lo)^2(R3) and

dimiT = 2/0 + l, where 10 = min /',
Γee

iii) 3(3 >0 such that (hδιp,ψ)>0, VψeD(h0(e))9 [ψ9u]=Qfor all ueW.

Remark. If Oeβ and the operator hQ(e) has a virtual level, then due to [5] the
number 0 cannot be an eigenvalue of the operator hQ(e) as distinct from the case
Qφe. Just this distinction generates the principal difference in the structure of the
discrete spectrum of Hamiltonians of the 3-particle systems depending on the fact
whether the states with / = 0 are permitted or not.

Proof. At first we shall prove
assertion A : if F(|x|) satisfies the theorem conditions and the function T0 from
<£(

2\Rχ) is the generalized solution on .R^4 of the equation

r-/(/+l)ρ-2T(ρ)-2F(ρ)T(ρ) = 0, (3.4)

then T0E^2(Rχ) for sufficiently large N and

T0 = c(g + Kg + K2g+...), (3.5)

where c is a_ constant, g = ρ~l

9 Kf=$J<r(ρ9t)f(t)dt, JT(ρ,f)= - V(t)ρl+1Γl if ί^ρ,

We note that V(t)e&2tloc and the generalized solution of Eq.(3.4) is the
solution of this equation almost everywhere on R^ for JV>0. By virtue of
Sobolev's embedding theorem T0eCί(R^) and TQ is absolutely continuous func-
tion on RX. It is easy to see that the relation holds for any ρ > N

Γ0(ρ) = (d1 + V(t)T0(t)Γldt)ρl+1+(d2- V(t)T0(t)tl+ίdt)ρ-1 ,
N N

where d{ are constants depending on T0(N)9 Tό(N). Since Tό(ρ)e&2(Rh) then

therefore the function T= T^1 5 is a solution of the equation

Γ(ρ) = fif(ρ)+ J Jf(ρ,ί)Γ(ί)Λ. (3.6)
N

For the proof of assertion A it is sufficient to show the function

T0 = g + Kg + K2g+... (3.7)

is in <£2(Rχ) and that it is the unique solution in <£(

2

] of Eq. (3.6).

4 R^ίήteR^tt^N}, ^(2\Rχ) is a closure W}(R^) by the norm \ψ\ =

5 The number N may be taken always so that <
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By virtue of the properties of the function V(i) and because ε>0, one can
choose the number N so large that |K0|<ε|0|. From this and the fact that

χ) for iV>0, it follows that the series (3.7) is convergent and that
Rχ). The operator K can be applied to series (3.7) term by term, and

therefore, KT0 = T0 — g so that T0 is the solution of (3.6). It is verified directly that

Let us prove that the constructed solution of Eq. (3.6) is the unique one in
χ\ For this it is sufficient to check that the homogeneous equation f = Kf

has in ^^(R^) only a trivial solution if the number N is sufficiently large. Let
f(Q)ε^\Rl

N\ obviously,

|/(ρ)| rg \f(N)\ + f f'(t)dt\ ^ \f(N)\ + cρί/2 .
N

Therefore, the function /1(ρ) = /(ρ) ρ~1 / 2 is bounded in R^. If f = Kf and
then

suς {IΛWI} f |Jf(ρ, f)|ί1/2ρ-
teRN N

when N is large enough. It follows fί(t) = f(t) = 0 for teR^ if N is large enough.
The assertion A is proved.

Set

Wl = {ψ(x)\ψ(x)eBl = P(l)^e(

2

ί\R3)9h0ψ(x) = 0 in a generalized sense}.

Let us prove
assertion B: if under the condition of the theorem Wl=£ 0 for some />0 then

i) the subspace Wl belongs to the domain of definition of the operator h0 and is
the eigenspace of the operator h0 corresponding to the number λ = 0

ii) every function ψ(x) from Wl has the form

Ψ(x)= Σ cmYlm(θ,φ)R(\x\), (3-8)
m=-l

where the function R(\x\) is independent of ψ(x)e W\ cm are constants depending
on φ(x) Ylmjuce spherical functions

iii) dim ί̂  = (21+1).
Let ψ(x)eWl. Then h0ψ(x)= -%Aίψ(x)+Vψ(x) = Q.
Since P(l)ψ(x) = ψ(x) we have

Ψ(x)= Σ RJίQΪYJβtψ), (3.9)
m= -ί

where ρ = |x|, θ, φ are the angular coordinates of x.
It is easy to see the function Tm(ρ) = Rlm(ρ) - ρ is the generalized solution in

χ) for N>0 of the equation

) = V. (3.10)
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According to assertion A the function Tm(ρ)e^2(R^) when N is sufficiently large.
Furthermore, ιp(x)eJS?2 ιoc(^3) That is why ψ(x)eJ£2(R3). Since the operator h0 is
self-adjoint and (ψ(x)9 Λ0φ(x)) = 0 for any function φ(x)eCo>(R3) then ψ(x)<=D(h0)
and h0ψ(x) = 0. Statement i) from assertion B is proved.

Let us prove the statement ii). According to assertion A and by virtue of the
expansion (3.9) with |χ| >N the equality (3.8) holds if we set R(\x\) = T0(|x|)|xΓ 1 for
\x\>N, where T0(|x|) is the sum of the series (3.7).

Since two different eigenfunctions of the operator h0 which belong to Wl

cannot coincide for |x| >_/V, one can define a function R(\x\) so that the relation
(3.8) holds for all ψ(χ) e ̂ .Statement ii) is proved. Statement iii) results from ii).
Let us prove
assertion C: if under conditions of Theorem 3.1 Pf'φ0 for some lee, then / = /0.
To prove this suppose />/ 0 . Then evidently, /^ l and due to assertion B there
is such a function jR(|x|) such that

V>(*) = Σ cmY/MK(|x|)
m= -I

for all ψ(x)e Wl. Further, we consider the function

ψ(x)=Ylo(θ,φ)R(\x\).

It is obvious that ip(x)eWi. Set ψ(x)=Yhf0R(\x\). Then

), ψ(x)) + [/0(/0 + 1)- 1(1 + 1)]

Since (h0ip(x)9ψ(x)) = 09 (hΌψ(x)9φ(x))^Q then /0(/0 + !)-/(/ +1)^0 and con-
sequently / = /0. Assertion C is proved.

Let us begin immediately the proof of the theorem. Write
J5f0 = {φMlφeJ^?), M = 1}. Due to mϊh£(e)<0 with ε>0 and Λ0(e)^0 it is easy to
see that

Let ψm be a minimizing sequence for the functional (Vψ, ψ) in «3?0. We choose from
tpm a sequence which is weakly convergent in ̂ 1}. Abusing notation, we_denote
this subsequence by ψm. We denote the limit function as MO. Evidently, w0e.B(^) and

By virtue of (3.11)

vJ=-i (3.12)

Further, Iw 0 l >0 because the equality \u0\ =0 contradicts (3.12). We set q = \u0\. It
follows that 0<^fgl . Since ύ0 = u()q~1e^0 then (Fw0,w0)==g~2(Fw0,ι/0)= ~q~2^
^ — I and consequently # = 1. Here |w0l

 = l? woe^o an(^ uo realizes mf(Vψ,ψ) in
JS?0.

By a common way we check that u0 is a generalized solution of the equation



Three-Quantum Particles 9.5

Due to assertions B, C the function u0eWlΌ and statements!), ii) of the
Theorem 3.1 hold. Now we shall prove statement iii) of the theorem. Let ut,
ί = 0, 1, ...,2/0 be an arbitrary basis in if,

In order to prove iii) it is sufficient to check the inequality

β= mΐ(V\p9ψ)>-%. (3.13)

Suppose it were not correct, and let β = — \. From any minimizing sequence φm for
the functional (Vφ,ψ) in ̂ 1 we choose a subsequence which converges weakly in
^?2

1}. Let ΰ be the limit function. As for u0 one can verify UE^Q and h0ΰ = Q. By
virtue of assertions B, C we have ΰeif but it is impossible, because the function ΰ
being the weak limit of functions from J^ satisfies the conditions [ΰ, wj=0
i = 0, 1, ...,2/0. Thus, ΰφnr and β>-%.

Theorem 3.1 is proved.

4. Proofs of Theorems 2.1-2.5

Let Z2 = (C1,C2) be an arbitrary breaking of the system Z: into two nonempty
subsystems C1 ? C2, CA 002 = 0. For definiteness we suppose C\ always consists
of two elements. We write

R0(Z2)=ίx\xeR0,
I ie

Z2)
6, PC(Z2), and P0(Z2) are the projectors in R0 on #C(Z2) and

Ro(Z2).
We denote the operators V and A invariantly defined in R0(Z2) and RC(Z2) as

F0(Z2), Δ0(Z2) and ΓC(Z2), /dc(Z2), respectively. Let

G(Z2) be the group of operator h0(Z2) symmetry, σ = σ(Z2) be the types of
irreducible representations of group G(Z2), Pd be the projector in JS?2(K0(Z2)) on
the subspace of functions being transformed according to representation of the
type σ.
As in [6] (see also [10, p. 133]) we define the concept inducing (-<) of the
symmetry σ by the symmetry σ and set

B(σ;Z2) = 0P*JSf2(K0(Z2)).
σ <σ

The restrictions of the operators ^0(Z2) and Λ0(Z2)
to #(σ;Z2)

 w^ be denoted by
z!0(σ;Z2) and /z0(σ;Z2), respectively. Let

q(Z2) = P0(Z2)x, ξ(Z2) = Pc(Z2)x, xeR0.

6 © in the sense of inner product (.,. )ι
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For any β>0, N>0 we set

) = {x\xεR0,\x\ί<N}.

Proof of Theorem 2Λ. As in [11] to prove the theorem it is sufficient to show that
for all \pεD(Hσo) w^tn suppW outside S(N) the inequality

holds if N is large and ε > 0 is small. Evidently, the last inequality is satisfied if

for all ψeW2(R0)nBσ, supp{t/;}nS(N) = 0. Let Z2 be any breaking, and let
q = q(Z2) and ξ = ξ(Z2) be the coordinates in R0. Under the conditions of the
theorem the function ψ(q, ξ) = ψ(x) xeR0is odd relative to the changing of g<-> — q
with an arbitrary fixed ξ(Z2). That is why the space B(σ,Z2) consists of odd
functions and therefore P(0)B(σ; Z2) = 0, P(1)B(σ; Z2)φ0. We suppose the
operator /z0(σ;Z2) has a virtual level8. By virtue of Theorem 3.1 and since
P(1)£(σ; Z2)Φ0 the number λ = 0 is an eigenvalue of the operator /ι0(σ; Z2); the
eigenspace Of corresponding to λ = 0 is in P(ί}B(σ;Z2) and dim ̂  = 3; let

)ί=1 2 3 be an orthonormal basis of Of. Let jβ>0 be so small that9

K(Z'2;β)πK(Z'2;β)cS(N) if Z'2ΦZ^. (4.1)

For every Z2 and ε>0, β>0 we find numbers α>0, N>0 and functions uZ2, vZ2

according to Lemma 5.2 10 with φ. = φj0)(^(Z2)). Write i^ = ίl- Σuz2Y
/2>

Ψz2

 = Ψuz2> Ψ = Ψ^- Then due to Lemma 5.2 ^ Z2 '

v], (4 2)
z2

where

^2C^z2] = i I I I FoVzJ I I 2 + Σ (^z2? ̂ 2)
i , j = l , i < j

-4ε|||F0(Z2)0|||2-i Σ εlHPcίZ^Λlp-iεll^JxlΓ 1 ! ! 2 , (4.3)
fc=l

Λ = (φza> zl0(Z2) φ<£\q))Ro(Z2) I I I P0(Z2) ̂ Ί II" 2 ,

3z2 = Ψz2 + Σ Λ(«Z2)) φi0)(<ϊ(Z2)) (4.4)

7 F
8 If the operator h0(σ Z2) has no virtual level, then operators h0(σ Z'2) have no virtual levels for all
Z'2 as a consequence of the identity of particles, in this case the finiteness ^d(Hσ

Q) is proved in [11] (the
finiteness of ^d(H0) has been proved earlier in [15, 16])
9 The fulfillment of relation (4.1) with sufficiently small β>0 is proved in [11]
10 All auxiliary assertions and their proofs are given in Sect. 5
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As far as V^e 2F and \xtj\ > yN for some γ > 0 and all ij, iΦj if xesupp {ψ} then one
can establish as in [11] that L3[ip]>0. Let us prove L2[φZ2]>0. Set
Z2 = {(s,p),(ί)}. Taking into account that /z0(Z2)φί0) = 0 we have

| |Fc(Z2)/fc| (4.5)

We can choose functions φί0) i=l,2,3 belonging to different lines of irreducible
representation of weight 1 of the group 0 + (3). Then

1) = (<i1'ί0)^o(Z2)ί>Γ)jlo(z2,=0 if iΦj

and therefore (0Z2,/lo(22)<Pi0))«o(/z) =
 0

By virtue of Theorem 3.1 if ε>0 is sufficiently small

Since Vtje 3F then for sufficiently large JV

e l l

In consequence of (4.5) to prove the inequality L2[φZ2]>0 we need only show
that with a sufficiently small ε > 0

Evidently

(l-6ε)|||Pc(Z2)φzJ||2-ε X || |PC(Z2)/J||2>0.
k=l

(4.6)

fc=l

Pc(Z2)0Za). (4.7)
k= 1

Let gl and fl

k be zth components of three dimensional vectors Vc(Z2)gZ2 and
Pc(Z2)/fc. Since (0 Z 2 ,Λ 0 (Z 2 )φ ( ° ) ) R o ( Z 2 } = 0 k= 1,2,3 almost everywhere in RC(Z2)
then (gl, J0(Z2)φ[0)/ί[) = 0 i,k=l,2,3. By virtue of Lemma 5.3

Re Σ (Fc(Z2)Λφ<°>,Fc(Z2)fe2)
fc=l

3 3

^ Σ Σ I— L-ί L-i
k = 1 i = 1

where ^= ||F,φΠy)||4 NM W H Write δ = minδt. Then

Re Σ (Fe(Z2)/t<>, Fcι
1L ^ 1

Σ /

3 3
V~^ >Γ~> I I ΐ 1 1 I I /•{

^0,5(1-5) || I Fe(Z2)0zJ

(4.8)

+ 0,5(1-5) Σ II |FC(Z 2)Λ| | | 2 .
fc=l
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From the last inequality and from (4.7) the relation (4.6) results if ε<(l — 6ε)δ.
Theorem 2.1 is proved.

Proof of Theorem 2.3. Let us suppose for definiteness that in the condition of the
theorem S2 is a group of permutations of particles 1 and 2. Then for breaking
Z2 = (C1?C2) with C1=(l,2) we can repeat all considerations of the proof of
Theorem 2.1 up to inequality (4.2). In this repetition ̂  = (1 — M|O), ψ = ψi^. We
shall obtain

where L2[ιpzo] and L3[φ] are defined by relations (4.3), (4.4). As in Theorem 2.1
one can prove that L2[_ψZO]>0. Let us estimate L3[φ]. Write

By virtue of Lemma 5.4 Try) = 0 if |x13| = |x23l' then ΨiEW2 and

Without any loss of generality we suppose HφJ^O z = l,2. Let us shown that
0 if N is sufficiently large. Setting Z(23) = {(23),(1)}, we have

+ 0,

-2ε||φ1M1-
1||2. (4.9)

Since supp{ψl}r^{K(Z2ι x)uS(N)} = 0 one can find a y>0 such that xesupp{tp},
the relation \x12\>yN holds and so |χ13|^0, 5yN if xesupp{ψ1}. Therefore, and
due to F12, F13eJ^; ΓC(Z(23)) = const Vx^ = const PX12 with the fixed q(Z2), then the
inequality

0,

is satisfied when N is sufficiently large. By virtue of Courant's inequality

8ε|| |Fc(Z (23))φ1 | | |
2-2ε||φ1MΓ1 | |2>0.

Finally since ψίeB(σ0'9Z(23}) with Bσ° - P(0)^2(JR0) and since /ι(σ0;Z(23))^0 we
have

From the last three inequalities and (4.9) the relation L3[ι/;1]>0 follows.
Analogously, we obtain L3[φ2]>0. The theorem is proved.

Proof of Theorem 2.2. Let B2 be a subspace of Bσ space which consists of
functions belonging to the second line of two-dimensional representation of S3

group. It is obvious that it is sufficient to prove the finiteness of the discrete
spectrum H0 only on Bσ

2. Since ψ(xl9x2,x3)= —ιp(x2,xiίx3) for ψ(x1,x2,x3)eB2,
B2 is a subspace of the space FXl(S1)P(0)JS?2(Λ0) from Theorem 2.3. That is why the
finiteness of discrete spectrum H0 on Bσ

2 can be proved as well as the finiteness of
in Theorem 2.3.
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Proof of Theorem 2.4. The theorem is proved as Theorem 2.1 because by virtue of
Lemma 3.2 [12] P(0)(Z2)β(σ; Z2) = 0 for any breaking Z2; here P(0)(Z2) is a
projector P(0) in space JS?2CR0(Z2)).

Proof of Theorem 2.5. As in the proof of Theorem 2.1 we shall show that

for any function φe W2

l(JR0)n.Bσ w^ suPp(ψ} outside of S(N) if N is sufficiently
large and ε > 0 is small. Suppose β > 0 had been taken so small that

K(Z'2;β)πK(Z'2',β)CS(N) if Z£ΦZ'2.

With these given β>0, ε>0 we shall construct functions wZ2, υZz according to
Lemma 5.1 and set gZ2 = P(0\Z2)ψuZ2, ΦZ2 = ψuZ2 — gZ2. By virtue of Lemma 5.2

(4.10)
z2

where ψZ2 = ιpuZ2, φ = φir, ιT = (l- ̂ i^
V z2

Σ

^3[ψ] = ϊ l l l ' 7 o Ψ l l l 2 + Σ (F0.t/3,φ)
i , j=l, i<j

As in Theorem 2.1 we verify inequality L3[t/0>0. Now we shall estimate the
functional L2[φzJ. Write Z2 = {(i ,;), (k)}, g = gZ2, φ = φZϊ Since Pm(Z2)g = g,
P(0\Z2)φ = 0 then (F0(Z2)ψ, F0(22)^) = 0 and (VtJφ,g) = Q, therefore

20,5|||F0φZ2 | | |
2+ Σ (

t,j=ι,t<j

J + 0, 5 1| I F0(Z2)0| || 2

,ψ). (4.11)

We remark that for the symmetry σ considered in the theorem,
P(0)(Z2)β(σ;Z2)φ0 is fulfilled. Consequently, due to assertion C (Sect. 3) the
operator h0(σ Z2) cannot have virtual levels on the spaces P(I)(Z2) B(σ Z2) with
/>0. That is why for some 81>0 independent of ψ we have

and

If N is sufficiently large then

ε I I I Fc(Z2)φZ2| ||
 2 + ((KJxJ + F,.̂ ))φZ2, φZ2) > 0 ,
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furthermore

Hence L2[tpZ2]>0 if

\-l\\2>V. (4.12)

It is obvious \\\Vc(Z2)ιpZ2 \\2-\\ \Vc(Z2)g\ ||2>0. To estimate || \Vc(Z2)g\ \\ we remark
the function g(q(Z2\ξ(Z2)) with fixed ξ(Z2) is in P(0)(Z2) JS?(K0(Z2)) and since

then

Hence (4.12) follows if (1- 10ε)L(L+l)>c and l^L. The theorem is proved.

5. Auxiliary Assertions

Lemma 5.1. Given arbitrary numbers β>0, ε>0 for each breaking Z2 into two
systems, one may choose numbers αe(0, /?), α^α, /?) and real functions wZz(x), vZ2(x)
xeR0 with piecewise continuous derivatives for |x|1>0 such that uZ2 = (l — vZ2)

1/2,
vZ2 = l if xφK(Z2;β\ vZ2 = Q if xeK(Z2ιa), and the next inequalities hold

z 2 l 2 }fe 2 Γ 2 <βMΓ 2 (5.1)
if xeK(Z2ιβ)/K(Z2ι^)9\x\1>0'9

{\^uZ2\
2 + \^vZ2\

2}\uZ2\-2<s\q(Z2)\-2 (5.2)

if xeK(Z2;^)/K(Z2^l W^O.

Corollary. For any function ψEW2(R0) with supp{φ} outside S(N)N>0 the
following inequality holds:

(5.3)

Proof. Let ^(ί) be such a real C^Kίj.) function such that
1. ί>j(ί)= 1 if ί^jβ, v j(ί) monotonicly increases for ίe[0, )8].
2. */1(f)(l-t>2(ί))1/2-»Oiff^-0.
We choose a number α t sufficiently close to β and set

«Zα(x)=v1(ί) if

Then

Since v(ί)-»0, ̂ -»0, t>J2(l — v2)-> 0 when t->β — 0 one can choose the number otj so
close to j5 that

and therefore inequality (5.1) is holds.
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Write ^1(α1) = d1, v2(t) = dl •(In(α1/α))~1ln(ί/α). Let vZ2(x) = v2(t) if ίe^αj,
Vz2(x) = Q if ίe [0, α], t = \q(Z2)\1 \ξ(Z2)\^1. At present functions uZ2, vZ2 are defined
for all xεR0. It is obvious that to prove the lemma we must verify only (5.2) when
α>0 is sufficiently small. Since \v2(t)\<dί<l if t<a1 then

Z2\-2 = \r^
^Γ1}(l-d?Γ1. (5.4)

|Γ2^2. (5.5)

So far as

then (5.2) follows from (5.4), (5.5) if α was taken so small that

Lemma 5.1 is proved.

Lemma 5.2. Choose ε>0, β>0 arbitrarily, and let Z2 be any breaking into ίwo
subsystems. Construct functions vZ2 and uZ2 according to Lemma 5Λ with the chosen
values of ε and β. Let ψ,g, φe W\(RQ) be any functions with supports outside S(N\

(5.6)

Then : i) one can choose c> 0 independent of ψ, g, φ such that

^
ii) if φ= Σ ^1(^(^2)) /ί(ί(Z2))j where φt(q) i = 1, . . . , m are βxed functions from

fί(ζ) are any functions from ^2(^(^2))' ίnen one can choose N
independent of ψ, f{ i=l, . ..,m such that

(5.7)
ί=l

Proof. From relations (5.1), (5.2) it follows that to prove (5.6) it is sufficient to
verify the inequality

\\ψuZ2\q(Z2)\ ~ 1 ||l(Zϊ;Λ/K(Z2iβ) ̂  8 1| I V0(Z2}g\ \\ 2

+ c\\φ\ξ(Z2)\-1\\2

κ(Z2lβ}/K(Z2;oι). (5.8)

Since |ψM| 2 ^2 |0 | 2 + 2|φ|2 and

then the inequality (5.8) will result from the relation

2||</>k(z2)|-1||2(Z2;/;)/K(Z2;a)^c||(/.|«z2)|-1!i2

:(

that is valid if c>2α~1 because |ς((Z2)|1>α|ξ(Z2)|1 for rφK(Z2;a).
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Let us prove (5.7). For this, due to (5.6) it is sufficient to prove that

m

c\\φ\ξ(Z2)\^\\l(Z2,βmZ2.^ Σεll l^ZJI- 1 '/ .-! 2 . (5-9)
i = l

Evidently

ί = l

Since

if

r E supp {̂ ) /,(£)} n {K(Z2 j8)/K(Z2 α)} ,

then J \<Pi(q)\2 dq^Q with JV-»oo that is why relation (5.9) holds for sufficiently
β*

large N. The lemma is proved.

Lemma 5.3. Let xεR\ yeR3, g(x,y)ε£>2(R6\ f(x)e^2(R3\ <p(y)eD(Ay)9

Φ = Ψ(y) f(x) and (g(x, y), Ayφ(x, y)) = 0. Then

\(g(χ,y)9φ(x,y))\£(l-δ) \\g\\ \\φ\\,

where

||φ|Γ2 \\Δyφ\\'2.

Proof. Let F+=g\\g\\-1+φ\\φ\\~l

9 ί I -=f f | | f l f lΓ 1 -φ | |φ i r 1 . Since (g,Δyφ) = 0,
1),^

that is ||F(±)||^||P;(/>||2||(/>|r1|M^IΓ1-(2(5)1/2. Substituting F+ and F_ and
squaring both parts of inequality we obtain

The lemma is proved.

Lemma 5.4. Let particles i and j be identical, and suppose

ψ(x) = ψ(xί9 x2, x3)e C0(^0)

is antίsymmetrical under the permutation x^χ. and P(0)ψ = ψ. Then ψ(x) = Q

if \XkA = \xkj\ fc*U-

Proof. For definiteness let i= 1,7 = 2. We find x3 from condition xe jR 0 : m^
+ m2x2 + m3λ:3=0 and set φ(x1,x2) = ι/;(x1, x2, — m~1(x1+x2)) = ψ(x l5x2,x3),
where m = m3m^1. It is obvious that P(0}φ = φ and φ(x l5x2)= — φ(x2,x1).
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Expanding φ(xl9x2) in spherical functions we shall obtain

where ρ. = |χ.|5 αf are angular coordinates of xt. Since P(0)φ = φ, then a\*™* = Q if
(/1,m1)Φ(/2, — w2). Therefore

oo I
V"1 V^ / \ y / \ y / \

/ = 0 m = -/

where alm = a\' ~m. For each / the vector {alm m = — /, . . . , / } is colinear to the vector
^fm /.-m of Clebsch-Gordan's coefficients. That is^why (see [13] p. 160) 0ίm(έ?ι,£?2)

consequently

= Σ koyzo(αι) *io(α2) + Σ «ϊ

From this it follows that the function φ(ρ l5ρ2,α1,α2)Ξφ(χ1,χ2) is symmetrical
under permutation α1<^ α2 and therefore antisymmetrical under the permutation
Ql<-*Q2.

By virtue of this fact φ(ρ, ρ,α1,α2) = 0for all α1 ?α2. But the equality |x1| = |x2| is
equivalent to equality \x1 — x3\ = \x2 — x3| with mx3= — (x1+x2). Thus, we have
established that φ(x) = 0 if |x13| = |x23|. The lemma is proved.
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