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I1. An Upper Bound*
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Abstract. This is the second part of the paper entitled, “(Higgs), , Quantum
Fields in a Finite Volume.” The proof of an upper bound for vacuum energy is
completed with the exception of some technical estimates.

1. Introduction

This paper is a second part of the paper [1] and contains the second, more
important part of the proof of the theorem formulated there. Let us recall the basic
definitions and the theorem. We consider two spaces of field configurations on the
torus

T,={xeeZ’: =L, =x,<L,pu=1,...d}:

scalar fields and vector fields. Scalar field configurations are the functions
¢:T,—R". Vector field configurations are the functions A:7T,—R? identified with
the functions A4:T* >R by the equality: 4, . 4., =A,(x). Of course the periodic
boundary conditions are understood here if the torus is identified with the subset
of ¢Z*. We consider the action

S(A,¢)=73 ). DY) B+ Y e'Gmyl(x)®

bC T, xeTe

+Md>(x)l4)+%bz &l(0°A) (b)) +3 5 ZT elAP-E, (11
CcTe xeTe

where m3=m? 4+ dm?, m* >0 and ém? is the mass renormalization counterterm, u3
>0, A>0 and E=E,+E,, E, is the normalization factor and E, is the
renormalization counterterm of vacuum energy. The counterterms dm? and E, are
defined with the help of perturbation expansions. The more detailed description of
(1.1) is given in the first part 1, Chap. 1].

The partition function is defined as usual,

Zi=[dA [ d exp(— SHA, $)). (1.2)

*  Supported in part by the National Science Foundation under Grant No. PHY 79-16812

0010-3616/82/0086/0555/308.00



556 T. Bataban

and the integration is with respect to the natural Lebesgue measures on the field
configurations. The fundamental result of the paper is

Theorem. For the dimensions d=2,3 there exist the constants E_, E, independent
of ¢, T, and such that

exp(—E_|T)SZ Sexp(E,,|T)). (13)

In the first part [1], we have proved the first inequality above, the lower bound.
Now we will prove the upper bound. We will use the notations, methods and
results of [17], and we will refer to this paper adding I before the numberings of
chapters, theorems or formulas.

2. The Upper Bound

This chapter is a fundamental part of the paper. In Chap. 1.3 we have analysed the
forms of the actions and their expansions with respect to the vector fields. We will
use these results here. The basic ideas of the proof of the upper bound are the same
as described in this chapter although there are two essential differences. The first
one is the form of the restrictions on the fields and their derivatives. Here, the
restrictions will be introduced on the fields B, A4, v, ¢ directly and not on the
functions of these fields as in (1.3.27)—(1.3.29). These restrictions have a different
form in accordance with the positivity properties which we will prove for the
actions S®. The second difference comes from the fact that “small” and “large”
fields appear in each step of the procedure here. Each time we divide the lattice
into two domains corresponding to these fields and we apply different procedures
in these domains.

Similarly, as in Chap. 1.3, we will describe the procedure for the first step very
briefly, and next for the k+1 step.

A. First Renormalization Transformation

We have to calculate the integral T; [T, ,[exp(—S9)]]. We rescale it from
e-lattice T, to 1-lattice T, and we get the integral (I.3.7). Omitting the constant
factors we have

fdAfdcbeXp{—%aLd“z > 1Bp)— QAP

- %bCZTl l(04) (B>~ %#(2;2 ZT |A(x)I?

—zaL’"? y;n lp() = (Q(A)P) WP = 3 bCZTl (D ¢) (b}

—ym’e? ZT [p(x)]* — 2e* ZT lpCe)l*

—1om2e? ZT lp(x)|> — E} 2.1)

The expression in the above exponential function has several positive terms. Next
we will prove that every action S® can be bounded from below by the positive
terms of a similar type and the remaining terms are sufficiently small in
comparison with them.
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Now we will introduce the restrictions on the fields. Each restriction is
connected with some positive term of the action, so the restrictions will be on the
absolute values of the fields, their derivatives and the connections between the
“old” and the “new” fields. If any of the following inequalities holds

IB(y)—=(QA) (I >ple).  1(04) (D) > ple),
|AGx)] > #1—8 p(e),  [w(y)—(Q(A)P) () > ple), 2.2)

0
1
I(D,9) (b)) >ple),  |p(x)> WP(E),
then the corresponding factor in (2.1) satisfies the inequality

exp(—(...))<exp(—cop(e)?), (2.3)
with some positive constant ¢, e.g. ¢,=3min{a, 1}. The term on the right side
above is very small. It follows from the definition of p(e)=by(1+loge™ '), p>2,
that exp(— cop(e)?) is smaller than the arbitrary power €%, so it can compensate the
factor arising even from a very rough estimate of the action in a big neigh-
bourhood of a point or a bond at which one of the inequalities (2.2) holds. This
idea is basic for the procedure described below.

Let us denote by A* the set of all bonds contained in A, i.e. with endpoints
belonging to A, for arbitrary subset A C T,. The following equality holds

1= 3% X > Il ABO»:)—QAW)I>pe)})

P,CcT; QuC Tt Ry,CTy yePy

[T 2{BO)— QA WI=p@e)}) [T x({l0A) B)] > ple)})

yeP§ beQ,
T tea o) =0 1 2({lacl> - pi
1
] {flacoi o)
=1 2 XX I JXesXoXosKr ks (2.4)

Py,CT1 QuC T RyCTy
An analogous equality for the scalar field is

=% X 2 [l dlw®»)—(QA)d) 1) >pe)})

PsCT1 QsC Tt RCTy yePy

[T dllw) = (@A) W] = ple)}) blg 2D 1) (B)] > p(e)})

yeP§

1
BIRUCRICEREIN | ({61 500

11 o fioe 5 53t

xeR§

=) X > Xp XpeX0 X os R RS > (2.5)

PiCT{ QuCTt RiCTy
where A(e)=Ae* ¢
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Unifying these two expansions, i.e. multiplying (2.4) and (2.5), we get a joint
expansion:

L= > X X e el

Py, PsC T} Qu, OsC Tt Ry, ReC T
20,108 X0 X Qs R, X RS R I RS - (2.6)

We assign a division of the lattice T} into two domains with each term in the above
sum on the right side. The first one contains points and bonds at which the fields
or their derivatives are large, for the second domain they are small. We will use
here the division of the lattice T, into large blocks described in the first part [1].
Let us define

Aj is the sum of all large blocks of T; distant from one of the
sets B(P,), Q,, R,, B(P), Q,, R, less than r(e)=R(1 + loge™')".
The numbers r, R satisfy r>1, R>R, (R, occurs in the
formulation of Proposition 1.2.1). 2.7)

Next let us define a sequence of sets A4,, 4,,... by an induction

A{ . is the sum of all large blocks of T, with distances from
the set A¢ less or equal r(e). (2.8)

Of course all the fields are small on the set 4, and on the neighbourhood of 4, of
the additional thickness r(e) also. In (2.6) some terms have a set 4, in common, so
we can represent this sum as the sum over all possible sets A,, and next for each
fixed A, we have a sum over all admissible sets P,, ..., R, i.e. defining the set A by
(2.7). In this last sum we can make a partial resummation. In the class of ordered
o6-tuples {P,, Q,, R, P, Q, R,} the inclusion relation between the proper sets
defines a natural partial order relation. Thus, there are minimal elements in the
class. Let us denote by A% the set of the points (the bonds, the blocks) in T;
distant from A, less than r(e). It is easily seen that

¢ . e
> Xp,Xpg -+ XRARs
{Py,..., Rs}admissible
— € \C aC € a €
= ) Lo X X0 o AR IR A A, > 29)
{P,,..., Rs}admissible, minimal

where the last characteristic function denotes the product of the characteristic
functions giving the corresponding restrictions on the vector and the scalar fields
ontheset A, A* |, A_,. Let us notice that the minimal elements are the elements
for which the sets P, ..., R, are maximally “diluted.” For example, this implies that
each pair of elements belonging to the sum of these sets has a distance >r(c).
Further we have

1= [the expression on the right side of (2.9)]. (2.10)
Ao
The above expansion is introduced under the integral (2.1) and we get a sum of
terms.
Now let us make a first estimate of this integral, namely in each term of this
some we remove the interaction terms from the set A4. We use the fact that



Higgs Upper Bound. II 559

dm?=0(e" 1) for d=3 and dm* =O(1 +loge™ ') for d=2. Hence
Me)ll* + 3ome?|g]> = — O(e), (2.11)
where x,=1 for d=3 and k,=2—0o with arbitary «>0 for d=2, and
Me)ll* + 3om?e?|p1> 23 Ae)lpl*  for [pI*ZO(1)(1+loge™ ). (2.12)
From these estimates we get the following one

x;sexp[— S (M)l + Lome? p(x)]?)

xeAd§
<exp(—3p(e)* IR} exp(0(e")|45))
Sexp(—p(e)’[R,)) exp(0(e")|45)).- (2.13)
Similarly, for the constant E, given by the perturbation expansion (I.1.13), we have
Ey=E,\(A)+E,(A5),  Ey(45)=0(9)|A5). (2.14)

The last estimate and the above mentioned estimates of dm? are connected with
the properties of the perturbation expansion and they will be proved in the next
paper. Let us denote

(o= ) 15,1,
{Py, ..., Rs}admissible, minimal for Ao
Ao Le Ko, €XP(— pE)? IR ). (2.15)

Let us analyse more precisely the restrictions on the fields in the domains A%,
For each ye A’, we have

()l = lL_" Y UAT, x))d>(x)|

xeB(y)

+pE) =L Y o)l

xeB(y)

1 2
+ple)= A7 ple)+ple) = Wp(ﬁ) :

Further, for arbitrary xe B(y)
[UA(L, ) p(x)— ()l
Y. U, ) (D ¢) (b)

bCTy, x
= ) ; (D 4¢) (DI =(L—1)dp(e),
hence
(Q(A)p) () — dI =(L—1)dple),  |yp(y)— P()I=Ldp(e),
and

lw(y) = U(A(T, ) ¢(x)|=2Ldp(e).
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Finally for arbitrary
oxy, xeB(y),  x'e€B(y),

we have
[U(A, o<, x DU Nw(y) =) = (V) — d()]
+ ) (D 4&) (D) + [w(y)— p()| = 4Ldp(e).

bC Ty, xulx, x YUl xr yr

In particular

[U(Ay, Y O))w(y) — w0 =3Ldp(e).

It is worthwhile to notice here that this particular estimate implies the previous
more general cases.
Let us gather the estimates for the scalar fields on A4 _,:

lw(y)— U(A}, ))p(x)| =2Ldp(e) for xeB(y),

2
lw(yl= WP(S) for yed”,, (2.16)

[UAy, YD) —wy)I=3Ldple)  for <y, yred™ .
The identical considerations can be done for vector fields and we get

|B(y)— A(x)|<2Ldp(e) for xeB(y), and
2
IBy)I=——ple) for yed ., (2.17)
Mot

IB(y)—B(y)|=3Ldp(e) for <(y,yHed™,.

The same estimates as (2.16), (2.17) will hold for the fields in each step with ¢
replaced by the corresponding L'e.

Now we will make a translation in the fields 4 analogous to the translation
(I.3.10) in the proof of the lower bound, only now it is connected with a conditional
integral, the conditioning in the set AS. Thus we make a translation

A=A'+al~2CYQ*B, (2.18)

where C{) denotes the covariance with the Dirichlet boundary conditions outside
A, introduced in Chap. 1.2. Its properties were described in Proposition 1.2.3.

In the third section of this chapter we will prove a general result from which it
follows that the field 4’ is small on 4, i.e. [4(x)|SO(1)p(e) for xeA,. Next we
divide the field (2.18) into two components: one “small,” with respect to which we
will expand the action, and one “large” which will remain in all the expressions in
the preceding form. To define this division let us introduce a function 0, equal to 1
on A, and changing smoothly from 1 to 0 on a slice of thickness <M surrounding
A,. We have

A=[(1—0,)(4'+aL >CQQ*B)+0,aL~*(C”Q*B]
+0,(A'+aL™25COQ*B+al (1 — ) COQ*AyB)= BV + 4", (2.19)
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where {C9Q* denotes an operator with the kernel

(CC(O)Q*) (x, y) — &:(x’ y)L_d Z C(O)(X’ x’) R Xe T1 s ye T{ s

x'€B(y)

and the function { is determined by the conditions:

(=1 if |x—y=3r(e),
{x,9)=0 if |x—y>4r(e).

A definition of the operator (1—{)C‘Q* should be clear. A” is a small field and we
can expand the action with respect to this field. At first let us notice that the
restrictions (2.16) on the scalar fields can be replaced by the same restrictions
putting B instead of 4 and c,p(e) instead of p(e), with some constant c,
independent of e. Similarly the characteristic functions y,_, , for the scalar fields
can be estimated by the corresponding characteristic functlons with BV and ¢ D(e)
instead of 4 and p(e). For example, we have

(D 1¢) () =(Dr) (b) +(U (A7) — DU(B) (b ), (2.20)

hence

(D) (DN =D 40) (D) +|U(AR) — 1] (b )| = ple)
1
+ 6(8)0(1)p(8)Wp(8)§ cyple). (2.21)

The remaining restrictions can be considered in a similar way. The characteristic
functions with the new restrictions will be denoted as previously.

Now let us expand the action with respect to the field A”. This expansion was
described already in Chap. 1.3. We use the formulas (1.3.14)-(1.3.16), with BV
instead of BV, Let us notice that now we have worse restrictions on the fields v, ¢,
with the additional factor A(¢)~ !4, so we have to expand to higher power than
before to compensate for these factors, e.g. we have to take n=7. After the
expansion we get the fundamental quadratic form for the fields v, ¢ in the external
field B and the terms describing an interaction with the field 4”. We remove this
interaction from the set A%, e.g. we estimate

(D) (b)- F1(— Apd(b ) = ¢ p(e)O(De(e)p(e)e) ™ ple) = 0(e), (2.22)

and similarly the other terms, thus the interaction is estimated by O(¢°)|A45NA,).
From the definition (2.19) and the properties of the propagator C‘/fo), it follows that
for the interaction terms in the domain A, the field A" can be replaced by A’ and
we get the additional term O(¢*)[A], x©>d.

We make a next transformation of the integral, namely we make the
translation

¢=¢'+aLl 2CBY)Q*BV)y . (2.23)

This translation changes the interaction, and we get an expression almost identical
to V' in Chap. 1.3, only with the modified propagators for the scalar field and the
summations with respect to variables in the vertices restricted to the set A,. We
will change slightly this expression. Let us introduce a configuration B by the
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formula
BW =L~ 2C®0*B, (2.24)

and let us notice that Lemma 2.3 implies also (3,B™")(x)=0(p(¢)) for xe4,,
u=1,...,d. Hence the assumptions of Proposition 1.2 are satisfied for B'") on A,
and we have
al.” A(CQBM)QH(BV)y) (x)
=aL™*(G (A, BY)Q*(B) Agy) (x)
+0(E) = 1y V) +0(), k>d, xed,. (2.25)

We denote by V'9(A,, BY,p, A', ¢') the expression for the interaction obtained by
applying (2.25) to the previous expression. We will prove also in the third section
that the field ¢’ is small on the domain 4,.

Let us introduce the characteristic functions

[ ¢’ =0Mpeh) {14 () = 0(W)ple)}),

XeAs

and let us denote them by y'. Further let us denote by y, the characteristic
functions giving the part of the restrictions (2.16), (2.17), which involves the new
fields B, v only.

As an effect of the considerations of this point, we get the inequality

2n=s ;jdA’jdqﬁ'ConA_lx’xl

yeT1

“exp [—%aLd_ 22 4GB () - @AY )

— A (= A+ pge) A +al™? Y Alb,)(CRQ*B)(b-)

best(Aop)

— 1B, A By —1aL 2 Y [(A5y) (5)— (QBDV)$) (v

veT
~3P (= A+ me?)g
+al™? Y, @'(by) UBL)(CABM)Q*BV)y)(b_)

best(A3)

=3, A BV Yy + VO, BY,p, A, ¢)

+0()1 45+ 0| T, (2.26)

where the new quadratic form AY)*(B') for the field y is defined by the general
formula

Cp, ATV HQ Ay =aLl ™% Y [p(y)l?

yed’
—a’L™*(p, QA)CY(R, AQ*(A)ypy,  ACQY,
(2.27)

and the similar formula holds for the vector field.
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A next operation is a calculation of the integral in (2.26). This operation can
not be done on the whole set T}, as in Chap. 1.3, but on some subsets of T} only, on
which the fields 4’, ¢’ are small. We will integrate each term in the sum on the right
side of (2.26) on the set A, and it will be a conditional integration with
conditioning on 4.

Let us recall this operation in a general case. Let Q be a finite set, 4 CQ, and let
A be a positive operator on a space of field configurations on £, A , its restriction
on A. Then we have

J TT do(x)exp(—3<¢, A$>) exp({ L p)) F(P 1) G 40)

xef
= dex) exp(— 4, A>) exp({f; D) G(¢ 1 4.)
S dug (VPP — A AP ye+ A1 f), (2.28)

where dp, . is a probabilistic Gaussian measure with the covariance 4 .

In our case A is given by the main quadratic form in the fields A4’, ¢', f is
obvious, A=Ay, F=y exp(V%(A,)), and the function G is the product of the
characteristic functions {7, _, . 4¢%; and the remaining exponential functions, the
rest of the characteristic functions are estimated by 1. The expression (¢’
—A;'Adt ) (x) for vector fields has the form

A+ Y CPx,b )A'(b,), xeds, (2.29)
best(As)
and for scalar fields

)+ Y COBY:x, b )UBV)P(b,), xeds. (2.30)
best(As)
Because the fields 4', ¢’ are small on 045 = {xe A5 :x=>b, for some best(A;)}, the
second terms in (2.29), (2.30) can be estimated by O(1)p(¢) and the characteristic
functions y' [the expression (2.29)]- ' [the expression (2.30)] can be estimated by
the functions y ,,(4)y 4,(¢) defined in the same way as ' but with a suitably larger
constant O(1). The expressions (2.29), (2.30) occur also in the interaction V%(A.),
but then xe ., and the second terms are of the order O(¢*). So the part of the
interaction containing these terms can be estimated by O(¢*)|4,].
Thus in our case the integral with respect to the probabilistic measure in the
last line of (2.28) is estimated by

jdﬂc{(g)(Al)jd:uC/(“g)(B(l))(¢,)XA5(A/)XA5(¢/)
. exp(V(O)(/l7, By, A, ¢)+ O0(9)|4,]). (2.31)

To this integral we apply the lemma in [2]. Using the lemma and some results of
the third paper, we can estimate the integral (2.31) by a cumulant expansion to a
sufficiently high order 7 plus O(¢¥)|A1,|, x>d. Here there are stronger restrictions
on 7 than in Chap. 1.3 because the estimates on the expressions in vertices are
weaker, thus 7 has to be >12 for d=3 and >4 for d=2.

As a result of the cumulant expansion we get part of the perturbation
expansion in coupling constants, and we estimate the sum of terms of order higher
than 7 by O(¢")|4,|. As a result we get an expression equal to 21254, BV, y), i.e.
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to the expression obtained and analysed in Chap. 1.3, the only differences being
that the summations in the vertices are restricted to the set A, and the scalar field
propagators are modified. Thus we have

(2.31) Zexp(2VH(A,, BV, p)+ 0(£9) | 4,)) . (2.32)

It is worth mentioning here that the above inequality can be obtained in a simpler
way, without using the lemma. This can be achieved by integration by parts as in
[12] and then doing some elementary estimates.

As a result of all the operations which have been done up to now, we get the
inequality

21) Y " M(A,, B,0,BY, )
Ao
-exp(ZP (A, B, )+ 0(0)| 45|+ O(eM)| T3 ), (2.33)

with x,>0, x>d, and oL given by the formulas

Q"M Ag, B, OBV )=y, [AA ALy s, g
-exp{—%aLd_z Y. 1B)—(QA) ()I* = 3<A, (— A+ pge?)A)

yeT1

—1aL?2 Y Jp(y)— (Q(BY) ) ()12 — 1<, (— A0, +m?e?)p>

veT}

=X1jdA rAgjdd) rAgCAOXA_1mA§'eXp[~%aLd_2 Z IB(y)—(QA) ()I*

yeAds§

— LA (= A%+ p2eH) Ay —Lal "2 Y lp(y)—(Q(BM)$) ()

ye A§
— 3 (= Ao as+mP e p>+5 Y, AbL)-CRAb_, b)AD',)
b, brest(As)
+al™? Z A(b+)-(C(,?5)Q*B)(b_)
best(As)
—3(B A EBY+5 Y d(b,)- UBL)CYBY b, b)
b,b'est(As)
UBM OB )+aLl™> Y b)) UBL)Y(COABD)Q*(BW)y) (b_)
best(As)

—%<w,AS§’L(B“’)w>MdAU56Xp(— 3A(CP) T AD)

fdot , exp(—5{e, (CRAB) ™ 1$)). (2.34)

Because the first representation on the right side above was obtained by doing the
translations in the fields 4’, ¢ inverse to (2.18), (2.23), we have

BW=(1—-6,)A+6,BY, (2.35)

and the characteristic functions y, . 4¢ give the restrictions on the fields B, p, 4, ¢
on the set A_;nAS. The functions x, and {, have the same meaning as before.
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The integrals in the last line of (2.34), after proper rescaling and multiplication by

(a(Lg)d_z)%Msl ( alLe )d 2)2|Asl
2n ’ 2n ’

are equal to the factors Z(©-2 Z(©-5B") calculated on the set A instead of T,. We
will denote them by Z(, Z(O {BW). A product of these factors coming from each
step of the procedure will be used in the sequel, instead of the factors Z;, Z;(A)
used in Chap. 1.3.

The second representation in (2.34) was obtained by integration with respect to
Al @14, We will transform it further in order to get the same representation as
in Chap. 1.3, when the fields B, y are restricted to the set A,. We have

aL™? Y A(b,)-(CQ*B)(b)=aL™* Y, Ab,)

best(As) best(As)
(CR0*ASB) (b_)+0(e)|045], (2.36)
3<B, AL "By =1 A¢B, AV F AEB)
—a’ L™ (A5n 4B, QCRQM (AN AT)B)
+4CAGB, A AGBY 10|44, (2.37)
for arbitrary «.

Similar representations and estimates hold for the scalar field expressions, but
there are essential changes also. In this case it is convenient to make all the
expressions, except the basic quadratic form, independent of the field BVt
because then they are unchanged in the next step of the procedure. This is achieved

by imposing proper boundary conditions on the fundamental Laplace difference
operator. We have from Proposition 1.2.1.

32 db ) UBLYCYBY b b )UBL)¢(Y,)

b,b’est(As)

=5 Y $b)UBY)C(AL, BV ;b b YUBP)$(b)

b,b’est(As)
+0(9)[044], (2.38)
al™? ) ¢(b,) UBL)(CPBD)Q*BV)y)(b_)
best(As)

=aL™? Y ¢(b,) UBL)(CY(AE, BY)QHBW)y)(b_)

best(As)

+0(e")|04,], (2.39)

L, 4GBV
=3 Ay, A4 KA, B Ay
—a? L™ *{Agp, Q(BY) CLAAS, BD) Q¥ (BY) (AgnA)p)
+ 3 Ay, AV (AL, BY) Agyp) + O(") | A5 (2.40)

Let us denote by ¢V"“(A,, B,0,BY,p) a density given by the second repre-
sentation in (2.34), with the expressions on the left sides of (2.36)-(2.40) replaced by
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the expressions on the right sides, obviously without the errors. Also let us denote
by o'"V"H(A,, B, 0,BY), y) a density obtained from ¢*(A,, B, 0,B", y) by
removing the basic quadratic forms on A from (2.37), (2.40). Then we have

\Q(l)’L(AO> Bv 013(1)5 U)) = Ql(l)’L(AOﬁ Ba 613(1)7 IP)
-exp[—3<A B, AV LA B
=3, AV KA, BO) Agp)], (2.41)
0D H(A g, B, 0,BY, ) =o' " H(Aq, ASB,0,B, Ayp), (242)

and ¢""* depends on A,B" only through the factor Z{)(B").

The last step is a rescaling of the obtained expression from L-lattice to Le-
lattice. In the final expression we must include all the numerical factors. We do not
write this expression here because it will be written in a general case in an inductive
hypothesis.

B. Inductive Description of the Action after k Steps

Now we will write the expressions and their estimates we get after k steps of the
renormalization procedure. We have
zr< {dAfd¢
A= DC T D, admissible

k), Lk 0 k—1 k),
Q( ) 8(/12) )a ces A(O )a A, GkA( ) s’ d))

A&O)C Ti,admissible

*€Xp (g(k), Lkg(/lgk— v, OkA(k)’gs $)—E,

k—1
+ T 0Ly AY A

J

k—1
-exp( 0((Lfs)")lT}j’|). (2.43)
Jj=0

Here the word “admissible” means that the sets A% have to satisfy all the
conditions resulting from the construction. The sets are unions of big blocks, the
set A is either empty or has at least one point whose distance from A4 is bigger
than r(e). In general AY" Y CAY”, and either A§" " is a maximal set composed of
big blocks and satisfying this inclusion, or the set AY"°nAY" has at least one
point whose distance from A§* 1) is bigger than r(L/* '¢), and so on. Of course the
sets A are defined in the same way as A,, r(¢) is replaced by r(L’¢) only. Finally let
us notice that A does not mean the prime operation applied j times to a set A,, for
different j these are independent sets. We will use the same notations for the sets in
different scales. Now we will give a detailed description of the expressions in (2.43).
At first we have the following formula for A%-*

AWt =a(L¥e) NGO} A, 2.44)

where the function {®¥(x, y) is defined for xe T,, ye T{¥, is “smooth” with respect to
x in the sense that [(07{™)(b,y)|=1, supp{™(-,y) is contained in the set
{xe T, :Ix—yl<r(L*)—2M} and (¥(x,y)=1 if |x — y| £3r(L*). The function 0, is
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defined on T, is equal to 1 on B*~ (A%~ ") and varies “smoothly” from 1 to 0 on a
slice of thickness <M surroundmg B" 1A%~ 1), These functions are rescaled in
(2.44). The density o®-¥ is defined inductively by the formulas generalizing
(2.34)~2.42). At first we define

Q//(k),Lke(A(O) . A(k~1) A, 9 A(k),s d’)
—XﬂLL’Z la[TLLA[CA(" DX A% D A age- ek — 1, Ag~ De
QU DT AD, AT, AL AL )

-eXp[—%<A‘6" g1, AT DL e g2 g0,

—5AETP AT D, ACTIETBE AG TP A AT, A)

(A% AN — (B A%,

Ak 1),L"“‘a(Bk-—l(A(Zk-—Z)/mA(Sk* l)c)) ;1«)

{(AETVAAE D¢

—3CAGTIG, AR DB AR ), AR ARV T]]L (245)
where A=(1—0,)0,_ A% *4+0,4%-% and the characteristic functions y,, CN -
etc. are defined analogously to the correspondmg functions in Sect. A, with ¢

replaced by L* 'e and A, by A% Y. Another representation is obtained by
calculation of a conditional integral in (2.45) with the conditioning on A%~ Ye:

Q”(k),L"s(A(O) A(k—l) A 0 A(k),e d))
= J AA'T yge-ve [ A’ T o= et M H(AET D A, AN E(AET Ve, ¢)
. §A8k~ 1)XA(_1<1~ DAAY- el — 1, Agk~ Y k= 1), L l8(/1(00), cees Ag‘~ 2), A,, Al, ¢')
.exp[_l<(A(k‘2)/mA(k—l)c)A/ A(k“*1),Lk“£(/1(k—~2)/m/1(k~— l)c)A/>
41 <(A(k 2) A(k l)t)Al A(k 1), Lk~ le:C'(k 1) Lk~ ‘aA(k 1), Lk~ 1s(A(k 2)’ﬂA(k 1)c)A>
—a(L¥e) 2 {(AE 2 A AL D)4, A% D, e FCOEIMTIQRAY — 54, AR 54
—%<(A(6k_2)'m/1(3k_ I)C)qy, A(k_ 1),L"“15(Bk— I(A(2k~2)/mA(5kA l)c)’ ;1/)
AR AE 194
_ <(A(6k—2)/m/1(3k—1)c)¢)/’A(k—l),Lk“s(Bk—I(A(zk—z)/m/l(sk—l)c),;l/)
(AE DAL D
LA D AET D, A (B A ), 4%
(Y0 AE 9
+L<(A(k— l)mA(sk“‘ 1)C)¢)I’ A(k— 1),Lk"£(Bk—l(A(2k—l))’ A(k),e)
ClG (BRI (AE), AM
'A(k 1), Lk~ 13(Bk-—1(/1(2k—1))’ A(k),a)(A(;c*I)GA(Sk—l)c)(bl>
_a(LkS)—2<(A(3k~1)mA(5k~ 1)c)¢/,A(k—1),Lk“‘e(Bk—1(A(2k—1))’ A(k),e)
G BN, 490 AN )
— K, AR B (A8, 4999
ZG BT ZGG T (BT (AG T Y), AW ). (2.46)
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This representation is changed further in a way generalizing (2.36)~(2.40). The aim
is to get a representation proportional to the basic Gaussian density after k
renormalization transformations, i.e

exp[ — 3 (A, ALY — 3 (p, AP HB AL D), AP,

if the fields A4, ¢ are restricted to the domain A%~ !". We use Proposition 1.2.1 and
restrictions on the fields, and we estimate unnecessary terms by O((L*~ *e)<)| A%~ 1|
with x>d. More exactly, we have
$, ARTB (AT ), AV 99
<A(k 1)/c¢ A(k) Lka Bk I(A(k I)ﬂ/l(k l)c) A(k) e)A(k 1)/c¢)>

B, AGLB A I AG D0, A9 (A8 4G D)

+%<A(6k— l)'(b’ A(k),ch(Bk* 1(A(2k* I(A(Zk— 1))’ A(k),z)A(ék- 1)/¢>

+O((L* tey) | A%~y (2.47)
and similarly for the form <A,A(/{2,;’:’18,A>, except that Neumann boundary con-
ditions are not introduced. The third and ninth terms in the exponential in (2.46)
are linear forms in the fields 4, ¢. We restrict them to A%~ "'n A%~ 1" and in the
ninth term we restrict the domains of the definitions of the operators by
introducing Neumann boundary conditions on the boundary of
B 1A% DA% D) Thisisdone also for seventh and eighth terms. Terms omitted
are described more precisely later, in (2.109) particularly. This way we get a density
which we define as @™ =(AD, ..., A%~V 4, A®-c ¢). It has the following
property:

Q"I LEAD, ALY 4,0, AR p)
= Q(k)’Lke(A(()O)a LER2Y A(Ok_ 1)9 A» ekA(k)’ 8) ¢)
-exp(O((L* )91 A5~ 1)), (2.48)

and if we define a density ¢'® " by the equality

Q(k)‘Lks(/lE)O), e A(Ok~ 1)’ A, gkA(k),s, ¢)
=Q'(k).L"8(A(O) . A(k—l) A, 9 A(k),s )
CXp[——<A(k l)lA A(k) LkaA(k 1)1A>
— 3 ATV, AN LHBHAGT ), AP AGT V], (2.49)

then we have

Q’(k)’LkE(A(OO), e Agc— ”,A, QkA(k),e’ ¢)
= QO HAD, AT, YTV, 0, AN, AE V). (2:50)

Here we treat 6,4% as an independent field configuration appearing only as an
external vector field in the expressions with scalar fields. Further, o® % is defined
in such a way that ¢'®-X** depends on the configuration BXA%~ 1) A4%"¢ through
the factors Z‘l{%J{“JE(Bf(A(Zf’), A?) only.
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The inductive definitions (2.46)~2.50) allow us to write an explicit formula for
O(k),Lkg(AE)O)’ o A(Ok— 1)7 A, OkA(k)’g, ¢) )

We do not do it because we will not need this formula, but let us write a
formula for a whole external vector field in its scalar field part:
k—1
Af=(1-0)A,+ > (1-0,, )O,AD 40,487, (2.51)
ji=1
where AY¢ is defined by the formula (2.44) with j and 4; instead of k and A.
Obviously we have B* (A%~ ?)A*=A4" [we write here Ak =4, ¢k =¢ in
(2.45), (2.46)]. Also let us write a formula for the Z-factors. In the previous paper
they were composed into a factor Z,, but now it is inconvenient because they
depend on different sets AY. We have

Z4p(BIAY), A1)

N .
(a(u‘“a)d-z 2

2 ~
) b (- o CPBIAD, B0 25

for j=0,1,...,k—1. In each step we expand these factors with respect to a new
small field, hence the configuration A* is changed after each step.

The expression 2%~ 1 "9 A®e $) is the same as the corresponding
expression in Chap. L3, except that there are different propagators and sum-
mations in vertices are restricted to the set B¥~}(A%~ V) with the help of the
characteristic function, or some function g, A detailed description of
PO L5 A&= 1y Wwill be given in a paper on renormalization of perturbation
expansions.

C. A Renormalization Transformation in a General Case (k—l—l Step)

We apply the renormalization transformation Ta’“f 1_ oeaco.cL 1] to the ex-
pression under the integral on the right side of (2. 43) We get an expression
dependent on the new fields B, y and its integral over these fields is = Z*.

Now we will estimate this expression from above. At first we rescale it from the
L¥e-lattice T, to 1-lattice TV. Omitting the numerical factors, we get the integral

Y dAN(ﬁeXp{—%aLd'z Y 1BO)—-@AKP

(k= 1) (k)
A0 yeT

.....

=3al'? 3 [w(y)—(00,4")) (Y)lz}

ye TU)!
. Q/(k)(AE)O), s Ag‘u 1)’ A(,]k_ I)ICA, GkA(k), A(7k— 1)/c¢)
cexp[ —3<A¥ TV 4, APV AF 4
=5 AET Y, AMBHAGT V), AP AGT V' P)]
expPP(AE= 1 9 AW ). (2.53)
Let us recall the formula for A® after the rescaling

AP =q, (WG 0¥A, (2.54)
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and the restrictions on the fields 4, ¢ given by the characteristic functions y:

@A) (BN =c,p(L* o), AN p(L*" ),

Lk1

(D 7008) (B) ¢, p(L*" ), (2.55)

Cyq — 1)y
IQ{)(X)I_WP(Lk 18) for XEA(_’_(II),

bCASTY . AW—LTE Y A9
{x,x'>Ch

Now we introduce the new restrictions on the fields B, v, A, ¢ considered on
the set A%~ 1", The restrictions are identical to these considered in the first step,
Sect. A, and are given by (2.4)(2.6), with the replacements of ¢ by L*, T, by
A%~ and the field 4 by A® in the expressions for scalar fields. We will not
rewrite these definitions, except the definition of AP : AP is the sum of large blocks
of the lattice T contained in A%~ ", distant from the set

B(P®)uQ®PURWUB(PP)LQP URY

more than r(L*e). Replacing 4, by A, we have the identities (2.9), (2.10) also. We
introduce (2.10) under the integral (2.53) and we make a first estimate of it, namely
we remove the interaction from the set B{A%™ "'~ A%°) leaving the expression

IRk
only, = L~*, where of course
=4, G (BXAS ™), AR)QHAD) AL (2.56)
Such a possibility is assured by the following theorem.
Proposition 2.1. Under the conditions (2.55), we have
PRANED 0,4, ¢)

— ML) > 7 lp®(x)*

xeBk(A(k' b nA“‘)C)

+P(AB,0,4%, )+ O(L¥e)0) A%V A A%, (2.57)

Similar conclusions hold for other expressions which will be included in the
action in the later stages of the procedure.

This theorem is a corollary of the analysis of the perturbation expansions.

Now we want to use the first term on the right side of (2.57) to produce small
“convergence factors” as in (2.13). To do it we will prove the lemmas which were
used in Sect. A already. They will be based on the following

Proposition 2.2. Let Q and A satisfy the assumptions of Proposition 1.2.1, then for
e(L*e) sufficiently small there exist positive constants 8, ¢,, R, independent of A, k,
Q and depending on d, a, M, such that

(DG (L2, A)Qji(A)) (b, y)| < cq exp(—d, dist(b, ), (2.58)
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for bCQ, dist(h, Q)= R,, ye Q®. The identical inequality holds for G(Q, A)Q}(A),
and for D,0G,Q,Q,, A)QE(A4), 060G .2, A)Qi(A) with the additional factor
exp(— 3 (dist (5.2°) + dist(129).

This proposition is a simple corollary of Proposition 1.2.1. At first we will apply
it to prove the necessary properties of A% ; especially we would like to prove that
this configuration satisfies the assumption made on vector field configurations in
Propositions 1.2.1. It will follow from

Lemma 2.3. Under the restrictions (2.55), we have
AB(x)= A(y) + O(p(L*e)) = (Qjf A) (x) + O(p(L*¢)),
xeBy), yedlI, (2.59)
(01A9) (x)=0(p(L*e)), xeBHAF™ V). (2.60)
Let us notice that the conclusions of Proposition 2.2 hold for G,Q}. We have
AP =a (VG QHA— AY)) (x)

— a (1 =L GOF1) (x) AY) + @ GO D (x) A(Y),

xeBXy), yeA§TY. (2.61)

Using Proposition 2.2 and the restrictions (2.55) we can estimate the first two terms
in (2.61) by O(1)p(L*e). The third term can be calculated in the following way

GO =a, ' Ga P Qi =0, 'G(— A"+ llg(LkS)z +a Pl

2(7k:\2
_ ML 6 o (2.62)
i
Hence
2(7k\2
uo(L*e)
G.0*1 —1_ A 2.63
(ak ka )(x)=1 ak+,u(2)(L"s)2’ ( )

and, again using (2.55), we have (2.59). Furthermore, because G,0Q}1 is a constant,
from (2.61) we have

(0149 (x) = a (01 G Q%A ~ AY) ()
—a(@(1—{")G,0 ) (x)A(y), xeBXy), yedd V', (2.64)

and the restrictions (2.55), Proposition 2.2 and the properties of the function (%
imply (2.60). Thus Lemma 2.3 is proved.

The inequality (2.60) implies that the configuration A® considered on the set
BYA% 1) satisfies the assumption of Proposition 1.2.1. on a vector field con-
figuration. The inequalities of Lemma 2.3 will be applied also when a scale is
changed.

Now we can prove the corresponding inequalities for the scalar field
configurations.
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Lemma 2.4. Under the restrictions (2.55) we have

PNx)=UANTE) () + O(p(L'))
=(Qi(AM)¢) (x)+ O(p(Le)), for xeBXy), yeAF™Y, (265

(DY) (b)=0(p(L'e))  for bCBXAT™Y). (2.66)

Let us define [J,, [J, as the sums of large blocks contained in A%~ and
distant from the point y less than 2r(L*e), 4r(L*e) respectively, and let us denote
O=BX[,). Of course [] CBA%¥~"). Using Proposition 2.2 and the restrictions
(2.55) we get

1) =(a, G0, AMQHAM O ,9) () +O(L*e)),  xeBy),  (2.67)

and the same equality for the covariant derivative of ¢*. From the property (2.60)
we have the inequality

|4%(x)— A®P(y)| < O(p(L*e)r(L*e)).

Let us denote by 4, a constant configuration equal to A*(y) at each point, thus
A® — A4, =0(p(L*e)r(L*e)). Using the expansion formula (1.3.44) and Proposition
1.2.2. we have
(@60, 4%) Q4™ O, ¢) ()
=(a,G(, AO)QIT(AO)DI('[)) (x)+(a, GO, Ao)Fz,k(A{k) — Ay, AU)D 1(15) (x)
+(a,G (00, AgV(AY = A4y, Ag)G(T, A)QEAM 1 9) (x)
= (@G, 40)QF(40) ) () + O((Lre)°),  Ko>0, (2.68)

and similarly for the derivative. Now the constant field 4, can be “gauged out”
from the last expression above. We use a gauge transformation defined on [J by
the formula ¢(x)=U(4y(I, )Po(x), xe[d, where the contour I ,=—1,  is
defined as in (1.2.1.), but now for the points x from [] instead of the block B(y). Let
us consider how the operator + 4% +m?*(L*)*+a,P,(4,)] transforms itself
under this gauge transformation. We consider the terms determining the corre-

sponding quadratic form:

(Do) (b)=n""(U(Ay, ) U(A(T}, No(br)— UlAo(T;_, )do(b)
=UAo(I,_ )~ (U, wbuly, )éob,)—¢ob-)), (2.69)

but the contour I',, ubuI,, | is closed and bounds some surface ) C[J. so
using Stokes’ theorem we have

AL, , WbuI, )= AO(E)Z):@”AO(Z)=0,
hence
(D, $0) (b)=U(A(I;,_ ) (@"$5) (b), and

(2.70)
(D%, do) (B)> =1(0"d5) (b))*  for bcC.
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Furthermore for y'e [1,,

(Qk(Ao)Qbo) )
= ;( , N UA(LPN)U(AG(T, )o(x)
=UAl,) Y 1T, 0T O olx) (2.71)

xeBHy)
and because A ([, VI[P U )=0 again, so we have
(O A0)Po) (V)= U(AL} ) (Q40) () and
(Qu(Ao)po) I =1(Qu) (V)17

Hence the operator +4%N,+m*(L*)*+a,P(A,)] is transformed into the
operator — A%, +m*(L*¢)* 4+, P, [0, and we have

GO, 4g;x,x)=U(A,(I, ))G(O,0;x, XY U(Au(I, ) - (2.73)

Together with the gauge transformation of the propagators we make the
corresponding transformation of the field ¢, i.e. ¢(y')= U(4y(I}, ,))¢'()). Then the
last expression in (2.68) transforms itself as follows

(@G ([0, 49) Qi (Ao) 101 ¢) (x) = U(Ao(I, ) (@, G, 0) Q¢ 11, ¢) (x) . (2.74)

Now let us consider the restrictions (2.55) on the field ¢. The estimates of the
covariant derivatives give us

U4y, Y IN(") = o) = O(1) p(LFe).
After the gauge transformation we finally get
[UA(Y, Y ONUAU L D)@' (y) = UlAoI, ) @' (y)]
=1¢'(y")— o'V = O(1)p(L¥).

Now we can apply the same reasoning to the configuration ,G,([1,0)Qf[J,¢" as
to A® in the proof of Lemma 2.3, especially we have

a,G([0,0)0f1 =G ([0, 0) (— 4% + m*(L*e) + a, P, [0)1
—m*(L*e)*G([0,0)Q51 =1—m?(L*)*G([0,0)Q1, (2.75)
so the same conclusion holds and we get
(@,G(0,0080,¢) (x)=¢'(n) + O(p(L*)),  xeBXy). (2.76)
Combining the equalities (2.67), (2.68), (2.74), (2.76) and taking into account the
equalities ¢'(y)=¢(y),
U(A(, Nd(y) = UAMTE) d(y) + O((Lre)*)

we finally get (2.65). It was mentioned several times that the corresponding
equalities hold for the covariant derivatives of ¢ and we have

(D%00¢™) () = U(Ao(T; ) (@,0"G([3,0) 0¥ 11, ) (b)
+O0((L¥ey),  bcd. (2.77)

2.72)
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Using again the similar considerations as in the proof of Lemma 2.3 we get (2.66).
This ends the proof of Lemma 2.4.
Now we can use (2.65) to estimate the first term on the right side of (2.57):

— UL%) > nllpO =—ALS Y O

xeBK(AJ~ 1) nAY<) yeAfk= 1) nAge

+ O((L*e)y©) | A%~ A AP, (2.78)
Of course there holds
Higo exp( —MLk) Y |¢>(y)l4) sexp(—p(L*)*IRP).  (279)

yedk =D a AR

Let us introduce the functions { g0 by the formula (2.15) with the obvious
modifications.

The next operation is a translation in the vector fields and an expansion of the
action with respect to a proper small field. We make the translation

A=A'+aL™>C%,0*B. (2.80)

We would like to show that the field A’ is small on AY. The restrictions on the
fields A4, ¢ introduced by the characteristic functions y e, imply the corresponding
restrictions (2.16), (2.17), with ¢ replaced by L¥e, on the fields B, y. For the second
term on the right side of (2.80) we have

Lemma 2.5.

(c {1000* B) (x)=B(y) + O(p(L"e))
=(Q*B)(x)+O0(p(L*)), xeB(y), yeAl. (281)
To prove it let us notice that
“ACHQ*B) (x)
=alL” (C”"Q* 1) (x)B(y)—aL ™ 2(CPQ* A3") (x) B(y)
+aL™(CUQ* A (B— B(y))) (x) +aL™ (6 C{haQ*B) (x)
=aL™*(CPQ*1)(x) B(y)+ O(p(L*e)), (2.82)
where Proposition 1.2.3 and the restrictions on the field B were used. We have to

calculate aL. = 2C®Q*1 =aL~2C™1, where the two units are in different scales. We
proceed the same way as in (2.62):

al ~2C®1 = C¥gL,~2P1 = C¥(A® + oL~ 2P)1
— AR =1 — C0AW] (2.83)
We have to calculate 4¥1. From the equalities (1.2.21) and (2.63) we get
2 LkC)z
A1 =a,1—a20,G, 01 =a,1 —a (1— —“—0(———)
el — @ QG Oy Kl — ay 0t 2L
_ ak//‘(Z)(Lkg)2

= K0 2 2.84
a,+ pd(L*e)?’ (2.84)
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and hence

a” 1L2ak,u(2)(L"8)2)" !

—_—— =14+0(u2(L*)?). 2.85
P (W(L%2)?) (285)

This together with (2.82) proves (2.81).
From the above lemma and the restrictions on the fields B, 4 it follows that the
field A’ is small on AP:

|4'(0)|=14(x) — aL ™ *(Co0*B) (x)|
<|A(x)— (Q*B) (x)|+ O(1)p(L*e) = O(1) p(L"). (2.86)

aL™2C®1= (1 +

Now let us investigate a result of the translation (2.80) in the integral (2.53). For
the quadratic form in the fields B, 4 standing in the exponential function under the
integral, we have

LaL?™2 Y |BO)=(QA) O +3 <AL A, AV AL A

Ty
yeT{

=3aLl'"? ), (AP B)(1)—(Q4A) WP

yeTf"”
+%<A(6k—- 1)/A/,A(k)/1(6k—1)/A/>
+aL” 2 AV A APY A’ APCH, 0%B)
+3¢<B, Ax"""B). (2.87)

It is easily seen that the quadratic form in the field A’ restricted e.g. to the set AY
has the form $<A¥ 4’, (C”"k) AP A", The remaining terms of the action depend
on the field A% 4 only thréugh the field A®. The result of the translation (2.80) on
the conﬁguratlon A™® will be represented in different ways depending on the sets
on which the configuration is considered. Thus we have A®=(1-0,,,)4%
+0,,,A4% and

(1=0,4,)0,A% =a,(1—0,,,)0,(PGQHA +aL *CY (k)Q*B)) (2.88)
O 1A% =0, ((PGOFA
+aal” %0, (PG, QF6Ck (k)Q*B
—aal ™20, ,(1-{")G kQ;fC(k)Q*Ag‘)/B
e L7 20, (1= D)GYL, OF, 4B
Oy L7200, (VG 08 B
=0, AP+ BO 40, BET D (2.89)

where by the definition B* is the sum of the second, third and fourth terms on the
right side of (2.89). From the restrictions introduced by the functions {®, {** 1), the
restrictions on the field B and the Propositions 1.2.1-1.2.3, 2.2 we get

B®(x)=0((L*)*) for every , (2.90)
and similar estimates for the derivative. From (2.86) it follows that the field
Oy 1 A'® is smooth and small:

1051 A" (x)| = O(1) p(L¥e) , (2.91)
similarly for the derivative.
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Now we will expand the expression under the integral (2.53) with respect to the
small field 4'® + B®. Let us stress here once more that in the density ¢'® only the
factors Z” depend on this field, so we will consider the expansions of these factors.
They are given by the formulas (2.52) rescaled from the Lle-lattice to the L'y-
lattice, thus the field A® is defined on the #-lattice, #=L~* To understand better
the properties of the expression in (2.52), let us rescale further from the Ly-lattice
to the 1-lattice and let us write it as a determinant. Omitting a numerical factor we
have

[det(CRABIAD), AV )12, (2.92)

where A9 are subsets of the 1-lattice T and the configuration AL ™" is defined
on T, -,. The expression (2.92) depends on the configuration B{(A$)A%-L™", This
configuration, after the translation (2.80) and using the formulas (2.51), (2.88),
(2.89), is given by
BJ(A(ZJ'))/](k),L‘f
k-1

= Bj(A(zj)) (1— 0j+ 2)0j+ 1A(j+ DB Z (1-0,, 1)9114(1)’1“_J

I=j+2
+(1=0,, 0,407 10, B* DL (@, ARE L BOLTY (293)

We will need to apply Propositions 1.2.1-1.2.3 to operators with external vector
field equal to (2.93), so we have to verify the assumption of regularity (1.2.23) for
this field. From (2.90) and (2.91) it follows that

(@1 Oy A 4 BB ()

SO(1)(Ln)"? p(L*) < O(1) p(LYe), (2.94)
so the field A:=0,,,A'® L7+ B®-L™7 satisfies this assumption. Let us consider
the remaining part of the expression (2.93) and let us denote it by B. The derivative
G ’B)(x) of this configuration is equal to one of the derivatives (0% ’ADL ) (x)
or to (0L 'B**YL7)(x) if the point x does not lic in a slice of thickness M
surroundmg one of the sets B{(AY). For examples, if x belongs to B(A§~ ' nAY9)
with the exception of the slice, then Lemma 2.3 implies

@y B) (=10 A7) ()]
SOM)(L™)72 p(L'e) =O(1) p(LYe) . (2.95)
If x belongs to this slice, then the above inequality implies
@ 'B)(x)
= (35*1(1 =0, 1)A(1)’L~j) () + (0{;—,0” 1A(ZJr 1)’L—J) (x)
= (08 70,4 ) () (AT () = AD () + O(p(Le)) (2.96)

and applying Lemma 2.3, we have

d—2

AT ) — A ) = 4,4, () = AO) (L) 2 0L, (297)
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where xe BT 1(y), xe B{(y), thus ye B(y’) and the restrictions on the fields 4,, 4,, ,
on the set AY imply
d—2

A ()= AW =(L77Y 2 0(p(L'e)
again. These inequalities give us finally
(0% ’B) (x)| £ O(1) p(Le) , (2.98)

and it means that the regularity assumption is satisfied for the configurations B
and (2.93). o
Now we will expand the operator (C‘A@”(Bj(/l‘zj’), B+ A))~! with respect to the
field 4. We use the formulas (I.3.15), (L.3.44) for the expansions of QA+ B),
G{(Q, A+ B) and we get
ANQ, A+ B)+aL P,
=a,l—a>Q (A+B)G (2, A+ B)QHA+B)+aL *P,
= A9(Q, B)+aL ™~ 2Py+aL~2Q*(B)F (A, B)+aL~*F%(4, B)Q(B)
+aL”2F%(A, B)F (4, B)—a?F, (A, B)G (Q, A+ B)QXA+B)
—a?Q(A+B)G(Q, A+ B)F% (4, B)
~aF, (A4, B)G(Q, A+B)F% (A, B)
—a;Q(B)G(Q,B)V(A,B)G (2, A+ B)Q¥B)
= :A9(Q, B)+aL 2Py, — W94, B). (2.99)
The operator W is built with the help of the propagator Gj(Bj(A‘zﬁ),;l-{—f?), $O

(2.99) does not give a full expansion in A, which will be obtained later.
The formula (2.99) implies
(CRABIAD), B+ A) ™!
=(CRNBAAD), B) ™ 21— (CPp(.. N2 WO

,(C(Ajf(;})(“.))1/2)(C(Ajg)”(”.))—1/2, (2.100)
hence
[det(C(BIAY), B+A)~ 1]~
= [det(CR(BI(AY), B) 1]~ 12
-[det(I— (C‘Afgj)(. )2 W‘”(Cﬁ{iﬂ(. RG] (2.101)

The first determinant on the right side above, multiplied by the numerical factors
we have omitted in (2.92) define the factor Z” with the field A%-X"’ replaced by B.
Thus it is of the form required by the inductive assumption for the density o** .
We have proved that the configurations (2.93) and B are regular on B(A4Y) in
the sense of Proposition 1.2.1, hence we can apply Proposition 1.2.3 and we get
LS I (CR ) T WIC ()2
1
=(CYl- D2 (CHANBIAD), B+ A) ~H(CR(-. )2 < i—ll. (2.102)
5 5 Yo
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The inequality

1
—slog(l—A)SEIA+LA2+ 23+ + 2—n/1"+0(1)),"+1

holding for n odd and 4 satisfying %o S=1-1= %1— implies the inequality
1 0

[det(I —(Cn(-- N2 WACH(. )]~ 12

<exp| ¥ 33 THCGBIAD), By woy
=1

+0(1) Tr(CHBIAY), ByWIy 1 . (2.103)

The possibility of dealing with bounded operators only, and especially the
inequality (2.102), is an essential reason why we are treating the factors ZV
separately instead of composing them into the factor Z,. A simple analysis of the
operator WY shows that the last term on the right side of (2.103) can be estimated
by

O((L7e))|B*~ (A
=0((L*ey)APILI™Px0  with k>d, K,>0.

In a similar way we can estimate the terms from the sum in (2.103) containing the
R-vertices, the field B®L ™’ or the terms of an order in the coupling constants
larger than 7. These estimates are quite elementary because the terms are
represented by one-loop graphs and easy applications of Propositions 1.2.1-1.2.3
are sufficient here. The expression we get contains still the propagators
G (B/(AY), A+ B). We expand them iterating (I.3.44) to sufficiently high orders,
and estimate again the terms of an order > 7 as above. Finally we get the following
expression

n 1 dn
n; - ( p (2.104)
We will transform it further.

The summations in the vertices in (2.104) are restricted to suppf)k+1 and the
distance of this set to the set BA{’) measured on the lattice T; -; is > L*~/r(L’e)
>r(L’e). Using Proposition 1.2.1, we can replace the propagator G (B/(4Y), B) by
G (B"(A“") B) and the terms containing the difference of these propagators can be
estlmated by

QB0 A1 )

=0

O((L7e)) | B*~H(AP)| = O((L¥e)) | AP LY~
with arbitrary k>d, ko=x—d. ‘
Similarly using Proposition 1.2.3 the propagator CY,(B%AY"),B) can be
replaced by CY(BYAW), B). Thus we estimate (2.104) by the same expression but
without the subscript A4Y and with B¥(AY’) replaced by BYAY’), plus an error

O((L¥ey)| AP LI~ #r.
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Finally we rescale the expressions from 1-lattice to #-lattice. Now we can use
the formula (1.2.40) for a composition of Z" factors:
k=1
[1 29 FUBHAY), )= Zy(BHAY), -). (2.105)
j=0
This formula implies that the sum of the expressions over j=0,1,...,k—1 is equal
to

z (d logZ,(BXA®), 10, , , A"")+B)> (2.106)

d n
This expression is by the definition equal to the polynomial Q®(BXA¥); B,
0,+ 1 A'") defined in Chap. 1.3, with the basic set Q= BYA{’) instead of Q=T,, thus
we have the propagator G(BX4Y"), B) instead of G,(B** V7). Again let us notice
that the propagator Gk(B"(A"‘)) B) depends on the configuration

Bk(/l(ok))B = Bk(Ag‘)) (1—0,, 1)A(k) + 0, 1B(k+ e

=0

and this configuration satisfies the regularity assumption of Proposition 1.2.1 on
the basis of the estimate (2.98). The terms containing the vertices localized in
BY(A%°) can be estimated by

O((Lkey) AP A A%,

as it follows from the extension of Proposition 2.1 to the polynomial Q®. We
choose the new localization with the help of a function g,, where g, is a smooth
function with suppg, CAY and g,=1 on AY.

Now the summations in the vertices are restrlcted to A%, and we can make the
final transformation, namely we replace the propagators G (BYA¥),B) by
G(BH(AP), BE* -1 with an error O((L*e)*)|A%).

Gathering together all the expansions and the estimates of the factors ZV we
get

k—1 k—1
n Z(;) LJn BJ( A(.I)) A+B)< H Z(J) Lln( BJ( A(J)) B)

j=0
‘€Xp(Q“‘)(Bk(A(2k)) ; B+ 1), n, kA/(k))
+ O((L*e)*)| AP A AD*| + O((L*e) | A%)) . (2.107)

Let us consider the expansions of the remaining expressions under the integral
in (2.53), i.e. the basic quadratic form in the v, ¢ fields and the polynomial 2*).
These expansions were analysed in Chap. 1.3 and are given by the formulas (1.3.15),
(L.3.16), (1.3.44), and (1.3.45). Proposition 1.3.1 can also be applied in the present
situation and we estimate the terms with R-vertices, the terms containing the
configuration B® and the terms of order >7 by O((L*)*)|A¥)|. We estimate the
terms localized in BXA%°) by

O((LH ) AP A AP,

The interaction terms we get after these expansions and estimates contain the
propagator G(B* (A%~ V), B). Our final transformation is a change of this
propagator by the propagator G,(BXAY)), B** 1) Here we use a property already
used in the inequality (2.107) and summarized in
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Proposition 2.6. If in the interaction terms localized in BY(AY) we replace the

propagator G(B¥~ (A%~ "), B) by G(BHAP), B¥* ") then all the terms containing
at least one difference of these propagators can be estimated by O((L*e)<)|AP).

Now we will transform the basic quadratic form in the scalar fields and next we
will do a translation in the field ¢. We will localize this form in the set
AE=V A AP AD and we will change the operators of the forms using Proposition
1.2.2 and the restrictions on the fields y, ¢. We have

1al" 2 Y lp(y)—(00,B)d) (»)?

yeTgor
HLAE Y A AP, AVBHAG Y A ALS), B) (AL D A AP
+(AGT V0 ALY, AVBHAGT V' 0. AP, B) (AP 0 AP
+ (/1(3")(]5, A(k)(Bk(A(zk)), B+ 1),n)/1(3k)¢>
+O((LFe)) 4] (2.108)
More exactly the difference between the quadratic forms is a quadratic form

AE V", H A%~V and for the matrix elements hy(x, x') of the operator H, of
this form, the following inequality holds

Iyx, x')| = O(1) exp(— &, (L") exp(— Jo|x — x'|)
= O((L*e)) exp(— 0 |x — x']) (2.109)
for x, x'e A%~ and arbitrary «. This remark holds for the other expressions of
this type, e.g. for the expression connected with (2.47), and will be used in the next

chapter, where these formulas will be applied in the reversed order.
Now we make a translation of the form

=0’ +aL™2Cu(B{(AP), B DQ*(BE D1y, (2.110)

This translation changes the first and the fourth terms on the right side of (2.108) in
an obvious way. We get an expression analogous to (2.87), so we will not write it
here. After the translation (2.110) we make some changes in the interaction terms.
If x in

(@L™2CHABLAP), BT D) QH(BET D) (x)
is a vertex variable, then xe A%, and we replace this configuration by
(aL™>CW(BYAP), BX* DmQ*(BET DM AL ) (x).
If the configuration appears in the expression
(0, G(BAP), B+ Do) (B 11y AW, =2
- Co(BAG), BT DM Q*(BET VM) (x) , (2.111)
)

then xe€ BXAY), and we replace Cﬂlsm by CW, A® by 1, and using the recursive
equation (1.2.41) we get

QU =@ L2 Gly (BHAP), BE* D07 (B V1A ) (x)
+O((L¥e)). (2.112)
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After all the transformations of this and previous points, we get the interaction
V(k)(Agk)a B(k+ - '19 w’ gkA/(k), ¢/) b

i.e. the same interaction which appeared in Chap. 1.3, except that the summations
in the vertices are restricted either to the set B{A%), or by the function g,, and the
propagators are defined by the operator — A%&.,.upe 400 This interaction has the
same properties as V® in Chap. 1.3, especially Proposition 1.3.2 holds for it.

Let us consider the restrictions satisfied by the field ¢’. We want to prove that
this field is small on A%®. We have the following analog of Lemma 2.5.

Lemma 2.7. The following estimate holds

aL™ X(Cliho(BY(AY), BETDMO* (B D) (x)
=(Q*(B"" D"yp) (x)+ O(p(Lre),  xeAP. (2.113)
A proof of this lemma is based on the ideas which were described before in the

proofs of Lemmas 2.4 and 2.5, so we omit it here.
Lemma 2.7 and the restrictions on the fields y, ¢ imply

[P’ ()=S0 p(Lre), xeAP. (2.114)

We introduce the characteristic functions y(A4’), x(¢') giving the restrictions (2.86),
(2.114) on the set AP, and we estimate all the remaining characteristic functions for
the fields on A% by 1, with the exception of the functions y, , ;.

After all these transformations, the conditional integration with respect to A4,
¢’ with the conditioning on A¥*, and the translations inverse to (2.80), (2.110), we
get the inequality

[the integral (2.53)]

= Z jdAjd¢Xk+ 1CA6’<)XA('}),nAg")‘Xk,Ag")c

0 k-1 k
AD, .., 4G D, 4G

.Q’(k)(AE)O)’ “_’A(Ok“l)’ A(7k—1)'cA, B’ A(7k~1)/c¢)
'eXp[—%aL“'z Y, IBp)— (@AW

ye Tk

— LAY A, AW AE D 4y
—5aL'? T )= QB 0P —5<(AE AP,

ye Ty
AWBHAG™ 0 AP, B (457 0 A$)¢)
= (A§7 AP p, AVBHAST ' N AP, B)
.(Agk)mAEiC)c)¢> —-%(/1(3’()4), A(k)(Bk(A(Zk)),B(k+ 1),n)
' A(3k)¢>“ duc,‘{{% (A/)jdﬂc/(llgk)) (Bk(Agk))’B(ka 1),11)(¢l)

LA UP) exp(VOAD, BE D1, 4, 1))
exp(O((L4e)) | A%~ VA A%+ O(( L4 TV, (2.115)
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where

B=(1-0,,,)0,4%+0,, B* 1.

The terms A, 'A4 coming from the formula (2.28) have been removed as in the
discussion preceding (2.31).

Let us consider the integrals in (2.115). The first integral on the right side of
(2.115) is equal to the density

k+1), L, 0 k—1 k k+1),n .
QD EAO, A%, A B 6, B* D )

without the constants, i.e. the normalization constants and the constants coming
from rescalings.

We transform it into the density o%** £ uysing the same arguments as in Sect.
B. For the second integral we have almost the same situation as for the integral
(I.3.56) of Chap. 1.3, the only difference is that the integration is over the fields
defined on A% instead of T®. The conclusion is the same and for this integral we
have the cumulant expansion (1.3.59). Proceeding as previously, i.e. estimating the
terms of order higher than #, replacing the covariances with Dirichlet boundary
conditions by the “free” ones and composing some of them with the help of
recursive equations (1.2.42), we get the expression

k+1), L g(k k+1),
apl ) (A%),B( )”,lp).

The last operation is a rescaling of the obtained expressions from the L-lattice
to L** e-lattice. Gathering together all the estimates, we get the inequality (2.43)
but with k+ 1 instead of k.

D. The Final Step
The procedure is continued until k=K, where K is such that L¥¢<¢y, LX o>,
Then we estimate
P L5 AR D, B 1) S O(LK9) AP 2116
Now it is sufficient to prove the estimate

dejdw Z Q(K)’LKg(A(OO)’ ""A(OK_ 1)» B> GKB(K)’E’ U’) exp(—EO)
AO)AK-1)
’ ’ K-1 ) 4 .
-exp (0(1)8"°|A‘7°"| + Y 0(1) (LIg) |49~ A AYe]

=1

+0<1)(LK-18)“°|A<7"-“|) <exp(O(1)|T]). @.117)

with the constant O(1) independent of ¢, because for the last sum in the exponent
on the right side of (2.43), we have

K— K—1
O(LeTY) = 3 0() (LY T <O()IT. (2.118)

j=0 j=0

The inequality (2.117) will be proved in the next chapter.
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3. Analysis of the Density o-L™

A. A Preliminary Transformation of the Density o'®

We will make operations inverse to those which were done in the proof of the
upper bound, ie. we will replace the expressions obtained as the results of
conditional integrations and further transformations by the corresponding in-
tegrals. Rescaling the density ¢ X** to the unit lattice, using the restrictions on
the fields B, y arising from the characteristic functions yg, and making the
transformations inverse to (2.47), we get the inequality

oMY, .., 4K B g, B®, 1)
<" ™A, ..., AR~V B0, BX, )
-exp(O((LXe))| A%~ 1)), (3.1)

The density ¢”® is represented by the formula (2.45).

Let us formulate the inequalities we get in such a way after K —k steps as an
inductive hypothesis. At first let us recall, or introduce, some definitions and
notations. The fields with respect to which the integration is done in the k+1
renormalization transformation are denoted by A4,, ¢,. For simplicity we denote B,
p by Ay, ¢ also. Finally in the expressions with scalar fields we have the following
external vector field

K-1
Ar=(1=0)40+ Y (1—0,, )0, AN +0,A4A%2 (3.2)
k=1
where the fields A% are defined by
APt =q, (LFe) 2 (P GEQFA, . (3.3)
Also let us denote
K—-1
AW e= N (1=0,, )0,AD 4+ 0, AT (3.4)
=k

Now we can formulate the inductive hypothesis:
Q(K),LKS(A(OO)’ . A(OK— 1)’ AK’ A(K)’E, d)K)
§THI,JL(~18T,,I:IZ,>,11<§<~1),E[XKCA3K~1)XA(_K1~1>N1(SK»1>C
- K-
TAK-1, 4K - el IZ ’ a, L AZ(K—Z)-E AK=2)
PENPTR s o S (9
'XA(_K;zangx‘mXK—z,A§K~2>c--~7;l,“lze7;L,?,,«i<k)~e
. [CA‘()")XAQ‘B hAék)c)(k,As(k)cg/(k), Lke(A(()O)’ RN /1((;"“ 1)’
A, A®: %, ¢ exp[ ——%<A‘6k_ D4, A®: ka/lg‘_ Vg
—-%<(Ag(_ 1)’f'\/1(3k)c)¢k, A(k), Lks(Bk(A(zk— 1)/mA(5k)c)’ A(k),s)
'(A(Gk_ l)lmA%k)c)¢k> _ <(A(6k—— l)lmAgk)c)(bk’ A(k), L"c,
(B A% Y A9), A8:5) (AP AP, >
1AL, A VBHAL), A D9 AP 9,)]]...T]
K
op( 3 o0y @3)

I=k+1



584 T. Bataban

The expression on the right side seems to be rather complicated, however it has a
simple structure. Here T{¥ can be represented as a sum

K—1
TE=AS0 | BHAC A APIOBEIHAE ), ()

I=k+1

and to each set AL~ AY* there corresponds a set of characteristic functions and
a sequence of partial renormalization transformations localized in this set. In this
point we will use only the functions y, 4. giving the suitable restrictions on the
fields A,, ¢, considered on the set AY ™"~ AP¢. All the partial renormalization
transformations defined on the sets B' (AN A%, k<j<I, can be composed
according to formula (1.2.12) of Chap. 1.2. We have to notice that the vector fields,
with respect to which the integration is done when the composition is formed, do
not occur in the correspondingly localized configuration A%-¢ Let us omit from
the right side of (3.36) the composed transformations which do not depend on A4,,
¢t AP, The remaining terms, after rescaling from L*e-lattice to 1-lattice and
removing numerical factors, can be written as follows:

LxXK-1, 40~ 1)C"'Xk,A(k)°jdAk ngk)jdqsk rAg«)
k 0 k—1 k—1 q(k k—1
SO OAD), L AT D pG e g, gD = Dregy )

K
€Xp| — Z %al—k(Ll T2 Z 14,(x) = (Q; - A4y) (xl)'z
I=k+1 XAl "D aADe
K
- Z %az—k(Ll‘k)dhz Z '¢1(x1)_(Q1—k(A(k+ 1))¢k)(x1)|2
I=k+1 xieAd D A

=3 ATV A AV ATV A
— 5 AGT Yy AVBHAGTY), AN AGT V)

A H V) 3)

Also we have applied formula (2.108) together with the remark following it to the
expression in the exponent in (3.5). According to the remark, the matrix elements
h(x,x) of the operator H, satisfy the estimates

Iy (x, X)) < O(1) exp(— 0, 1(L¥e)) exp(— 3 |x — x']), x, x'e A5~ " (3.8)
1 6

Further we apply formula (2.49) and we replace ¢'® exp[(the proper quadratic
forms)] by . Next we complete and transform the quadratic forms in ¢ to the
forms appearing in formula (2.46) for the density ¢”®. The differences can be
written again as the forms satisfying the property (3.8). Now the problem is that we
cannot estimate these forms because we have no restrictions on the fields 4,1 ¢,
¢y ! ago- We have restrictions on the fields 4,, ¢, on the set A% V' nAS* given by
the functions y, ,¢., S0 we estimate only part of the quadratic forms involving
these fields by ’

O((Lrey)| A%~ A A
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Let us consider formula (2.46) for the density ¢, and let us take these expressions
which depend on the fields A, ! Ago o Ao Then the integral (3.7), after removing
all the terms independent of these fields, is of the form

K
fdAk rAgk)jdqbk TAék) exXp %— Z Ll k)d 2
=k+

[A4,(x)—(Q,- kAk) (x1)|2

xleA(l 1 r\A(’)C

_% Z a,— k(Ll k) Z '¢1(x1)

1=k+1 x,eAgl - 1>’m/1;l>c
— QA% D)) ()2 =3P A, A AP 4>
—%<Ag’°¢k, G o(BH(AG™ D), A9) AP ),
—{(AEY AAPIAL AN AP A
= (AT AP, AR (BHAGTY), AW) AL D
FC AP A + AL
+ % <A(sk)Ak’ H;c/l(sk Ao+ §<A(5k)¢k> H;:A(sk)d’k>

+Fp AP A +<FL AP, (3.9)

where the forms H;, H; are composed of terms associated with the changes in
(2.47) and the discussion following, and the term H, introduced in (3.7). They
satisfy the estimate (3.8). The functions f, f; are defined by the third and ninth
terms in the exponential in (2.46) and we want to have these terms in a final
formula. The functions F;, F} are defined by these terms with opposite signs and
by the terms coming from quadratic forms H,, H, with only one variable localized
to AP, They have the property

IFi)l,  [FiI=0(1) exp(—8,7(L)). (3.10)

We will estimate this integral by the same integral without the last four terms in
the exponent, i.e. the terms with H;, Hy, F;, Fy. Since (3.9) is a Gaussian integral,
we can easily calculate it and estimate the obtained expression. We need the
estimates of the quadratic forms in (3.9). Let us denote the quadratic forms in 4,,
¢y, connected with the first four terms in the exponential under the integral (3.9),
by (A, G A, b, Gi¢,> correspondingly. We will give the estimates from below
for these forms. It is sufficient to get very weak estimates because we have the
strong estimates (3.8), (3.10). To get them it suffices to use the mass terms in the
fundamental operators — A"+ u3(L*)?* and

N 2(rko\2
—Azzi(k),B"(Agk”l)/)—FWl (L 8) .

In the next section of this chapter we will formulate a much stronger estimate,
which as a corollary gives

G2y, ud(L¥e)*I Pagor  Giz y,mA(Lre)*1 Pago- (3.11)
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The property (3.8) implies in turn the following estimates for the norms of H;, Hj
in LA(AY):
HHL [1HE ] = 0(1) exp(—0,r(L*) < O(1) (LFe) (3.12)
for every .
Hence for L* sufficiently small, the operators G, — H} and G, — H} are positive

and satisfy the inequalities (3.11) with 7, instead of y,. Let us introduce some new
notations:

K
Y (LY TBTHALT Y A AP0 A, (3.13)
I=k+1
K ~
Y a, (L2 BHA D A A 0F (AT D), (3.14)
I=k+1

These configurations are defined on A%¥. Because the fields 4,, ¢, considered on the
subset A4 AYC of the L'~ *-lattice satisfy the inequalities

d
—(-= 1
oL .

0 (3.15)

d
_(l_k)z

[P (x)I=0(1)L WP(Lk8),

so we have

|P'( X)l<0(1) % p(Lfe) SO(1)(Lk)~?

(3.16)

19"(0)| = O(1) 5~ P(L*) SO(1) (L¥e) ™

1
l(Lk )1/

for xe AY. Of course the above estimates are very rough, especially the second.
After these preliminary remarks we can estimate the integral (3.9). At first we
have

d

(3.9)= (2n " [det(G,— F))~ 22 [det(G; — H) 2

ap|-3 Y an @Y (AP g

I=k+1 xieA§ =1~ age
3@ = AP MG (ST APV A+ [+ FY,
(G,—H})~ (9" - A‘S">A§’12k_ W AETY AAP) A+ [+ F)D
+ 5@ = AP AR (BHAY D), AV)

(A AAPY A+ 14+ F), (G —H) (D" — ... (3.17)

2
Now we will estimate the above expressions by the analogous expressions with
=H;=0and F,=F;=0. Let us consider the determinants in (3.17). We have

[det(G,— H)]™ Y2 =(detG))~ V2 [det(I — G, Y2 H,G,” Y2)]7 Y2, (3.18)
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and the operator under the second determinant satisfies

|G P HG 2 S 97 ad(L) 20(1) exp(— 8, (L)

<O(1)(L*)*, x arbitrary. (3.19)
Hence this determinant can be estimated as follows
[det(I - G, Y2 H,G,~ V)]~ 12
<exp[iTr(G, Y2H,G, Y*)+0(1) Tr(G, *H, G, ''»)*]
sexp[5lG, PHGL
“Tr(It 4g0)+ O Gy YVPH, G Y22 Tr(I 400)]
<expO((LAIAY), 5 (320

where an analog of the inequality (2.103) was used. The determinant
[det(G;— H})]~'/? has the identical properties, so we have the required estimates
for both determinants in (3.17). Now we will estimate the last two terms in the
exponent in (3.17). We have (G,—H;)"'=G, '+ G, 'H(G;,—H,)~' and the
norm of the second operator can be estimated as in (3.19). From (3.16), (3.10) and
the restrictions on the fields 4, considered on A%~ A®< it follows that the
norm of the configuration

' — APAGpe (AST V' NAL) A+ [+ F

can be estimated by O((L*e)™)|A¥|'/2. Hence in the terms considered, we can
replace the operators (G,— H})"* and (G;— H})” ' by G, ! and G; !, and we can
estimate the rest by O((L*e))|A%¥)]. Finally the terms of the form (F}, G, '(®'—...))
and other terms containing one of the functions F;, ), can be estimated by

O(1)exp(—36,1(L*))y; ‘1o (L") ~20((L"e) )AL = O(L")) AL

Thus the integral (3.9) can be estimated by the same integral with H, =H} =0,
F;,=F; =0 and multiplied by the factor expO((L*¢)*)|4%¥|. Gathering together all
the inequalities obtained until now, we estimate the integral (3.7) by an integral in
which the density ¢’® and the exponentlal function, except the part defining the
renormalization transformation, is replaced by o"®(AL), ..., A%~V 4, A®, $,)
multiplied by the factor exp O((L*e)*)| T%®|. For the density ¢"* we have the formula
(2.46). Completing it by the expressions and integrals, which were omitted when we
have passed from the right side of (3.5) to (3.7), and rescaling from the 1-lattice to
the L*e-lattice, we get the expression on the right side of (3.5) again, but with k— 1
instead of k.

Thus the inductive proof of inequality (3.5) is finished for arbitrary
k=0,1,...,K. The most interesting case for us is k=0.

B. The Basic Estimate Giving the Small Factors

In this section we will estimate the integral of the density ¢®®-¥**. This estimate is
the most important one in this Chapter. In particular, it will give the convergence
factors exp(— c,p(L*e)?) for all the characteristic functions in { A4 i.e. for all the
points, bonds and blocks at which the corresponding functions of fields are large.
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Let us notice that we can integrate at first with respect to scalar fields, treating
the configuration A® as a fixed external field, and next we can integrate with
respect to vector fields. Thus the integral over the fields 4, ¢, can be estimated in
the following way, using inequality (3.5) for k=0

[dA [ dp@®E(AD, ., AK=D 4, AK 2 ¢ )
= jdAKXK,uTzI;f; ‘5[)(1(—1,_4(51(— e X A= DA G- e,y
Tar [XA(—OI“A?”C»U exp(—3<{Ap, (= 4+ pu3) ApD) {j dpgix.s

LK - 1g 2 N
Ty p, alx- 1. I:QA(()K‘ VXK= 1, 40K = De,sX A= DA AK = De s

. Tf,,L,As [‘:AgJ)XAgognAgmv,s exp(— %<¢0a (= 4%+ m2)¢0>)]

T Texp (k; 0(1>(L’<s)'<0|7;|). (321)

In the sequel we will omit the last factor because of inequality (2.118). We will
estimate at first the internal integral over the scalar fields. Let us consider the
expression in the curly bracket {...}. We will transform it in a similar way as in
Sect. A, i.e. we compose the renormalization transformations localized in the sets
AL~ AP TE  integrating over the fields ¢, ..., ¢, _ , localized suitably in the
sets BT HAE ' A ADe) L BYAY Y A APF). After these compositions the ex-
pression transforms into the following form
(-} = [doxTeL b 0. A5
a T:I;,SL,Atl).e(A(sl)c) Ti,L,Ae(/l‘so)‘)

) [XK,sCAgK “0ZK— 1,40~ Ve, sL AR DAAK= De,s

: CA(0>ZA<0>0A(0)Q3

. ( n C Lk, At Bk(/l(k 1) A(k)c)))

[exp(= 3<¢o, (— Ae+m*) $o )11 (3.22)

Now let us consider the expression standing on the right of the characteristic
functions. Its properties are essential for the whole analysis. Let us write it
explicitly, omitting the constants in the definition of renormalization
transformations:

a(L¥ey =2 Yo 1) — QA% o) (x)I?

K- 1) )
xre A nAgae

IIMa

1
jd(ﬁo rAgm exp[ E

—%<¢o,<—Aze+m2>¢o>l, (323)

where A% =g.
It is convenient to introduce the following new notations We will consider a

configuration @ defined on the sum of sets AU U (AF= " AP) by the
formula

K
D=APp,+ Y, (AL nAP) P, (3.24)

k=1
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and we will write the integral (3.23) in the form
(3.23)=Z(A%) exp(— 1{(®, A(A7) ). (3.25)

The properties of the quadratic form in the above exponent are fundamental for
further analysis. We will prove that it has suitable positivity properties, such that
the exponential function in (3.25) together with the functions { 440 give the
convergence factors. These properties are formulated in the following theorem.

Proposition 3.1. There exists a constant y,>0 dependent on the space dimension d
and the constant a only, and independent of ¢ and a choice of the sets AY, ..., A&,
such that for arbitrary configurations A®, @ defined by the formulas (3. 2) (3. 3) (3 24)
and satisfying the restrictions given by the characteristic functions in (3.21), the
following inequality holds

K

@AANDzR Y, (AN -
K

+9 2 Y (Leymlgy ()P

= k= 1) k)
k=0 xeA nAge

- i O((L¥eyONAS™ " AP, |, (3.26)

with k,>0. The last symbol in the above inequality denotes the measure of a set
rescaled to the unit lattice, i.e. the number of points in the set. We assume m* <0(1)
also. If A*=0, then the inequality holds without the last sum on the right side and
without any restrictions on the configuration @.

Remark. The above inequality can be strengthened by adding on the right side of it
all the expressions of the form

PolL* ™ L' UAT(Cx, X D) Plx) — e (X1

for the neighbouring points xe A%~ 2 N A%~ D¢ x'e AX™ '~ AP< i.e. such that the
intersection of the blocks B*~*(x), B¥x') is of “dimension” d— 1. We will not use
this generalization in the future.

The proposition follows easily from the corresponding inequalities for the
actions A®-F We estimate the integral (3.23) by a similar integral with the
covariant derlvatlves — 2¢Y\(D%.00) (D)]* replaced by O for all the bonds b
connecting the set BYA%¥) with B{AY) for some k=0, 1, ..., K— 1. This inequality
holds for an arbitrary configuration @. If we denote the integral on the right side of
the obtained inequality by Z'(4%) exp(— 3(®, A4'(A%)®)), then we have

(D, A(AH) DY 2D, A'(A%) D, (3.27)

because the inequality for the integrals holds for all @. Thus we have separated the
expressions in the corresponding sets by Neumann boundary conditions. It is
worth mentioning that just in this place we have omitted the additional terms
described in the Remark. The form (&, A'(4A%) @) is given by the formula

(D, N(A%) D) = i (o AR T HBHAE D A AD9), A7), > . (3.28)

k=0
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The term for k=0 already has the form required by the right side of (3.26), so we

need the inequalities for the remaining terms. Let us rescale the k™ term from the
d—2

[¥e-lattice to the 1-lattice, ¢ (x)=(L*) 2 ¢(L*) 'x), and let us denote for
simplicity A, =(A%"Y"~APe),.
Now inequality (3.26) of the proposition follows from

(y, AVBHAY, AN P>
gvo( Y U, X' D) di(x) — i(x)I?

{x,x"> C Ak

+ T mALe ) - 0Ly, (329)
xeA

with a constant y, independent of k, A, and for ¢}, A" satisfying suitable

restrictions.

This inequality will be proved together with the properties of the covariances
(formulated in Propositions 1.2.1 and 1.2.3).

Now let us come back to the expression (3.22). The part of it standing on the
right of the characteristic functions is equal to Z(A‘) exp(—3<(®, A(Ae)d)}) where
all the constants coming from the renormalization transformations are included in
Z(A®). We use Proposition 3.1 and we obtain

Z(A%) exp(— 1(®, A(A%) DY) < Z(A%) exp(— 1D, A(A%) D))
-exp(— % (the right side of (3.26))).  (3.30)

Now we estimate the characteristic functions by 1, except the functions { 4. These
contain the functions g 0, which give the restrictions of the form
(L*e)* 2| U (A%<, X)) Pulx) — ¢k( )12 > p(L*e)* for all the bonds {x,x'>eQ®. The
bonds of this set are contained in AY™ ' NAYC A A AP<, hence
Zogo €Xp(— 7 (k'™ term of the right side of (3.26))

<exp(—7oP(L*e)2 101 + O((L e) ) A))- (3.31)
Further, because there are no characteristic functions on the right side of (3.22)
except the functions remaining in { Ago, SO We can integrate with some exceptions,

with respect to the fields ¢x !y 1y.e, -1 Pag-2es s @1 T gg0rve; using the normali-
zation properties of the renormalization transformatlons

jd¢k+l J’)ta, 1A @r (V) Pu T i) =1. (3.32)

The exceptions are when we integrate over ¢, , 1(y) with the points ye P®. In this
casec the characteristic functions jype give the restrictions (Lkeyt=2.
[hrs ()= (Q(A%) ) ()]> > p(L¥e)?, and instead of the integral (3.32) we have

jd¢k+ 1(y X({(Lkg)d_ 2|¢k+ 1(}/)— (Q(A ¢k Y)
> p(L*e)?}) (g(—L;j%d—i> - exp[— Sa(L%)*™?

(i ()= (Q(A9 ) (171 24N exp(— fap(L'e)?)
sexp(—gap(L'e)?). (3.33)
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Thus, defining the functions

1 _ C
(A})k) = Z Xpl(}k)
{P{19, ..., R{} admissible, minimal

: Xcng)qugc) exp(— _éap(Lkg)ZIng)')
-exp(— §7oP(L*e)?|QW]) exp(— p(L*e)*RY)), (3.34)

we get the inequality

(the right side of (3.22)) < [ d®Z(A?)
K—-1

rexp(— 3@ AA)®) [T Lo
K

“exp kz O((L*ey0)| A,] . (3.35)
=1

The functions {’ 40 depend on the vector fields only. In the integral over @ we make
the transformatlon o= 1/_@’ and we get

[ ' Z(A) exp(— L@, A1) ') expLlog2 Z A, (3.36)

k=

We apply the formula (3.23) to the underintegral expression. Next we use (3.32)
again and it follows that the integral (3.36) is equal to

[ddoexp(—3<do, (= Aftm?)do)). (3.37)

We apply the “diamagnetic inequality” of paper [1.5] to this integral, and we
estimate it by

[ddexp(—3{¢,(= 4"+ m*)dp))=exp(E,,). (3.38)

Gathering together the equalities and the estimates, we get

(the expression {...} on the left side of (3.22))

K-1

= H CA(k) exp(E, () exp (0(1) Z lAkl) (3.39)

Using the above inequality we estimate the right side of (3.21) by an expression in
which the curly bracket {...} is replaced by the right side of (3.39). The expression
we get can be estimated in a way similar to (3.22). Now it is even simpler because
we do not need the characteristic functions, as it was noticed in Proposition 3.1.
We get the inequality

dej de(K),LKs(A(O) A(K— 1) B, B(K),s IP)

n o exp(E)xp (om » iAkI) cpOMIT), (340

=1
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where
57 N {P{, ..., R{)} admissible, minimal
-exp(— gap(L*e)*|PP)) exp(— 17op(L*e)*|QW)
-exp(— §7op(L*e)*|RP)) exp(— gap(L*e)*[PY))
-exp(— 57op(L*e)*|QW]) exp(— p(L¥e)*|RYP)). (3.41)

To prove the inequality (2.117), which is the fundamental inequality necessary
to complete the proof of the upper bound, it is sufficient to show that

K-1
o
(,A(()h)
0 K- =
AP, SAK=D k=0

K
'CXP< Y 0(1)(Lk8)xol/l(7k_1)/mAgC)C|)
k=0

K
-exp( 3 O(I)IAg"*“’mA‘;"fl) <exp(O()|T}). (3.42)
k=0

C. The Combinatorial Estimate

In this section we will prove the inequality (3.42). The proof is purely combinatoric
and model-independent. At first we introduce the quantities which we will use
later to express all the other quantities.

Let us consider a regular partition of T, into a lattice of cubes, each cube is a
sum of large blocks and a length of its side is bigger r(¢), and less 2r(¢). Let us define
%, as the set of the cubes having common points with A{¢. Thus

AP C O =u%,. (3.43)
Oe%o
Now if to every element of the set P¥U...UR we assign a cube [J having a
common point with this element and 3¢—1 cubes neighbouring with [, then the
sum of all these cubes contains the set U%,,. It is so because a distance of each large
block contained in A from the set P{Yu...UR® is <r(e). Thus we have

16,) <3P+ ... +[RY)). (3.44)

Here and in the sequel the symbol | -| means the number of elements in a given set.

In a similar way we divide T\ into a regular lattice of cubes consisting of large
blocks and having sides of length bigger than r(L*¢) and less than 2r(L*c). We
define %, as the set of these cubes, which have the common points with
A¥=V' A AP<, Because each large block of the lattice T\ contained in A% and
having common points with A%~ " has the distance from the set P%U...URW less
than or equal to #(L*e), so

|%,] <34 PY|+ ... +|RP)). (3.45)
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The sets %,, more exactly their numbers of elements |%,|, will be just these basic
quantities and we will express the other quantities with their help.
Let us define c,=min{§a3~% {7,379 37} From (3.41) we have

Ztg() = Z exp(— CoP(Lks)ZWkU

{P§F), ..., R} admissible, minimal

IIA

exp(—cop(L*e)*|%,))

all the subsets of Af¢

=201 exp(— cop(L¥e)?|%,)), k=0,1,...., K—1. (3.46)

After easy transformations we get

(the left side of (3.42)) < sup
(AL, ..., AK = Dy admissible
K-1
-exp ( -2 CoP(L"ﬁ)zl‘gkl)
k=0
K—1
-exp( O(1)(1 +log(L*)~ l)IA‘O"’“I)
k=0
-exp(O(D)|TE)). (3.47)

In the second exponent we have gathered all the expressions dependent on A%<,
The third exponent has the required form and can be omitted in further
considerations. Now we will express |A%| by the help of |€,]. We will construct a
sequence Z, 7, ..., Dx_, of families of cubes with the properties that A% is
contained in the sum of cubes of the family Z,. We take 2,=%,. Of course

AP O and AP (2r(e) %l (3.48)
Oe%o

To each cube from 2, we add a “corridor” consisting of large blocks and of
thickness >9r(e), but < 10r(c). We get a cube with a side of length <22r(¢) and we
apply the operation ’ to it, i.e. we take the set of small blocks. After rescaling we get
a cube of the lattice T\" with a side of length <L™'22r(¢). We add €, to the
obtained set of cubes and we denote the sum by Z,. From the definition of A}’ we
have

APec E)E and AP S(L71220(e)Y|6 o) + 2r(Le))|€ | . (3.49)

We continue this procedure and we get a sequence of families of cubes &, Z,,
Dy, ..., Dy, with the following properties

e E)g[; and AP <(L*22r(e) + L™ % V205 Le)

F o LTR20r( L )G o] + (L% D22K(Le)
oot L0/ (LS UG .+ (L 22 L )%,
+QHL)I%, . (3.50)
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The expression on the right sides of the above inequalities can be simplified. Thus
HL*7g) <(1+jlog LYr(L*) and the factor standing at |%,| can be estimated by

2r(Lre) (L% V(A 4+ (k—1)log L) + ...+ L™ Y1 +log L) +1)

<22¢ i L1 +jlog LY (r(L*e))' = O(1) (r(L¥e))*, (3.51)

i=0

hence
AT O HLEe) (|Gl + ... +|6,)). (3.52)

We can estimate the sum in the second exponent on the right side of (3.47) using
the above inequality:
K- 1
Y. O(1)(1+1log(Lk) ™ 1)AG"|
K=0
K-1

k
< Z O(1)r(L*e)*(1 +log(L¥e)~ Z 16|

ll/\

Z O()r(L¥e)* H|E,l. (3.53)
k=0

because K <(logL) 'loge !, K—k=<(logL) 'log(L*s) ! and r=2. Now the sum
on the right side of (3.43) together with the sum in the first exponent on the right
side of (3.47) give

K-1

— % (cop(LFe)* = O(L)r(L*e)" ™ )%, <0 (3.54)
k=0

if 2p=(d+ 1)r and ¢, is sufficiently small. Thus from (3.47) inequality (3.42) follows
and this ends the proof of inequality (2.117).
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