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(Higgs)2 3 Quantum Fields in a Finite Volume

II. An Upper Bound*

Tadeusz Baίaban

Department of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract. This is the second part of the paper entitled, "(Higgs)2 3 Quantum
Fields in a Finite Volume." The proof of an upper bound for vacuum energy is
completed with the exception of some technical estimates.

1. Introduction

This paper is a second part of the paper [1] and contains the second, more
important part of the proof of the theorem formulated there. Let us recall the basic
definitions and the theorem. We consider two spaces of field configurations on the
torus

scalar fields and vector fields. Scalar field configurations are the functions
φ:Tε-+RN. Vector field configurations are the functions A:Tε-+Rd identified with
the functions A: Tε*-»K by the equality: A^x x + εe y — Λμ(x). Of course the periodic
boundary conditions are understood here if the torus is identified with the subset
of εZd. We consider the action

S\A,Φ)=\ Σ ή(Dε

ΛΦ)(b)\2+ Σ ΆWo\Φ(χ)\2

bCTε xeTε

+ λ\φ(xt) + ± Σ ή(dΆ)(b)\2+$μl Σ <?\A(x)\2-E, (1.1)
bCTε xeTε

where m\ — m2 + δm2, m2 > 0 and δm2 is the mass renormalization counterterm, μ\
>0, Λ>0 and E = EO + EV Eo is the normalization factor and E1 is the
renormalization counterterm of vacuum energy. The counterterms δm2 and Ex are
defined with the help of perturbation expansions. The more detailed description of
(1.1) is given in the first part [1, Chap. 1].

The partition function is defined as usual,

Zε=\dA\dφ exp( - S%A, φ)), (1.2)
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and the integration is with respect to the natural Lebesgue measures on the field
configurations. The fundamental result of the paper is

Theorem. For the dimensions d = 2,3 there exist the constants E_, E+ independent

of ε, Tε and such that

(1.3)

In the first part [1], we have proved the first inequality above, the lower bound.
Now we will prove the upper bound. We will use the notations, methods and
results of [1], and we will refer to this paper adding I before the numberings of
chapters, theorems or formulas.

2. The Upper Bound

This chapter is a fundamental part of the paper. In Chap. 1.3 we have analysed the
forms of the actions and their expansions with respect to the vector fields. We will
use these results here. The basic ideas of the proof of the upper bound are the same
as described in this chapter although there are two essential differences. The first
one is the form of the restrictions on the fields and their derivatives. Here, the
restrictions will be introduced on the fields JB, A, tp, φ directly and not on the
functions of these fields as in (1.3.27)—(1.3.29). These restrictions have a different
form in accordance with the positivity properties which we will prove for the
actions S(k\ The second difference comes from the fact that "small" and "large"
fields appear in each step of the procedure here. Each time we divide the lattice
into two domains corresponding to these fields and we apply different procedures
in these domains.

Similarly, as in Chap. 1.3, we will describe the procedure for the first step very
briefly, and next for the fc+1 step.

A. First Renormalization Transformation

We have to calculate the integral T^tLίTlLtA[exp{ — Sε)']]. We rescale it from
ε-lattice Tε to 1-lattice Tγ and we get the integral (1.3.7). Omitting the constant
factors we have

\ 2 Σ \B(y)-(QA)(y)\2

\(dA)(b)\2-±μ2ε2 Σ \A(x)\2

xeTί

-2 Σ \ψ(y)-(Q(A)Φ)(y)\2-λ

2 Σ \ΦAΦ)Φ)\2

yeT\ bcTί

Σ \Φ(x)\2-λε*-d Σ I</ WI4

xeΓi jceΓi

(2.1)

The expression in the above exponential function has several positive terms. Next
we will prove that every action S(fe) can be bounded from below by the positive
terms of a similar type and the remaining terms are sufficiently small in
comparison with them.
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Now we will introduce the restrictions on the fields. Each restriction is
connected with some positive term of the action, so the restrictions will be on the
absolute values of the fields, their derivatives and the connections between the
"old" and the "new" fields. If any of the following inequalities holds

\B(y) ~ (QA) (y)\ > p(ε), \{dA) (b)\ > p(ε),

\A(x)\ > — p{ε), \ψ(y) - (Q(Λ)φ) (y)\ > p(ε), (2.2)
μoε

\(DΛφ)(b)\>p(ε), !ΦWl>μ g 4ld ) 1 / 4p(β) ;

then the corresponding factor in (2.1) satisfies the inequality

exp( -( . . . ) )< exp( - c0p(ε)2), (2.3)

with some positive constant c0, e.g. co=\min{α, 1}. The term on the right side
above is very small. It follows from the definition of p{ε) = b0(l+\ogε~1)p, p>2,
that exp( — c0p(ε)2) is smaller than the arbitrary power εκ, so it can compensate the
factor arising even from a very rough estimate of the action in a big neigh-
bourhood of a point or a bond at which one of the inequalities (2.2) holds. This
idea is basic for the procedure described below.

Let us denote by A* the set of all bonds contained in A, i.e. with endpoints
belonging to A, for arbitrary subset AcTv The following equality holds

1= Σ Σ Σ Πx({\B(y)-(QA)(y)\>p(ε)})
PvCTΊ QvCTf RvCT! yePv

• Π X({\B(y)-(QA)(y)\Sp(e)}) Π x({\(dA)(b)\>p(ε)})
yεPcv beQv

Π χ(ί\(dA)(b)\^p(ε)}) Π z(W)l>—P(ε)

= V V V ΎC v yc y ΎC Ύ Π A\
Lu LJ Lu APVAP%AQVAQ%ARVAR^ I"'-* V

An analogous equality for the scalar field is

i - Σ Σ Σ Πχ({\ψ(y)-(Q(A)Φ)(y)\>p(s)})
PSC T'ί QsC Γf RSC Tι yePs

• Π X({\ψ(y)-(Q(A)Φ)(y)\ύp(ε)}) Π χ({\(DAφ)(b)\>p(ε)})
yeP% beQs

• Π χ({\(DAφ)(b)\Sp(Φ) Π x(\\<Kx)\>-ϊΓΛjτP(ε)
beQs xeRs VI M w

= : Σ Σ Σ XPsXPίXQsXQίXRsXRϊ* ( 2 5 )
Psc T\ QsC Γϊ RSC Γi

where λ{ε) =
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Unifying these two expansions, i.e. multiplying (2.4) and (2.5), we get a joint
expansion:

1 = Σ Σ Σ XpJpsXhXpξ
Pv, PSC ΓΊ Qv, QSC Γ ί Rv, RSC T1

We assign a division of the lattice Tx into two domains with each term in the above
sum on the right side. The first one contains points and bonds at which the fields
or their derivatives are large, for the second domain they are small. We will use
here the division of the lattice Tt into large blocks described in the first part [1].
Let us define

Λc

0 is the sum of all large blocks of Tx distant from one of the
sets B{PV), Qυ, Rΰ, B(PS\ Qs, Rs less than r(ε) = R(l + logβ" XΓ
The numbers r, R satisfy r > l , R>R0 (Ro occurs in the
formulation of Proposition 1.2.1). (2.7)

Next let us define a sequence of sets Λ1, A2,... by an induction

Ac

i + x is the sum of all large blocks of Tγ with distances from
the set A\ less or equal r(ε). (2.8)

Of course all the fields are small on the set Λo and on the neighbourhood of Λo of
the additional thickness r(ε) also. In (2.6) some terms have a set Λo in common, so
we can represent this sum as the sum over all possible sets Ao, and next for each
fixed Λo we have a sum over all admissible sets Pφ ..., Rs, i.e. defining the set Λc

0 by
(2.7). In this last sum we can make a partial resummation. In the class of ordered
6-tuples {Pv, Qv, Rv, Ps, gs, Rs} the inclusion relation between the proper sets
defines a natural partial order relation. Thus, there are minimal elements in the
class. Let us denote by Λ{*'^ the set of the points (the bonds, the blocks) in Tλ

distant from Λo less than r(ε). It is easily seen that

zL XPVXP% ' ' XRSXRS
{PV,...,RS} admissible

\ VSQVQXVS

{Pv,.. .,Rs} admissible,minimal

where the last characteristic function denotes the product of the characteristic
functions giving the corresponding restrictions on the vector and the scalar fields
on the setA'_vΛ?L1,Λ_ί. Let us notice that the minimal elements are the elements
for which the sets Pv,..., Rs are maximally "diluted." For example, this implies that
each pair of elements belonging to the sum of these sets has a distance > r(ε).
Further we have

1 = Σ t t n e expression on the right side of (2.9)] . (2.10)

The above expansion is introduced under the integral (2.1) and we get a sum of
terms.

Now let us make a first estimate of this integral, namely in each term of this
some we remove the interaction terms from the set AC

Ί. We use the fact that
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δm2 = O{ε~1)foτd = 3 and δm2 = O(l 4-logε"1) for d = 2. Hence

2\φ\2^-O(εκ°), (2.11)

where κ0 = 1 for d = 3 and /c0 = 2 — α with arbitary a > 0 for d = 2, and

A(ε)|φ|4 + ^ m V | ( / ) | 2 ^ μ ( ε ) | 0 | 4 for M ^ O ί l K l + l o g ε " 1 ) . (2.12)

From these estimates we get the following one

&.exp[- Σ (λ(8)\φ(xt + λ

2δm2ε2\φ(x)\2)]
[ xeΛ$ J

^ exp( - ^p(ε)4 \RS\) exp (0(εκ°) |ylc

71)

S exp( - p(ε)2 |R J) exp(O(ε*°) \ΛC

Ί |). (2.13)

Similarly, for the constant £ x given by the perturbation expansion (1.1.13), we have

E^EάAJ + EWJ, E'ί(Λc

Ί) = O(εκη\Λc

Ί\. (2.14)

The last estimate and the above mentioned estimates of δm2 are connected with
the properties of the perturbation expansion and they will be proved in the next
paper. Let us denote

{Pv> •> Rs} admissible, minimal for Λo

•Xc

RXpΆs™P(-P(ε)2\Rs\)- (2-15)

Let us analyse more precisely the restrictions on the fields in the domains Λ{^^\
For each ye A, we have

]ψ{y)]-

Further, for arbitrary .

L~ά Σ U(A(ΓyJ)φ{x)
xeB(y)

+ p(ε)^L~

.1 r)(p\ ^

xeB(y)

\U(A(Γyr

= J

ά Σ W*)l
xeB{y)

x))Φ(χ)-Φ(y)\

U(A{Γyib_))(DA
Φ)(b)

£ Σ \(DΛφ)(b)\^(L-l)dp(s),
bCΓyjX

hence

\(Q(A)Φ)(y)-Φ(y)\S(L- ί)dp(ε), \ψ(y)-φ{y)\ gLdp(ε),

and

\ψ(y)-U(A(ΓyJ)φ(x)\S2Ldp(s).
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Finally for arbitrary

<x,x'>, xeB{y),

we have

)-w(y)\ SMy')-Φ(y')\

)-φ(y)\S4Ldp(ε).

In particular

I U(A((y, y')))ψ{y') - w(y)\ ύ 3Ldp(ε).

It is worthwhile to notice here that this particular estimate implies the previous
more general cases.

Let us gather the estimates for the scalar fields on A _ 1 :

\ψ(y)-U{A{ΓyJ)φ{x)\^2Ldp{ε) for x

^ ( ε ) for yeΛ'_l9 (2.16)

\U(A«y,y')))ψ(/)-ψ(y)\S2Ldp(ε) for (y.

The identical considerations can be done for vector fields and we get

\B{y)-A{x)\^2Ldp{ε) for xeB(y), and

\B(y)\^—p(ε) for yeΛ'_l9 (2.17)
μoε

\B(y)-B(y'M3Ldp(ε) for iy

The same estimates as (2.16), (2.17) will hold for the fields in each step with ε
replaced by the corresponding Lkε.

Now we will make a translation in the fields A analogous to the translation
(1.3.10) in the proof of the lower bound, only now it is connected with a conditional
integral, the conditioning in the set Ac

0. Thus we make a translation

A = A' + aL-2C<$lQ*B9 (2.18)

where C ^ denotes the covariance with the Dirichlet boundary conditions outside
AQ introduced in Chap. 1.2. Its properties were described in Proposition 1.2.3.

In the third section of this chapter we will prove a general result from which it
follows that the field A' is small on Av i.e. \A'{x)\^O(l)p(ε) for xeAv Next we
divide the field (2.18) into two components: one "small," with respect to which we
will expand the action, and one "large" which will remain in all the expressions in
the preceding form. To define this division let us introduce a function θx equal to 1
on A2 and changing smoothly from 1 to 0 on a slice of thickness <M surrounding
A2. We have

\ (2.19)
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where ζC(0)Q* denotes an operator with the kernel

yeΓl9
x'eB(y)

and the function ζ is determined by the conditions:

ζ(x,y)=l if I x - y l ^ i Φ ) ,

ζ(x,y) = 0 if | x - y | > i K e ) .

A definition of the operator (1 — ζ)Ci0)Q* should be clear. A" is a small field and we
can expand the action with respect to this field. At first let us notice that the
restrictions (2.16) on the scalar fields can be replaced by the same restrictions
putting JB(1) instead of A and cχ-p{έ) instead of p(ε), with some constant cί

independent of ε. Similarly the characteristic functions χΛ _i s for the scalar fields
can be estimated by the corresponding characteristic functions with JB(1) and cxp(ε)
instead of A and p(ε). For example, we have

(D^)(b) = (D^)φ)(b) + (U(Al)-l)U(B[1))φ(b + ) , (2.20)

hence

(2.21)

The remaining restrictions can be considered in a similar way. The characteristic
functions with the new restrictions will be denoted as previously.

Now let us expand the action with respect to the field A". This expansion was
described already in Chap. 1.3. We use the formulas (1.3.14)—(1.3.16), with B{1)

instead of B{1\ Let us notice that now we have worse restrictions on the fields ψ, φ,
with the additional factor λ(ε)~1/4, so we have to expand to higher power than
before to compensate for these factors, e.g. we have to take n^.1. After the
expansion we get the fundamental quadratic form for the fields ψ, φ in the external
field B{1) and the terms describing an interaction with the field A". We remove this
interaction from the set Ac

79 e.g. we estimate

|(flέ(1)0)(fe) F 1(-^;')Φ(fc-)l^c 1p(ε)O(lMφ( εμ( ε)- 1 / 4p(ε) = O(εκ»), (2.22)

and similarly the other terms, thus the interaction is estimated by O(εκ°)\Ac

7nA2\.
From the definition (2.19) and the properties of the propagator C(^o

}, it follows that
for the interaction terms in the domain AΊ the field A" can be replaced by A' and
we get the additional term O(εκ)\AΊ\, κ>d.

We make a next transformation of the integral, namely we make the
translation

φ = φ' + aL-2C{°l{B{1))Q*φ{1))ψ. (2.23)

This translation changes the interaction, and we get an expression almost identical
to F ( 0 ) in Chap. 1.3, only with the modified propagators for the scalar field and the
summations with respect to variables in the vertices restricted to the set AΊ. We
will change slightly this expression. Let us introduce a configuration B{1) by the
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formula

B{ί) = aL-2ζC{0)Q*B, (2.24)

and let us notice that Lemma 2.3 implies also (dμB
(1)) (x) = O(p(ε)) for xeΛ2,

μ = l,...,d. Hence the assumptions of Proposition 1.2 are satisfied for B{1) on Λ2,
and we have

κ>d, xeΛΊ. (2.25)

We denote by F ί 0 )(/l7, B
{1\ φ, ̂ 4', φ') the expression for the interaction obtained by

applying (2.25) to the previous expression. We will prove also in the third section
that the field φ' is small on the domain /L4.

Let us introduce the characteristic functions

and let us denote them by χ'. Further let us denote by χx the characteristic
functions giving the part of the restrictions (2.16), (2.17), which involves the new
fields B, ψ only.

As an effect of the considerations of this point, we get the inequality

Λo

f i a ί / - 2 Σ W£B)(y)-(QA')(y)\2

-i<B.

+ aL~
best(Λ3)

yeT\

b6sί(vlo)

κ^3»ω-(δ(β(1))</'')(3')i2

7, J 5 ( 1 ) , t/;, ^4', (/)')

(2.26)

where the new quadratic form A^'L(Bt'1)) f° r the field ψ is defined by the general
formula

yeΛ'

- a2L-A(ψ, Q{A)C«\Ω, A)Q*{A)ψ), A C Ω(fc),

(2.27)

and the similar formula holds for the vector field.
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A next operation is a calculation of the integral in (2.26). This operation can
not be done on the whole set Tv as in Chap. 1.3, but on some subsets of Tι only, on
which the fields A', φ' are small. We will integrate each term in the sum on the right
side of (2.26) on the set A5, and it will be a conditional integration with
conditioning on A\.

Let us recall this operation in a general case. Let Ω be a finite set, A C Ώ, and let
A be a positive operator on a space of field configurations on Ω, AΛ its restriction
on A. Then we have

J Π dφ(x)exp(-±(φ,Aφ))exp«f,φ))F(φΐΛ)G(φ\ΛC)
xeΩ

= j Π dφ(x)exp(-±(φ,Aφ))exp((f,φ))G(φΐΛC)
xeΩ

ιf), (2.28)

where dμAΆι is a probabilistic Gaussian measure with the covariance A~Λ

ι.
In our case A is given by the main quadratic form in the fields A\ φ\ f is

obvious, A = A5, F = χ/exp(F(0)(/L7)), and the function G is the product of the
characteristic functions ^AQXA-X^A{1\ a n < ^ ^ n e remaining exponential functions, the
rest of the characteristic functions are estimated by 1. The expression (φr

— AA

 1Aφ tΛc)(x) for vector fields has the form

b^A'(b + ) , xeA5, (2.29)
best(Λs)

and for scalar fields

l ) ψ ' ( b + ) , x e A s . (2.30)
best{Λ5)

Because the fields A\ φ' are small on dA5 — {xeAc

5 :x = b+ for some best(A5)}, the
second terms in (2.29), (2.30) can be estimated by 0(1) p(ε) and the characteristic
functions χf [the expression (2.29)]-/ [the expression (2.30)] can be estimated by
the functions XΛs(A')χΛ5(φ') defined in the same way as χ' but with a suitably larger
constant 0(1). The expressions (2.29), (2.30) occur also in the interaction F (0)(/l7),
but then xeAΊ, and the second terms are of the order O(εκ). So the part of the
interaction containing these terms can be estimated by O(εκ)\AΊ\.

Thus in our case the integral with respect to the probabilistic measure in the
last line of (2.28) is estimated by

j dμcSoiA') J dμc^B^iφ^χ^A^χ^φ')

• exp(F(0)(/L7, B
{1\ xp, A\ φ') + O(sκ)\AΊ\). (2.31)

To this integral we apply the lemma in [2]. Using the lemma and some results of
the third paper, we can estimate the integral (2.31) by a cumulant expansion to a
sufficiently high order n plus O{εκ)\AΊl κ>d. Here there are stronger restrictions
on n than in Chap. 1.3 because the estimates on the expressions in vertices are
weaker, thus ή has to be >12 for d = 3 and > 4 for d = 2.

As a result of the cumulant expansion we get part of the perturbation
expansion in coupling constants, and we estimate the sum of terms of order higher
than n by O(εκ)\AΊ\. As a result we get an expression equal to ^ ( 1 ) > L ( / 1 7 , B{1\ ψ\ i.e.
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to the expression obtained and analysed in Chap. 1.3, the only differences being
that the summations in the vertices are re
propagators are modified. Thus we have
that the summations in the vertices are restricted to the set ΛΊ and the scalar field

)\AΊ\). (2.32)

It is worth mentioning here that the above inequality can be obtained in a simpler
way, without using the lemma. This can be achieved by integration by parts as in
[12] and then doing some elementary estimates.

As a result of all the operations which have been done up to now, we get the
inequality

εκ°)\Λc

7\ + O(εκ)\Tι\), (2.33)

with κ o > 0 , κ>d, and ρ"U)>L given by the formulas

2 Σ \B(y)-(QA)(y)\2-^A,(-Δ+μ2

0ε
2)A)

yeT\

\aLά~2

yeT\

\ 2 Σ \B(y)-(QA)(y)\2

\ψ(y)-(Q(B^)ψ)(y)\2

i Σ
b,brest(Λs)

+ aL~2 Σ
best(Λ5)

b,b'est(Λ5)

best(Λ5)

(2.34)

Because the first representation on the right side above was obtained by doing the
translations in the fields A\ φ' inverse to (2.18), (2.23), we have

B ( 1 ) = ( l-θ 1 )>l + θ 1 β ( 1 ) , (2.35)

and the characteristic functions χΛ inΛc give the restrictions on the fields B, ψ, A, φ
on the set A_1nAc

5. The functions χx and ζΛo have the same meaning as before.
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The integrals in the last line of (2.34), after proper rescaling and multiplication by

ίa(Lε)d
— I/I I — l / ί

i -2\2 | Λ s | /^/r^d-2\2 l 5

2π ) ' \ 2π

are equal to the factors Z ( 0 ) ' ε , Z ( 0 ) ' ε (£ ( 1 ) ) calculated on the set Λ5 instead of Tε. We
will denote them by Z(^5

)>ε, Z{^\B{1)). A product of these factors coming from each
step of the procedure will be used in the sequel, instead of the factors Z\, Zε

k(A)
used in Chap. 1.3.

The second representation in (2.34) was obtained by integration with respect to
A \Λs, φ tΛs. We will transform it further in order to get the same representation as
in Chap. 1.3, when the fields J3, ψ are restricted to the set Λ6. We have

aL~2 X A(b + y{&AlQ*B)(b-) = aL-2 £ A(b + )
best(Λ5) best(Λ5)

\, (2.36)

A'c)B, QCf5Q*(A'6nA'Ί
c)B)

A'6B} + O(8K)\A'5\, (2.37)

for arbitrary K.
Similar representations and estimates hold for the scalar field expressions, but

there are essential changes also. In this case it is convenient to make all the
expressions, except the basic quadratic form, independent of the field B(1) \Λj,
because then they are unchanged in the next step of the procedure. This is achieved
by imposing proper boundary conditions on the fundamental Laplace difference
operator. We have from Proposition 1.2.1.

b,b'est(Λ5)

= i Σ ΦΦ+) U(B^b)Cf5(Λl,B(1>;b_,b _)U(B[V)φ(b'+)
b,b'sst(Λ5)

, (2.38)

aL~2 £ <Kb + & } % & &
best(Λ5)

i
best(Λ5)

+ O(εκ)\dΛ5\, (2.39)

(Λ2, Bw)Λ'6ψ) + O(εκ)\A5\. (2.40)

Let us denote by ρa) L(Λ0,B,θ1B
w,ψ) a density given by the second repre-

sentation in (2.34), with the expressions on the left sides of (2.36)-(2.40) replaced by
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the expressions on the right sides, obviously without the errors. Also let us denote
by ρ/(1)'L(/L0, £, ΘXB

{1\ ψ) a density obtained from ρω'L(Λφ B, ΘXB
{1\ ψ) by

removing the basic quadratic forms on A'6 from (2.37), (2.40). Then we have

ρω'L(A0, B, 0,B{1\ ψ) = ρ'(1) L ( 4 B, 0X£(1>, ψ)

(2.41)

ρ / ( 1 ) ' L ( / l 0 , 5 , θ 1 β ( 1 ) , φ) = ρ'(1)>L(A0, Λ'Ί
CB, θ ^ , Λ'^xp), (2.42)

and ρ' ( 1 ) 'L depends on ΛΊB
{1) only through the factor Z^]{B{1)).

The last step is a rescaling of the obtained expression from L-lattice to Lε-
lattice. In the final expression we must include all the numerical factors. We do not
write this expression here because it will be written in a general case in an inductive
hypothesis.

B. Inductive Description of the Action after k Steps

Now we will write the expressions and their estimates we get after k steps of the
renormalization procedure. We have

Σ
Dc Tjfk~ !),admissible

X ρ(k) Lk%Λ$\...,Λ(

o

k-ι\A,θkA
{k) \φ)

u admissible

k-l

f x O((Ljsr)\T[j)\). (2.43)
\j = 0 /

Here the word "admissible" means that the sets A^ have to satisfy all the
conditions resulting from the construction. The sets are unions of big blocks, the
set yl(

0

0)c is either empty or has at least one point whose distance from τl(

0

0) is bigger
than r(ε). In general A^+1)cAψ\ and either A(j+1) is a maximal set composed of
big blocks and satisfying this inclusion, or the set A^+ι)cnAψ has at least one
point whose distance from A^+1} is bigger than r(Lj+ xε), and so on. Of course the
sets A\j) are defined in the same way as Ab r(ε) is replaced by r{Ljε) only. Finally let
us notice that A[j) does not mean the prime operation applied j times to a set Ab for
different j these are independent sets. We will use the same notations for the sets in
different scales. Now we will give a detailed description of the expressions in (2.43).
At first we have the following formula for A^'8

A{k)>ε = ak(Lkεy2ζ{k)Gε

kQ*A, (2.44)

where the function C(7c)(x, y) is defined for xeTφ ye T[k\ is "smooth" with respect to
x in the sense that \(dη

xζ
(k))(b,y)\^l, suppζ{k\ •, y) is contained in the set

{xeTη:\x-y\<r(Lkε)-2M} and ζik\x,y)=l if \x-y\<>\r{Lkε). The function θk is
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defined on Tη, is equal to 1 on Bk~ ι{Λ{

2

k~1}) and varies "smoothly" from 1 to 0 on a
slice of thickness < M surrounding Bk~ί(Λ(

2

k~ί)). These functions are rescaled in
(2.44). The density ρ(k)>Lkε is defined inductively by the formulas generalizing
(2.34)-(2.42). At first we define

ι(k-l),L"-<-ε (ΛW) Aλk~2)

\Λo > - > Λ o ,

• (Λf ~2)/ n 4 ~ι )c)φ'> ~ <(4*" 2)> n 4 *

(2.45)

where A = (\-θk)θk_-ίA
(k~1) ε + θkA

m'\ and the characteristic functions χk, C ^ - D ,
etc. are defined analogously to the corresponding functions in Sect. A, with ε
replaced by Lk~1ε and Λo by /t(

0'
!~1). Another representation is obtained by

calculation of a conditional integral in (2.45) with the conditioning on 4*~ 1 ) C ;

ρ"{k) Lk\Λ^\ ...,4"" υ , A, θkA
m'\ φ)

' \A?-... ί # ' rA?- ...if l C &

exp[-f

H4"

(2.46)
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This representation is changed further in a way generalizing (2.36)-(2.40). The aim
is to get a representation proportional to the basic Gaussian density after k
renormalization transformations, i.e

if the fields A, φ are restricted to the domain A{£~1)r. We use Proposition 1.2.1 and
restrictions on the fields, and we estimate unnecessary terms by 0({Lk~ 1ε)κ)\A{£~ υ |
with κ>d. More exactly, we have

), A

A{k-1)c), Aik)>ε) ( 4 * - 1 } / n 4 f c - 1)fc)φ)
- l)ίφ}

1)\, (2.47)

and similarly for the form (A, A($ic-
k

1

ε

)Ay, except that Neumann boundary con-
ditions are not introduced. The third and ninth terms in the exponential in (2.46)
are linear forms in the fields A, φ. We restrict them to A{k~ 1)fnA{£~1)/c and in the
ninth term we restrict the domains of the definitions of the operators by
introducing Neumann boundary conditions on the boundary of
Bk ~~! (A{k ~ί)nA{k~1 )c). This is done also for seventh and eighth terms. Terms omitted
are described more precisely later, in (2.109) particularly. This way we get a density
which we define as ρ(k)'Lkε(yl(

0

0), ...,/l(

o

fc~1), A, A{k)>\ φ). It has the following
property :

(2.48)

and if we define a density ρ'{k)>Lkε by the equality

Q(k), *B(

2

then we have

- 2 < 4 * " 1]'Φ Λ{k)^\B\A{k~ 1)f\ A{k)>ε)A(k- 1 } / φ > ] (2.49)

= ρ ' ( k ) ' L k ε ( 4 0 ) , . . . , A % - i ] , A { k ~ 1)rcA, θkA
{k)>\ A i k ~ ι ) l c φ ) . (2.50)

Here we treat θkA
{k) as an independent field configuration appearing only as an

external vector field in the expressions with scalar fields. Further, ρ{k)>Lkε is defined
in such a way that ρ'{k)>Lkε depends on the configuration Bk(A{k~ί)f)A(k)'ε through
the factors Z%^Jε{Bj(Aψl Aε) only.
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The inductive definitions (2.46)-(2.50) allow us to write an explicit formula for

We do not do it because we will not need this formula, but let us write a
formula for a whole external vector field in its scalar field part:

where Aijhε is defined by the formula (2.44) with j and A- instead of k and A.
Obviously we have Bk~2(A{k~2))Aε = A' [we write here Ak_ί=A', φk_1~φ' in
(2.45), (2.46)]. Also let us write a formula for the Z0)-factors. In the previous paper
they were composed into a factor Zk, but now it is inconvenient because they
depend on different sets Aψ. We have

ίdφLo )exp(-i<0,(CψJ\B\Aψ\A*))"^» (2.52)

for 7 = 0,1, ...,k— 1. In each step we expand these factors with respect to a new
small field, hence the configuration Aε is changed after each step.

The expression ^ ( fc)'Li%4 (

7

fc~1)r, θkA
{k)\ φ) is the same as the corresponding

expression in Chap. 1.3, except that there are different propagators and sum-
mations in vertices are restricted to the set Bk~1(A{k~1)) with the help of the
characteristic function, or some function gk. A detailed description of
g)(k),Lkε^(k-i)^ wj |j k e g j v e n m a p a p e r o n renormalization of perturbation
expansions.

C. A Renormalization Transformation in a General Case (fc + 1 Step)

We apply the renormalization transformation T^[_T^fLtθkAW3l.[_ J] to the ex-

pression under the integral on the right side of (2.43). We get an expression

dependent on the new fields B, ψ and its integral over these fields is ^ Z ε .
Now we will estimate this expression from above. At first we rescale it from the

ZΛ>-lattice T$ε to 1-lattice T[k\ Omitting the numerical factors, we get the integral

iαL"-2 £ \B(y)~(QA)(y)\2

2 Σ \ψ(y)-(Q(θkA
m)φ)(y)\

• ρ'(k)(Λf,..., 4*-1\ /I?" 1)ICA, θkA
ik\ 4*" ϊ)lcφ)

exp[-i<4'£" l)

QkA
(k\ φ). (2.53)

Let us recall the formula for A(k) after the rescaling

(2.54)
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and the restrictions on the fields A, φ given by the characteristic functions χk:

\{dA)(b)\ ύclV{Lk- h), \A(x)\ ^ —^-^Lk- ιε),
μL ε

B),

fnr ΎczΛ^k~ι)'

Now we introduce the new restrictions on the fields B, ψ, A, φ considered on
the set A^~1)f. The restrictions are identical to these considered in the first step,
Sect. A, and are given by (2.4)-(2.6), with the replacements of ε by Lkε, Tx by
A{k~1)r and the field A by Aik) in the expressions for scalar fields. We will not
rewrite these definitions, except the definition of A^: Λ^ is the sum of large blocks
of the lattice T[k) contained in A{k~i}\ distant from the set

B(Pik))uQik)uR{k)uB(P(k))^Q{k)uR{k)

more than r(Lkε). Replacing At by A{k\ we have the identities (2.9), (2.10) also. We
introduce (2.10) under the integral (2.53) and we make a first estimate of it, namely
we remove the interaction from the set Bk(A{k~1); nAik)c) leaving the expression

-λ(Ljε) Σ ηd\Ψ(k)(xT

only, η = L~k, where of course

φ { k ) = a k G k { B \ A { k - 1 ] ' \ A { k ) ) Q t { A { k ) ) A { k - 1 ) f φ . (2.56)

Such a possibility is assured by the following theorem.

Proposition 2.1. Under the conditions (2.55), we have

= -λ(Lkε) Σ ηd\Φ{k)(xT
xeBk(Λ<f-»'nΛWc)
ik\ θkA

{k\ φ) + O((Lkε)Ko)\A{k' 1)fnA{k)c\. (2.57)

Similar conclusions hold for other expressions which will be included in the
action in the later stages of the procedure.

This theorem is a corollary of the analysis of the perturbation expansions.
Now we want to use the first term on the right side of (2.57) to produce small

"convergence factors" as in (2.13). To do it we will prove the lemmas which were
used in Sect. A already. They will be based on the following

Proposition 2.2. Let Ω and A satisfy the assumptions of Proposition 1.2.1, then for
e(Lkε) sufficiently small there exist positive constants δ0, c0, Ro independent of A, k,
Ω and depending on d, a, M, such that

\(D\Gk(Ω, A)Qt(A)) (b, y)\ £ c0 exp( - «S0 dist(fc, y)), (2.58)
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for bcΩ, dist(b,Ωc)^R0, yeΩ{k\ The identical inequality holds for Gk(Ω,A)Q*(A),
and for EPΛδGkQ,Ω0, A)Q*(A)9 δGkQ9Ω0, A)Q*(A) with the additional factor

exp(- δo(dist(bβc) + άist{yβc)).

This proposition is a simple corollary of Proposition 1.2.1. At first we will apply
it to prove the necessary properties of A{k) especially we would like to prove that
this configuration satisfies the assumption made on vector field configurations in
Propositions 1.2.1. It will follow from

Lemma 2.3. Under the restrictions (2.55), we have

« ) = A(y) + O(p(Lkε)) = (Q*A) (x) + O(p(Lkε)),

xeBk(y), yeA{k~l)\ (2.59)

J (x) = O(p(Lkε)), χeBk(Λ%-1)f). (2.60)

Let us notice that the conclusions of Proposition 2.2 hold for GkQ%. We have

) = ak(ζ{k)GkQΐ(A-A(y)))(x)

xeB\y), yeA{k-1]'. (2.61)

Using Proposition 2.2 and the restrictions (2.55) we can estimate the first two terms
in (2.61) by O(l)p(Lkε). The third term can be calculated in the following way

(2.62)
ak

Hence

{akGkQX 1) (x) = 1 277FT2> ( 2 6 3 )
ak + μQ(Lkε)z

and, again using (2.55), we have (2.59).Furthermore, because GkQ%l is a constant,
from (2.61) we have

>) (x) = αfc(3JCwGfcβ*U - A(y))) (x)

xeBk(y), yeΛ^\ (2.64)

and the restrictions (2.55), Proposition 2.2 and the properties of the function ζik)

imply (2.60). Thus Lemma 2.3 is proved.
The inequality (2.60) implies that the configuration A{k) considered on the set

Bk(A{k~i)f) satisfies the assumption of Proposition 1.2.1. on a vector field con-
figuration. The inequalities of Lemma 2.3 will be applied also when a scale is
changed.

Now we can prove the corresponding inequalities for the scalar field
configurations.
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Lemma 2.4. Under the restrictions (2.55) we have

φ{k\x) = U(A«\φ)φ(y) + O(p(Lkε))

) , for xeBk(y), yeA*?-"', (2.65)

) for bcB\A{k~1)f). (2.66)

Let us define Π 1 ? Π2 a s t n e sums of large blocks contained in A(k~1)r and
distant from the point y less than 2r(Lkε), 4r(Lkε) respectively, and let us denote
Π=Bk(Π2)

 O f course • cBk(A{k~1}/). Using Proposition 2.2 and the restrictions
(2.55) we get

φik\x) = (akGk(Π, A{k))Q*(A{k)) D tφ) (x) + 0({Lhf), xeB\y), (2.67)

and the same equality for the covariant derivative of φ{k\ From the property (2.60)
we have the inequality

\Aik\x) ~ Aik\y)\ ^ O(p(Lkε)r(Lkε)).

Let us denote by Ao a constant configuration equal to A(k\y) at each point, thus
A(k) — A0 = O(p{Lkε)r(Lkε)). Using the expansion formula (1.3.44) and Proposition
1.2.2. we have

Π, A0)QΪ(A0)ΠiΦ) W + {akGk(Π, Λ0)F2Λ(Aw - Ao, A0)Ώ 1Φ) (x)

fc(Π, A0)Vk(A{k)-A0, A0)Gk(Π, A{k))Q*(A(k))D^)(x)

= (akGk{D, A0)QΪ(A0)ΠιΦ) (x) + O((Z>e)Ko), κΌ >0 , (2.68)

and similarly for the derivative. Now the constant field Ao can be "gauged out"
from the last expression above. We use a gauge transformation defined on • by
the formula φo(x)—U{Ao{ΓXίy))φf

o(x\ x e Π , where the contour Γxy=—Γyx is
defined as in (1.2.1.), but now for the points x from • instead of the block B(y). Let
us consider how the operator + Δη^'π+m2(Lkε)2 + akPk(A0)[J transforms itself
under this gauge transformation. We consider the terms determining the corre-
sponding quadratic form:

y Λ ) , M 0 ( ^ + )-(/)'()(fc_)), (2.69)

but the contour ΓyJ}_vjbuΓb+y is closed and bounds some surface ^ C D , so
using Stokes' theorem we have

hence

(D\oφo)(b)=U{Ao(Γb^y)){d«φ'o)(b), and
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Furthermore for j/eΠ 2>

(Qk(Ao)Φo)(y')

= Σ ηdU(A0(Γ^x,))U(A0(Γx,J)φ'0(x')
x'eBHy')

= U(A0(Γy,J) Σ ηdU(A0(Γy^Γ^x,uΓx,J)φ'0(x'), (2.71)
x'eBHy')

and because Ao(Γyty,vI*Px.vΓx,ίy) = 0 again, so we have

(QkUo)φo) (/) = U(A0(Γy.t y)) (Qkφ'o) (/) and ?

i (β^o)0o)(/) i 2 =i(β^Ό)(y)i 2

Hence the operator +Aη^π + m2(Lkε)2-\-akPk(A0)Π is transformed into the
operator — Δη

0'
N

π + m2(Lkε)2 + akPk\H, and we have

GΛ(D, Λ *> x') = ^(^o(^c, y))G*(Q 0 x, x') £/(Λθς,;c)) (2.73)

Together with the gauge transformation of the propagators we make the
corresponding transformation of the field φ, i.e. φ{y')= U{AQ{Γy,y))φ\y'). Then the
last expression in (2.68) transforms itself as follows

(akGk(Π, A0)Q*(A0)nj) W = U{A0(ΓXι y)) (akGk(Π, 0)β?D ,φf) (x). (2.74)

Now let us consider the restrictions (2.55) on the field φ. The estimates of the
covariant derivatives give us

y") - φ(y')\ g. O(ί)p(Lkε).

After the gauge transformation we finally get

\U(A0(ζy',y")))U(A0(Γy,,Jφ'(y")-U(A0(Γy%y))φ'(y')\

= \φ'(y")-φ'(y')\^O(ί)p(Lkε).

Now we can apply the same reasoning to the configuration α feG fc(Π,0)Q*Π1φ
/ as

to A{k) in the proof of Lemma 2.3, especially we have

, (2.75)

so the same conclusion holds and we get

(αkGfc(D, 0)β*D ,Φ') (x) = Φ'iy) + O(p(Lkε)), xe B\y). (2.76)

Combining the equalities (2.67), (2.68), (2.74), (2.76) and taking into account the
equalities φ'(y) = φ(y\

U(AO(ΓX> y))φ(y) = U{AW(I%y)) φ(y) + O((Z*ε)Ko)

we finally get (2.65). It was mentioned several times that the corresponding
equalities hold for the covariant derivatives of φ{k) and we have

+ 0({Lkε)K0), bcΠ- (2.77)
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Using again the similar considerations as in the proof of Lemma 2.3 we get (2.66).
This ends the proof of Lemma 2.4.

Now we can use (2.65) to estimate the first term on the right side of (2.57):

- λ(Lkε) Σ ηd\Φ{k\x)\4 = ~ λ(Lkε) £ \φ(y)\4

+ 0{{Lkε)K0)\Λ^- l)'nΛfc\. (2.78)

Of course there holds

xc

Rik) expf - λ{Lh) Σ \Φ(y)\*\ ̂  e χp( - P W l ^ l ) (2 7 9 )
j

Let us introduce the functions ζΛ(k) by the formula (2.15) with the obvious
modifications.

The next operation is a translation in the vector fields and an expansion of the
action with respect to a proper small field. We make the translation

A = Ά + aL~2C(kl)Q*B. (2.80)

We would like to show that the field A! is small on Λ^\ The restrictions on the
fields A, φ introduced by the characteristic functions χ^ imply the corresponding
restrictions (2.16), (2.17), with ε replaced by Lkε9 on the fields B, ψ. For the second
term on the right side of (2.80) we have

Lemma 2.5.

aL~ 2 ( C ^ ) β * 5 ) (x) = B(y) + O(p(Lkε))

= (Q*B) (x) + O(p(Lkε)), xe B(y), yeAf. (2.81)

To prove it let us notice that

aL-2(C{klQ^B)(x)

= alΓ 2(C(/C)β* 1) {x)B{y) - aL~2{Cik)Q*A{k)/c) {x)B{y)

+ aL- \Ok)Q*Af\B - B(y))) (x) + aL^iδC^Q^B) (x)

= aL-2{C{k)Q*l) (x)B(y) + O(p(Lkε)), (2.82)

where Proposition 1.2.3 and the restrictions on the field B were used. We have to
calculate aL~2C{k)Q*l = aL~2C{k)l, where the two units are in different scales. We
proceed the same way as in (2.62):

(2.83)

We have to calculate A(k)l. From the equalities (1.2.21) and (2.63) we get

μ2

0(Lkε)2

2tτkΛ2>ak + μ2

l{Lkή
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and hence

This together with (2.82) proves (2.81).
From the above lemma and the restrictions on the fields B, A it follows that the

field A' is small on A{k):

\A'{x)\ = \A(x) - αZ ξ

^ \A(x) - (Q*B) (x)\ + O(l)p(Lkε) £ O(l)p(Lkε). (2.86)

Now let us investigate a result of the translation (2.80) in the integral (2.53). For
the quadratic form in the fields B, A standing in the exponential function under the
integral, we have

\(Λf'cB)(y)-(QA')(y)\2

+ aL~2 < « V ^Q

+ 3

i(B,Δ(ψ)'LBy. (2.87)

It is easily seen that the quadratic form in the field A' restricted e.g. to the set Λψ
has the form j(A^A', (C(^}k))~1AψA'y. The remaining terms of the action depend
on the field ΛffA only through the field A(k). The result of the translation (2.80) on
the configuration A^k) will be represented in different ways depending on the sets
on which the configuration is considered. Thus we have Am = (ί — θk+1)A(k)

(ί-θk+ x)θkA^ = ak(ί - θk+1)θkC
k)GkQ*(A' + aL~2C^Q*B)), (2.88)

- akaL~2θk+

(2.89)

where by the definition B{k) is the sum of the second, third and fourth terms on the
right side of (2.89). From the restrictions introduced by the functions ζ(k\ ζ(k+ υ , the
restrictions on the field B and the Propositions 1.2.1-1.2.3, 2.2 we get

B{k\x) = 0{{Lkε)κ) for every K , (2.90)

and similar estimates for the derivative. From (2.86) it follows that the field
θk+1Ά

{k) is smooth and small:

\θk+1A'ik\x)\^O(l)p(Lkε), (2.91)

similarly for the derivative.
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Now we will expand the expression under the integral (2.53) with respect to the
small field Ά{k) + B{k\ Let us stress here once more that in the density ρ/(k) only the
factors Z 0 ) depend on this field, so we will consider the expansions of these factors.
They are given by the formulas (2.52) rescaled from the LJε-lattice to the VY\-
lattice, thus the field Λ(k) is defined on the ^-lattice, η = L~k.Ύo understand better
the properties of the expression in (2.52), let us rescale further from the ZΛ^-lattice
to the 1-lattice and let us write it as a determinant. Omitting a numerical factor we
have

[det(C^,(^(4>">), AL~J)rx] " 1 / 2 , (2.92)

where Λψ are subsets of the 1-lattice T[j) and the configuration A{k)L~J is defined
on TL-j. The expression (2.92) depends on the configuration Bj(Λψ)A{k)'L J. This
configuration, after the translation (2.80) and using the formulas (2.51), (2.88),
(2.89), is given by

J) ( 2 9 3 )

We will need to apply Propositions 1.2.1-1.2.3 to operators with external vector
field equal to (2.93), so we have to verify the assumption of regularity (1.2.23) for
this field. From (2.90) and (2.91) it follows that

^ 0(1) (Ljη)dl2p(Lkε) ^ O(l)p(Ljε), (2.94)

so the field Ά: = θk+1A'{k)'L~J + B(k)'L~J satisfies this assumption. Let us consider
the remaining part of the expression (2.93) and let us denote it by B. The derivative
(dμ~JB)(x) of this configuration is equal to one of the derivatives (d^~JAil)'L~J)(x)
or to (dμ~JB{k+ί)tL~J)(x) if the point x does not lie in a slice of thickness M
surrounding one of the sets Bι(Λf). For examples, if x belongs to B\A{2~ι)'r\Aψ)
with the exception of the slice, then Lemma 2.3 implies

^ 0(1) {LJ-ιYl2p(L'ε) g O(l)p(ZΛ). (2.95)

If x belongs to this slice, then the above inequality implies

0, (2.96)

and applying Lemma 2.3, we have

d~2L

Ό{p{Lιε)), (2.97)
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where xeBι+ 1(y'\ xeB\y)y thus yeB{yf) and the restrictions on the fields At, Aι+ λ

on the set Λ^ imply
d-2

A+1(y')-Λ(y)=α j~ !) 2

again. These inequalities give us finally

£ , (2.98)

and it means that the regularity assumption is satisfied for the configurations B
and (2.93).

Now we will expand the operator {C%iB\Λ^\ B + A))'1 with respect to the
field A. We use the formulas (1.3.15), (Γ3.44) for the expansions of Qj(A + B),
Gj{Ω,A + B) and we get

= ajl - ajQj(A + B)G/β, A + B)QJ

, B) + aL~2PB + aL~2Q*{B)F2(A, B) + aL~2F*{A, B)Q(B)

+ ah- 2F*(A, B)F2{A, B) - a2F2> μ , B) G/Ω, 4 + B) Q*(A 4- B)

- a2Qμ + B) G/Ω, A + B)F|/^, 5)

- a*F2tμ, B)GjtΩ, A + B)F*JA, B)

- a2Qj(B) G/β, 5) VjU, B) G /O, v4 + B) β*(B)

^ 0). (2.99)

The operator ^-^ is built with the help of the propagator GfB^A^), A -f έ), so
(2.99) does not give a full expansion in A, which will be obtained later.

The formula (2.99) implies

fy), B))

hence

• [det(J - (C%1. .))1 / 2 W™{C%1.. .))1/2)] " m . (2.101)
5 5

The first determinant on the right side above, multiplied by the numerical factors
we have omitted in (2.92) define the factor Z 0 ) with the field A{k)iL~J replaced by B.
Thus it is of the form required by the inductive assumption for the density ρ{k+1).

We have proved that the configurations (2.93) and B are regular on B(Aψ) in
the sense of Proposition 1.2.1, hence we can apply Proposition 1.2.3 and we get

— / < /

= {C%l.ψ2{C%iB\A%B + A))-ι{C%i...))112 ^y~^I. (2.102)
5 5 yQ
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The inequality

holding for n odd and λ satisfying — ^ 1 — λ ^ — implies the inequality

[det(/ -

[
lι=i

+ 0(1) Tx{C{i\3iB\A^\ B) W^f*'- (2.103)

The possibility of dealing with bounded operators only, and especially the
inequality (2.102), is an essential reason why we are treating the factors Zij)

separately instead of composing them into the factor Zk. A simple analysis of the
operator P0J) shows that the last term on the right side of (2.103) can be estimated
by

O((Ljε)κ)\Bk-j(Λf)\

= 0{{Lkε)κ)\Af\L{j~k)κ\ with κ>d, κo>0.

In a similar way we can estimate the terms from the sum in (2.103) containing the
^-vertices, the field B{k)iL'J or the terms of an order in the coupling constants
larger than n. These estimates are quite elementary because the terms are
represented by one-loop graphs and easy applications of Propositions 1.2.1—1.2.3
are sufficient here. The expression we get contains still the propagators
GfB\Λψ\A + B\ We expand them iterating (1.3.44) to sufficiently high orders,
and estimate again the terms of an order > ΰ as above. Finally we get the following
expression

n— i Yl.

dn

1 -*" ' - ' " " Λ '"1ΛT~1 ~ ' (2.104)
τ = 0

We will transform it further.
The summations in the vertices in (2.104) are restricted to suρpθ f c + 1 and the

distance of this set to the set B\A^)c) measured on the lattice TL-j is >Lk~jr(Lkε)
>r(Ljε). Using Proposition 1.2.1, we can replace the propagator Gj(Bj(Aψ),B) by
Gj(B\AiQ)\ B) and the terms containing the difference of these propagators can be
estimated by

O(iUεf)\Bk-\Af)\ = O((Lkε)κ)\Λ{k)\L{j-k)K0

with arbitrary κ>d, κo = κ — d.
Similarly using Proposition 1.2.3 the propagator C%}(Bj(Aψ\B) can be

replaced by C^iB^^B). Thus we estimate (2.104) by the same expression but
without the subscript Λψ and with Bj{Λψ) replaced by B\A{Q\ plus an error

O((Lkε)κ)\Λf\Lij-k)Ko.
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Finally we rescale the expressions from 1-lattice to ?y-lattice. Now we can use
the formula (1.2.40) for a composition of Z ( j ) factors:

7 = 0

This formula implies that the sum of the expressions over = 0,1,..., k — 1 is equal
to

Σ \\^logZk(Bk(Aflτθk+1A
/ik) + B)) . (2.106)

n=1n\\dτ I τ = 0

This expression is by the definition equal to the polynomial Q/

{k\Bk{A{^))\ B,
θk+ 1A'{k)) defined in Chap. 1.3, with the basic set Ω = B\Af) instead of Ω= Tη9 thus
we have the propagator Gk{B\Af\B) instead of Gk(B(k+lhη). Again let us notice
that the propagator Gk(Bk(A{Q}\B) depends on the configuration

B\Λf)B = B\Af) (1 - θk+ x)Aik) + θk+ίB
{k+ί)>η

and this configuration satisfies the regularity assumption of Proposition 1.2.1 on
the basis of the estimate (2.98). The terms containing the vertices localized in
Bk(A{k)c) can be estimated by

as it follows from the extension of Proposition 2.1 to the polynomial Q{k). We
choose the new localization with the help of a function gk, where gk is a smooth
function with suppgkcAψ and gk=ί on Λψ.

Now the summations in the vertices are restricted to A{k\ and we can make the
final transformation, namely we replace the propagators GΛ(J3fc(Λ.(

o

fc)), B) by
Gk{B\A{k)\ Bik+1)>ηl with an error O((Lkε)κ)\A(k)\.

Gathering together all the expansions and the estimates of the factors Zij) we
get

J=o j=o 5

• Qxp(Qik\Bk(Af) B{k+ υ ' \ gkA'{k))

+ O((Lfcε)K0)|^l(

2

fc)nyl(

7

k)c| + O{(Lkε))κ\Af\). (2.107)

Let us consider the expansions of the remaining expressions under the integral
in (2.53), i.e. the basic quadratic form in the φ, φ fields and the polynomial ^k\
These expansions were analysed in Chap. 1.3 and are given by the formulas (1.3.15),
(1.3.16), (1.3.44), and (1.3.45). Proposition 1.3.1 can also be applied in the present
situation and we estimate the terms with ^-vertices, the terms containing the
configuration B{k) and the terms of order >n by O((Lkε)κ)\Aψ\. We estimate the
terms localized in Bk{A(k)c) by

0{(Lkε)K0)\AfnAik)c\.

The interaction terms we get after these expansions and estimates contain the
propagator Gk{Bk~1(A{k~l)\B). Our final transformation is a change of this
propagator by the propagator Gk{B\A{k)), Bik+ 1 ) ' ί /). Here we use a property already
used in the inequality (2.107) and summarized in
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Proposition 2.6. // in the interaction terms localized in Bk(A{k)) we replace the
propagator Gk(Bk~ \A{k~ υ ) , B) by Gk(B\Λψ), B(k+1}'Ό, then all the terms containing
at least one difference of these propagators can be estimated by 0{(Lkε)κ)\Λψ\.

Now we will transform the basic quadratic form in the scalar fields and next we
will do a translation in the field φ. We will localize this form in the set
Λ^~ 1)fnΛψc, Λ{k\ and we will change the operators of the forms using Proposition
1.2.2 and the restrictions on the fields ψ, φ. We have

2 Σ \ψ(y)-(Q(θkB)φ)(y)\2

2<(^6 ~ 1)fnΛ{k)c)φ, A{k)(Bk(Λ{k- 1)fnAfc\ B){A{k~1)fnA{k)c)φ)
c), B) {A{k)nA(k)c)φ}

Bik+ ^)Afφy
(2.108)

More exactly the difference between the quadratic forms is a quadratic form
\(A{1~ 1)!φ, HkA

{£~ 1]'φ} and for the matrix elements hk(x, x') of the operator Hk of
this form, the following inequality holds

^ 0{{Lh)K) exp( -δo\x- xf\) (2.109)

for x, xfeA^~1)f and arbitrary K. This remark holds for the other expressions of
this type, e.g. for the expression connected with (2.47), and will be used in the next
chapter, where these formulas will be applied in the reversed order.

Now we make a translation of the form

φ = φ' + alΓ 2C{k}μBk(Aψl B{k+ v>«)Q*(B{k+1}>>. (2.110)

This translation changes the first and the fourth terms on the right side of (2.108) in
an obvious way. We get an expression analogous to (2.87), so we will not write it
here. After the translation (2.110) we make some changes in the interaction terms.
If x in

^ ) , B(k+ υ ' Ό Q*(Bik+1}'»(x)

is a vertex variable, then xeA{k\ and we replace this configuration by

(aL~ 2C{k\B\A{k)l B{k+ ^)Q*(B{k+ ι)^)A{k)'ψ) (x).

If the configuration appears in the expression

(akGk(B\Af\ B{k+ l)>«)Q*(B{k+ ι)^)AfaL~2

• C{k)μBk{Afl Bik+ u-«)Q*(Blk+ υ ' » (x), (2.

then χeBk(Aψ), and we replace C^k) by Cik\ A{^ by 1, and using the recursive
equation (1.2.41) we get

+ O((Lkε)κ). (2.112)
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After all the transformations of this and previous points, we get the interaction

i.e. the same interaction which appeared in Chap. 1.3, except that the summations
in the vertices are restricted either to the set Bk(Aik\ or by the function gk, and the
propagators are defined by the operator — Δηβ{k+l),ηBk{Λ{k)y This interaction has the
same properties as V{k) in Chap. 1.3, especially Proposition 1.3.2 holds for it.

Let us consider the restrictions satisfied by the field φ''. We want to prove that
this field is small on A{k\ We have the following analog of Lemma 2.5.

Lemma 2.7. The following estimate holds

l B{k+ ̂ )

), xeΛf. (2.113)

A proof of this lemma is based on the ideas which were described before in the
proofs of Lemmas 2.4 and 2.5, so we omit it here.

Lemma 2.7 and the restrictions on the fields ψ, φ imply

\Φ'(x)\ύO(ί)p(Lkε), xeΛf. (2.114)

We introduce the characteristic functions χ(Ά),χ(φ') giving the restrictions (2.86),
(2.114) on the set Λ{k\ and we estimate all the remaining characteristic functions for
the fields on Λψ by 1, with the exception of the functions χk+v

After all these transformations, the conditional integration with respect to A',
φ' with the conditioning on A(k)c, and the translations inverse to (2.80), (2.110), we
get the inequality

[the integral (2.53)]

^ Σ ί dA ί dΦXk + 1 CΛLVXA«\ nΛp'Xk, ΛWc

• ρ' ( k )(40 ),..., A{k~'\ A{k~ ι)'cA, B, A{k~ 1)lcφ)

\B(y)-(QΛ)(y)\2

Δ{k\B\A{k- 1)fnA{k)c\ B) (A(k' 1)f

1)fnA{k)c)φ, A{k\B\A{k~

χ(A/)χ(φ/)exp(Vik)(Λ(k\ B(k+ lh\ φ, Ά(k\ φ'))

(2.115)
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where

The terms A~A

γA coming from the formula (2.28) have been removed as in the
discussion preceding (2.31).

Let us consider the integrals in (2.115). The first integral on the right side of
(2.115) is equal to the density

"(fc+D.L/^ίO) /J(fc-l) Λ(k) r> n r>(k+l),η \
Q \/Lo ? ?/J-0 > 7 i 0 5-°J υk+ 1D >Ψ)

without the constants, i.e. the normalization constants and the constants coming
from rescalings.

We transform it into the density ρ(k+ 1 ) ? L using the same arguments as in Sect.
B. For the second integral we have almost the same situation as for the integral
(1.3.56) of Chap. 1.3, the only difference is that the integration is over the fields
defined on Λik) instead of T[k\ The conclusion is the same and for this integral we
have the cumulant expansion (1.3.59). Proceeding as previously, i.e. estimating the
terms of order higher than n, replacing the covariances with Dirichlet boundary
conditions by the "free" ones and composing some of them with the help of
recursive equations (1.2.42), we get the expression

The last operation is a rescaling of the obtained expressions from the L-lattice
to Lk+ ^-lattice. Gathering together all the estimates, we get the inequality (2.43)
but with k + 1 instead of k.

D. The Final Step

The procedure is continued until k = K, where K is such that L κ ε ^ ε 0 , L κ + 1 ε > ε 0 .
Then we estimate

0>iκ),L*B(Λ(K- i)? B(K),ε^ φ ) g 0{{Lκε)K0)\A{

Ί

K)\. (2.116)

Now it is sufficient to prove the estimate

\dB\dxp Σ ρ^LK%Λ^\..^Λ^-'\B^

K-l

•exp O(l)εκo|/L(

7

0)c|+ £

j (2.117)

with the constant 0(1) independent of ε, because for the last sum in the exponent
on the right side of (2.43), we have

£ 0((Ljε)κ)\T^\= Σ O(l)(L'εHΓJgO(l) |ΓJ. (2.118)
j=o j=o

The inequality (2.117) will be proved in the next chapter.
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3. Analysis of the Density ρw>LKε

A. A Preliminary Transformation of the Density ρ{K)

We will make operations inverse to those which were done in the proof of the
upper bound, i.e. we will replace the expressions obtained as the results of
conditional integrations and further transformations by the corresponding in-
tegrals. Rescaling the density ρ{K)>LKε to the unit lattice, using the restrictions on
the fields B, ψ arising from the characteristic functions χκ, and making the
transformations inverse to (2.47), we get the inequality

4^'l). (3.1)
The density Q"{K) is represented by the formula (2.45).

Let us formulate the inequalities we get in such a way after K — k steps as an
inductive hypothesis. At first let us recall, or introduce, some definitions and
notations. The fields with respect to which the integration is done in the k + 1
renormalization transformation are denoted by Ak, φk. For simplicity we denote B,
ψ by Aκ, φκ also. Finally in the expressions with scalar fields we have the following
external vector field

^ = (1-0^0+ KΣ(l-θk+ι)θkA^ + θκA^\ (3.2)
fc=l

where the fields A(k)'ε are defined by

A{k)>ε = ak{Lkε) ~ 2ζ(k)Gε

kQ*Ak. (3.3)

Also let us denote
K-l

Aih)>ε= Σ ( l - θ ί + 1 ) ^ ( / ) ' ε + θ x ^ ( x ) ' ε . (3.4)
l = k

Now we can formulate the inductive hypothesis:

= J a,L

v pLεpLε

Λ{K^2)nΛ(K-z)clK-2,Λ^κ~2)c- la,L 1a,L,A^^

v v n'(k),lJ<ε(Λ{0) Λ(k-l)

»'nΛ**)φk >-

•)(ΛfnΛ^)Φk>

•expl Σ O(ί)(Lιεf\Te\). (3.5)
\ί = k+ 1
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The expression on the right side seems to be rather complicated, however it has a
simple structure. Here T[k) can be represented as a sum

k +
(3.6)

and to each set 4 ~ 1)fnA^)c there corresponds a set of characteristic functions and
a sequence of partial renormalization transformations localized in this set. In this
point we will use only the functions χLΛ(i)c giving the suitable restrictions on the

fields Ah φι considered on the set 4 /

' n 4 / ) c All the partial renormalization
transformations defined on the sets Bι~\A{l_\l)r\A{^c), k^j<l, can be composed
according to formula (1.2.12) of Chap. 1.2. We have to notice that the vector fields,
with respect to which the integration is done when the composition is formed, do
not occur in the correspondingly localized configuration λm-ε. Let us omit from
the right side of (3.36) the composed transformations which do not depend on Ak9

φk\A{k\ The remaining terms, after rescaling from Lfcε-lattice to 1-lattice and
removing numerical factors, can be written as follows:

ρ'{k)(A$\ ..., 4 * - '\ 4 f c ~ 1)/cAk, A{k\ 4 f c - 1)fcφk)

•exp

- Σ

Σ

(3.7)

Also we have applied formula (2.108) together with the remark following it to the
expression in the exponent in (3.5). According to the remark, the matrix elements
hk(x, x') of the operator Hk satisfy the estimates

|Λ/c(x,x/)I^O(l)exp(-(51r(L/cε))exp(-(50 |x-xΊ),x,x/G4 fc-1)'. (3.8)

Further we apply formula (2.49) and we replace ρ'(k) exp[(the proper quadratic
forms)] by ρ{k). Next we complete and transform the quadratic forms in ρ{k) to the
forms appearing in formula (2.46) for the density ρ"(/c). The differences can be
written again as the forms satisfying the property (3.8). Now the problem is that we
cannot estimate these forms because we have no restrictions on the fields Ak \Λ<kh
φktΛik). We have restrictions on the fields Ak, φk on the set A^^'r\A{k)c given by
the functions χk Λ{k)c, so we estimate only part of the quadratic forms involving
these fields by

0{{Lhf)\A{k'l)'nAfc
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Let us consider formula (2.46) for the density ρ"{k\ and let us take these expressions
which depend on the fields Ak \Λ(kh φk \Λ(k). Then the integral (3.7), after removing
all the terms independent of these fields, is of the form

— 1 V n (τl~k\d-2
2 Lu al-k\Lj )

L ί = fc+l

v Iy4 fx) (0

-ϊ Σ a^L^T2 Σ

- i,4k)Ak>

k, H'kΆfφk>

(3.9)

where the forms Hk, HI are composed of terms associated with the changes in
(2.47) and the discussion following, and the term Hk introduced in (3.7). They
satisfy the estimate (3.8). The functions fk\ fk are defined by the third and ninth
terms in the exponential in (2.46) and we want to have these terms in a final
formula. The functions F'k, F"k are defined by these terms with opposite signs and
by the terms coming from quadratic forms H'k, H'k, with only one variable localized
to 4 f c ) They have the property

\F'k(x)\, \F'ί(x)\ g 0(1) exp(- V(Lkε)) (3-10)

We will estimate this integral by the same integral without the last four terms in
the exponent, i.e. the terms with Hk, H'k, F'k, F'k'. Since (3.9) is a Gaussian integral,
we can easily calculate it and estimate the obtained expression. We need the
estimates of the quadratic forms in (3.9). Let us denote the quadratic forms in Aki

φk, connected with the first four terms in the exponential under the integral (3.9),
by <^4k, GkAky, <φfc, G'k'φky correspondingly. We will give the estimates from below
for these forms. It is sufficient to get very weak estimates because we have the
strong estimates (3.8), (3.10). To get them it suffices to use the mass terms in the
fundamental operators — Aη + μl(Lkε)2 and

In the next section of this chapter we will formulate a much stronger estimate,
which as a corollary gives

G'k^y^2

0(Lk8)2I \ΛW, Gr

k

f^yim
2(Lkε)2I tΛ(k). (3.11)
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The property (3.8) implies in turn the following estimates for the norms of H'k, H'k
inL2(Λf):

\\H'k\\, \\H"k\\£O(l)exp(-δ1r(Lkε))£O(l){Lker (3.12)

for every K.
Hence for Lkε sufficiently small, the operators G'k — H'k and G'k' — H'k' are positive

and satisfy the inequalities (3.11) with \yγ instead of yv Let us introduce some new
notations:

K
φ'= Σ ai-ik^'Y^'K^-^nΛ^Qf.^ (3.13)

Z = fc+1

Φ" = Σ a^iϋ'T^'KΛ^^^Λf^Qf.jJiA^^φ^ (3.14)
l = k+l

These configurations are defined on A^\ Because the fields Ab φι considered on the
subset /L(i~1}/'r\Aψ of the L*~fc-lattice satisfy the inequalities

(3.15,

so we have

|<2> ' (x) |^0( l )-^
μ° b (3.16)

|φ"(x)l - 0 ( 1 ) Ίijϊψ*p{Lk£) - 0 ( 1 ) ( z Λ r 2

for XEΛ^\ Of course the above estimates are very rough, especially the second.
After these preliminary remarks we can estimate the integral (3.9). At first we

have

d N

(3.9) = (2π)2' [_άet{G'k~H'k)J

Γ 1 K

Λ5 Zl^k-i)^

(3.17)

Now we will estimate the above expressions by the analogous expressions with

k = H'k' = 0 and F'k = F'k' = 0. Let us consider the determinants in (3.17). We have

Γ 1 / 2 ) ] " 1 / 2 , (3.18)
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and the operator under the second determinant satisfies

IIGΓ ll2H'kG
f-1/21| g y - V o ( ^ ) - 2 O ( 1 ) e x p ( - δ ^ L h ) )

S 0(1) {Lh)κ, K arbitrary. (3.19)

Hence this determinant can be estimated as follows

[det(/-G' f c - 1 / 2 HίG' k - 1 / 2 ) ]" 1 / 2

>- ^ 2 ) + 0(1) Tr(G'fc~
 ll2H'kG'~1/2)2]

• Tr (/ r4.)) + 0(1) II G~ ll2H'kG'~1/2 II2 Tr (/ ^ 0 ]

^expO((L fcε)κ)|4 fc) |, (3.20)

where an analog of the inequality (2.103) was used. The determinant
[det(G£ — Hk')~]~112 has the identical properties, so we have the required estimates
for both determinants in (3.17). Now we will estimate the last two terms in the
exponent in (3.17). We have (G^-H^)'1 = G'~ι + G'~ιH'k{G'k-H'k)'i and the
norm of the second operator can be estimated as in (3.19). From (3.16), (3.10) and
the restrictions on the fields Ak considered on Λ{k~1]l c\Λ{k)\ it follows that the
norm of the configuration

Φ' - ΛfΔ^rMr 1)(πif)Λ+Λ+F'k
can be estimated by O((Lkε)~2)\Λψ\1/2. Hence in the terms considered, we can
replace the operators (G'k — H'k)~1 and (G'k — H'kY

ι by G'k~
 1 and Gk~\ and we can

estimate the rest by O((Lkε)κ)\Λf\. Finally the terms of the form <F^ G'k \Φ' - . . . )>
and other terms containing one of the functions F'k, Fk can be estimated by

Thus the integral (3.9) can be estimated by the same integral with H'k = Hk = 0,
F'k = F'k' = 0 and multiplied by the factor expO((Lkε)κ)|yl(

5

fc)|. Gathering together all
the inequalities obtained until now, we estimate the integral (3.7) by an integral in
which the density ρ'{k) and the exponential function, except the part defining the
renormalization transformation, is replaced by ρ"(/c)(/l(

0

0), ...,/t(

0

/c~1), Ak, A{k\ φk)
multiplied by the factor expO^LVΠIT^I. For the density ρ"(k) we have the formula
(2.46). Completing it by the expressions and integrals, which were omitted when we
have passed from the right side of (3.5) to (3.7), and rescaling from the 1-lattice to
the Lkε-lattice, we get the expression on the right side of (3.5) again, but with fc— 1
instead of k.

Thus the inductive proof of inequality (3.5) is finished for arbitrary
/c = 0,1, ...,X. The most interesting case for us is k = 0.

B. The Basic Estimate Giving the Small Factors

In this section we will estimate the integral of the density ρ{K)'Lhε. This estimate is
the most important one in this Chapter. In particular, it will give the convergence
factors exp( — c0p(Lkε)2) for all the characteristic functions in ζΛ(kh ί e for all the
points, bonds and blocks at which the corresponding functions of fields are large.
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Let us notice that we can integrate at first with respect to scalar fields, treating
the configuration Aε as a fixed external field, and next we can integrate with
respect to vector fields. Thus the integral over the fields Aκ, φκ can be estimated in
the following way, using inequality (3.5) for k = 0

κ\dφκQ^κ\Λ$\...,Λ$-» Aκ,λ™ \φκ)

= X j d (_Kl) n / 1 (K

o» {JdφκχKs

1 , Λ < K

kεΓ•••]}]• ..]exp( Σ O(ί)(LkεΓ\Tε\). (3.21)
\ f c = l /

In the sequel we will omit the last factor because of inequality (2.118). We will
estimate at first the internal integral over the scalar fields. Let us consider the
expression in the curly bracket {...}. We will transform it in a similar way as in
Sect. A, i. e. we compose the renormalization transformations localized in the sets
A%~ 1]'nA^)c C Tj$ε, integrating over the fields φv...,φk_ί localized suitably in the
sets Bk~\A^~1)fnAfc\ ..., B\A{k'1)>r^Afc). After these compositions the ex-
pression transforms into the following form

-ί)c\
)

T Lε ( Λ{\)c\rγ^ε / A
5 )

, f c = l

•[exp(— ^ φ 0 , ( — Aε^ε + m2)φoy)J] . (3.22)

Now let us consider the expression standing on the right of the characteristic
functions. Its properties are essential for the whole analysis. Let us write it
explicitly, omitting the constants in the definition of renormalization
transformations:

\ (3.23)

where Af] = 0.
It is convenient to introduce the following new notations. We will consider a

K

configuration Φ defined on the sum of sets /l(

5

0)cu (J (A{k~l)fc\A{k)c) by the
formula k=1

φk9 (3.24)
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and we will write the integral (3.23) in the form

(3.23) = Z(Aε)exp(-±(Φ,A(Aε)Φ». (3.25)

The properties of the quadratic form in the above exponent are fundamental for
further analysis. We will prove that it has suitable positivity properties, such that
the exponential function in (3.25) together with the functions ζΛik) give the
convergence factors. These properties are formulated in the following theorem.

Proposition 3.1. There exists a constant y0 > 0 dependent on the space dimension d
and the constant a only, and independent of ε and a choice of the sets Λ{®\ ...,Λψ~1},
such that for arbitrary configurations Aε, Φ defined by the formulas (3.2), (3.3), (3.24),
and satisfying the restrictions given by the characteristic functions in (3.21), the
following inequality holds

fc=O

Σ (Lkεy2\U(A%ζx,x')))φk(x')-ψk(x)\2

+ JoΣ Σ (LkεYm2\φk(x)\2

k = 0 xeΛψ-^'r\Λ^c

K

- Σ °(( L f c β ) > C 0 )K4 k ' " 1 ) / n 4* ) c ) i l , (3.26)

with κo>0. The last symbol in the above inequality denotes the measure of a set
rescaled to the unit lattice, i.e. the number of points in the set. We assume m 2 ^O(l)
also. If Aε = 0, then the inequality holds without the last sum on the right side and
without any restrictions on the configuration Φ.

Remark. The above inequality can be strengthened by adding on the right side of it
all the expressions of the form

for the neighbouring points xeA{k~2)lr\A{k~1)c, x'eA{k~ l)l r\A{k)\ i.e. such that the
intersection of the blocks Bk~ί(x), B\x) is of "dimension" d—1. We will not use
this generalization in the future.

The proposition follows easily from the corresponding inequalities for the
actions A{k)'Lkε. We estimate the integral (3.23) by a similar integral with the
covariant derivatives —\εd\(Dε^εφo)(b)\2 replaced by 0 for all the bonds b
connecting the set B\Afc) with Bk(Λf) for some fc = 0,1,..., K- 1. This inequality
holds for an arbitrary configuration Φ. If we denote the integral on the right side of
the obtained inequality by Z'(Aε)exp(— ^(Φ, A'(Aε)Φ}), then we have

<Φ, zl(iε)Φ> ̂  <Φ, A'{Aε)Φ), (3.27)

because the inequality for the integrals holds for all Φ. Thus we have separated the
expressions in the corresponding sets by Neumann boundary conditions. It is
worth mentioning that just in this place we have omitted the additional terms
described in the Remark. The form (Φ,Δ'(Aε)Φ} is given by the formula

K

i X <φk,A(k)>Lk%B\Λ%-1)fnΛfc),Aε)φk>. (3.28)
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The term for k = 0 already has the form required by the right side of (3.26), so we
need the inequalities for the remaining terms. Let us rescale the kih term from the

d-2

Λ -lattice to the 1-lattice, φk{x) = (Lkε) 2 φk({Lkε)~*x), and let us denote for
simplicity Ak = (A(k~1)fnA(k)c)v

Now inequality (3.26) of the proposition follows from

Σ
(x,x'>CΛk

+ Σm2(Lkε)2\φ'k{x)\2\-O({Lkεr°)\Λk\, (3.29)
xeΛk /

with a constant y0 independent of k, Λk and for φ'k, Λ
η satisfying suitable

restrictions.
This inequality will be proved together with the properties of the covariances

(formulated in Propositions 1.2.1 and 1.2.3).
Now let us come back to the expression (3.22). The part of it standing on the

right of the characteristic functions is equal to Z(^ε)exp(— |<Φ, Δ(Aε)Φ}), where
all the constants coming from the renormalization transformations are included in
Z(Άε). We use Proposition 3.1 and we obtain

exp(- i ( the right side of (3.26))). (3.30)

Now we estimate the characteristic functions by 1, except the functions ζΛW. These
contain the functions χc

Q^kh which give the restrictions of the form
(Lkε)d-2\U(Aε((x,xf)))φk(xf)-φk(x)\2>p(Lkε)2 for all the bonds <x,xf}eQ{k\ The
bonds of this set are contained in /l(

7

/c~1)/nyl(Q)ί:Cyl(

5

k~1)/nyl(

5

7c)c, hence

term of the right side of (3.26)))

m Λ I ) . (3.31)

Further, because there are no characteristic functions on the right side of (3.22)
except the functions remaining in ζΛW, so we can integrate with some exceptions,
w i t h r e s p e c t t o t h e fields φκ\Λ{K-ιyc> Φκ-i tΛ(κ-2)'c, ...9φi tΛ(o)>c, u s ing t h e n o r m a l i -
zation properties of the renormalization transformations

BLKA{ΦkMΦkΪBHy))=ί' ( 3 3 2 )

The exceptions are when we integrate over φk+1(y) with the points yePf\ In this
case the characteristic functions χc

p(k) give the restrictions (Lkέf~2.
\φk+ 1{y)- (Q(Aε)φk)(y)\2 >p(ZΛ-)2, and instead of the integral (3.32) we have

ϊdφk+1(y)χ({(Lkεγ-2\φk+1(y)-(Q(Aε)φk)(y)\2

rko\d-2\H2N

2π

>. (3.33)
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Thus, defining the functions

ζ'Λ(k) = Σ Xpik)

{PW,..., RW} admissible, minimal

• exp( - boP(Lkε)2\Q?} I) exp( - p(Lkε)2\R^\), (3.34)

we get the inequality

(the right side of (3.22)) g $dΦZ(Aε)
K- 1

exp(-i<<M(iε)Φ» Π •
k=0

K

Γ)IΛI (3 3 5 )
fc=l

The functions ^ ( k ) depend on the vector fields only. In the integral over Φ we make

the transformation Φ= γlΦr and we get

fJΦ'Z(i ε)exp(-KΦ'^U ε)^»expilog2 £ \Λk\. (3.36)
fc=O

We apply the formula (3.23) to the underintegral expression. Next we use (3.32)
again and it follows that the integral (3.36) is equal to

Sdφ0exp(-^φ09{-Δ*Ae + m2)φ0». (3.37)

We apply the "diamagnetic inequality" of paper [1.5] to this integral, and we
estimate it by

. (3.38)

Gathering together the equalities and the estimates, we get

(the expression {...} on the left side of (3.22))

(^ Π G ( i c , e x p ( £ 0 s ) e x p ( θ ( l ) £ \Λk\). (3.39)
k=o ° \ k=o I

Using the above inequality we estimate the right side of (3.21) by an expression in
which the curly bracket {...} is replaced by the right side of (3.39). The expression
we get can be estimated in a way similar to (3.22). Now it is even simpler because
we do not need the characteristic functions, as it was noticed in Proposition 3.1.
We get the inequality

f dB J dψρiκ^LK%Λ$\ . . . , < - 1 } , B, 5(K)'ε, ψ)

K G(k)exp(£0)exp(θ(l) £ IAlWp(O(l)|Tj), (3.40)
k=0
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where

C</<) = Σ
{PW,..., RW) admissible, minimal

•exp(-

exp(- iγ

• exp( - ΪΎ0p(Lkε)2\QM\) e x p ( _ ^ε)2\Rw\). (3.41)

To prove the inequality (2.117), which is the fundamental inequality necessary
to complete the proof of the upper bound, it is sufficient to show that

Σ Π 1 £'V>
Λ^\...,Λ^K-^ fc = O

/ K

•exp £ O(ί)(Lkε)κo\Λ(Jf~1)fnΛψc\
\k=0

•exp( Σ O(l)\Λf-»'nΛfc\) gexp(O(l)|TJ). (3.42)
\fc=O /

C. The Combinatorial Estimate

In this section we will prove the inequality (3.42). The proof is purely combinatoric
and model-independent. At first we introduce the quantities which we will use
later to express all the other quantities.

Let us consider a regular partition of Tt into a lattice of cubes, each cube is a
sum of large blocks and a length of its side is bigger r(ε), and less 2r(ε). Let us define
^ 0 as the set of the cubes having common points with /L(

0

0)c. Thus

= ^ o (3.43)

Now if to every element of the set P (

y

0 ) u. . .u l^ 0 ) we assign a cube • having a
common point with this element and 3d— 1 cubes neighbouring with • , then the
sum of all these cubes contains the set u ^ 0 . It is so because a distance of each large
block contained in /L(

0

0)c from the set P ^ u . .uKf' is ^r(ε). Thus we have

l^ol^3d(|P| ;

O) | + ... + l^O)l) (3.44)

Here and in the sequel the symbol | | means the number of elements in a given set.
In a similar way we divide Tψ into a regular lattice of cubes consisting of large

blocks and having sides of length bigger than r(Lkε) and less than 2r(Lkε). We
define c€k as the set of these cubes, which have the common points with
A{k~1)!

 ΓΛΛ^0. Because each large block of the lattice Tψ contained in Λ^)c and
having common points with A^~1)r has the distance from the set P f u . . u ^ f less
than or equal to r{Lk&\ so

^| + . + l^ k ) i). (3.45)
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The sets # fe, more exactly their numbers of elements |^J, will be just these basic
quantities and we will express the other quantities with their help.

Let us define co = mm{^a3'd^yo3'd,3~d}. From (3.41) we have

} admissible, minimal

all the subsets of Λ^c

k 2 | ^ | ) , k = 09l,...,K-l. (3.46)

After easy transformations we get

(the left side of (3.42)) ̂  sup
{Λ\°K...,Λ(K- D} admissible

•exρ(- Σ ' coP(Lkε)2

/K-ί

•exp

exp(O(l)|Γf>|). (3.47)

In the second exponent we have gathered all the expressions dependent on Λ^)c.
The third exponent has the required form and can be omitted in further
considerations. Now we will express \Λ^)c\ by the help of \^k\. We will construct a
sequence 3>0,2$v..., ^κ-x of families of cubes with the properties that /L(

o

fc)c is
contained in the sum of cubes of the family &>k. We take Θo =^0. Of course

a n d K 0 ) Ί ^ ( 2 φ ) m 0 | . (3.48)

To each cube from ΘQ we add a "corridor" consisting of large blocks and of
thickness >9r(ε), but < 10r(ε). We get a cube with a side of length <22r(ε) and we
apply the operation ' to it, i.e. we take the set of small blocks. After reseating we get
a cube of the lattice T[1} with a side of length <L"122r(ε). We add ^ to the
obtained set of cubes and we denote the sum by Θv From the definition of Λ^ we
have

a n d K )1^(^"122r(ε)moHh(2r(Lε)m i | . (3.49)

We continue this procedure and we get a sequence of families of cubes @0, <2>v

<32,..., @κ-χ with the following properties

ΛfcC \jU and μ(

o

k

1\ + ...

(3.50)
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The expression on the right sides of the above inequalities can be simplified. Thus
r(Lk~jε)^(l+j\ogLYr(Lkε) and the factor standing at |^J can be estimated by

(22r(L/£ε))d(L~(/c"1)(l +(fc- l)logL) r+ ...
00

^22 d X L-\l+jlogL)\r(Lkε))d = 0{l){r(Lkέ))d, (3.51)
j = o

hence

d ( | ^ 0 | + ... + \<gk\). (3.52)

We can estimate the sum in the second exponent on the right side of (3.47) using
the above inequality:

£ 0(1)(1 + log(ikε)- ^l/l^i
fc = O

£*Σ O{ί)r(Lksf(t+log(Lke)-1) Σ Wj\
k=0 7=0

g X O(l)r(L f c ε) d + 1 |^ | , (3.53)
fe=O

because K ^ (log L) ~* log ε " x , K - fe ̂  (log L ) " x log (lΛ>) ~ J and r ̂  2. Now the sum
on the right side of (3.43) together with the sum in the first exponent on the right
side of (3.47) give

- Y (c0pα*ε)2 - 0(l)r(ZΛΓ W ^0 (3.54)
fc=0

if 2p^(d-i- l)r and ε0 is sufficiently small. Thus from (3.47) inequality (3.42) follows
and this ends the proof of inequality (2.117).
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