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Abstract. We consider weakly coupled even λP(Φ)2 models that do not have a
two-body bound state, and prove asymptotic completeness on the subspace of
states with mass between 3m + a(λ) and 4m— b(λ\ where a and b are positive
functions tending to zero with λ. The analytic structure of the six point
function, integrated over the three incoming momenta, shows only two
Landau singular manifolds (plus normal thresholds) associated to three
particle processes.

I. Introduction

The P(Φ)2 theory has been for almost ten years a mathematically well defined
quantum field theory, with energy momentum spectrum such as required for
reasonable scattering properties: isolated (cyclic) vacuum and isolated one particle
hyperboloid of mass m (Glimm et al. [15]). This guarantees the existence of
asymptotic (Fock) spaces 3tfιn and Jfout. A satisfactory interpretation of scattering
further requires

where Jf is the whole Hubert space of physical states. A complete proof of this
property, called "asymptotic completeness," seems at present to be out of reach for
any P(Φ)2 model. The usual approach is to consider subspaces J>f(fl h) and ^ ( ^ ° u t of
states with zero total momentum, and total energy in a given interval (α, b) and to
prove

When the interaction polynomial P(Φ) is even, which we assume, one also
distinguishes odd and even subspaces, generated by products of odd and even
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numbers of field operators. The above mentioned results [15] already imply

and

for any ε > 0 and λ sufficiently small.
The first results involving continuous spectrum of the mass operator, which

intuitively corresponds to scattering states, are due to Spencer and Zirilli [21] who
proved asymptotic completeness in the two body region:

-^?in,even -^out,even ^ e v e n
^ [2(m - ε), 4(m ~ε)[~^1 [2(m - ε), 4(m - ε)[ ~~ ̂ [2(m - ε), 4(m - ε)[

This means in particular that the mass spectrum below 2m is discrete and
corresponds to possible additional particles (bound states). The presence of one
such two body bound state was then established by Dimock and Eckmann [9,10]
under the necessary and sufficient condition that the coefficient of Φ 4 in P{Φ) is
nonpositive. More recently, Neves da Silva [19] has proved the existence of a
three body bound state (just below 3m in Jήfodd) under the condition that the
coefficients of Φ 4 and Φ 6 are both strictly negative. The discrete spectrum below
2m in P(Φ)2 models without the Φ-> — Φ symmetry has been studied by Koch [18],
Glimm and Jaffe [14], and Imbrie [17].

In the present paper we consider the three body continuous spectrum and
scattering states for even λP(Φ)2 models without a two body bound state; i.e. we
assume that the coefficient of Φ 4 is strictly positive. As in all the results outlined
above, the coupling constant λ will have to be taken sufficiently small. The desired
result is the following:

but we have only been able to prove

3£?in,odd 3^ί>out,odd ^
Λ ] 3 m + a(λ), 4m - b(λ)[ ~ ^ ] 3 m + a(λ), 4m ~ b(λ)[ ~ ^ ] 3 m + a(λ), Am - b(λ)[

where a(λ) and b(λ) are positive functions tending to zero with λ.
Conceived in the same spirit as Spencer and Zirilli's method for proving two

particle asymptotic completeness, our proof keeps the benefit of various aspects of
the program inspired by the work of Symanzik [23] and developed since 1968 by
Bros [1-3] in the axiomatic framework of quantum field theory. This program,
based on the study of generalized Bethe Salpeter equations, has displayed the
general nature of the connection between:

(i) asymptotic completeness in a given energy strip E<(n+l)m,
(ii) the n particle irreducibility of corresponding Bethe Salpeter type kernels,

(iii) the analytic and monodromic structure of the relevant connected Green's
functions near the physical regions of the corresponding processes.

For the two-body region, steps (i)=>(ϋ) and (ii)=>(iii) were proved in [1], while
the equivalence (i)<=>(ii) was completed in [3b] up to the problem of possible poles
in the continuum. Spencer and Zirilli's method, developed later but independently
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for the models λP(Φ)2, has much in common with the above program in the
directions (ii)=>(iii) and (iii)=>(i). Concerning three particle asymptotic complete-
ness, the first results were stated by Bros [2], where the main ideas and methods of
proofs are given, and where the steps (i)o(ii) and (ii)=>(iii) are treated up to some
technical limitations. The present work deals with steps (ii)=>(iii) and (iii)=>(i) for
weakly coupled P(Φ)2 models, for which property (ii) was proved in [20, 5].

Let χj = (χ(j, x^elR2 and let Sn{x1,..., xn) be the Schwinger functions of a weakly
coupled two dimensional P(Φ) model. Let

and let R^1 be the inverse of Rλ considered as an integral operator. Let

R3(xv x2, x3 yv y2, y3) = S6(xv x29 x3, yv y2, y3)

^ x2, x3, x)R'[1(x, y)S^{y,yv y2, y3), (1.1)

3

2,y3) = 6 Π R^Xpyj), (1.2)

S4(y,yί,y2,y3)- £ S2(y,yj)S2(yk,yλ (1.3)
7 = 1 -I

and let

be the Fourier transforms, taken at

These functions are "one particle irreducible" and therefore analytic for
I Re k\ < 3(m — ε) [20]. The bulk of our work is a study of their analytic structure in
the three body region Re/ce(3(m — ε), 5(m —ε)). For suitable analytic test functions
/ and #, we consider

<fR3(k)g} = SYlidpjdp'jmk,0)- ΣPj)f(Pi>P2>vMv'vp'2>Pa)

g) (k) = f Π dpjK^Uik, 0);Pl,p29 p3)g(Pv p2, p3).

We show that <fR3(k)g\ (K[^3g)(k) and R'^iik.O)) have analytic con-
tinuations through the three-body cut from above and from below, at least across
the interval (3m + a(λ), 4(m —ε)) with α(A)->0 as λ-+Q. In particular there are no
resonances in a neighborhood |Im/c|<cA(Re/c—3m)1/2 of this interval. The
discontinuities (differences of the two determinations) along this interval satisfy the
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formulae

<fR3(k)gy+-(fR3(k)g}_=3l(2nZ)3$ Π (dPjδ(pj + m2)θ(Jmp°))

•(Rό3

1R3f)τ(p1,P2,P3)(Ro3

1R3g)±(pι,p2,P3), (1.4)

V.{2πZf\dp\ Π (dPjδ(pj+m2)θ(lmp^)δί(ik,O)
j=ί V

(1.5)

= -3 ! (2πZ) 3 (

• W 3 « O 3 ) T ( P Pi. p 2 . p3) W s ^ o V ί i ί P i . p 2 . P3 P') , (i β)

where Z = Z(Λ.) is the field strength renormalization [coefficient of the pole term
(p2 + m2)~1 in R^p)], and the subscripts + or — label the two determinations with
respect to the variable k. These formulae imply, via methods and results of the
axiomatic field theory [1-3, 12, 22], the announced result:

In the remainder of this introduction, we shall give an idea of the technique and
explain the unresolved difficulties around 3m and above 4(m — ε). The basic objects
will be the n-particle irreducible functions (n ̂  3) for which we proved "Spencer
irreducibility" in our previous paper [5]. It follows, via Spencer's cluster expansion
[20], that these functions are analytic in tubes in momentum space approximately
as suggested by perturbation theory. Precisely let K3(pvp2,p3; p'vp'2,p'3) be the
three body Bethe Salpeter kernel, defined as the connected part of — R^1, the
inverse of — R3 considered as an integral operator. K3 is analytic in

|Refe|<5(m-ε), (1.7)

|Im(pS>+p°)|<4(m-8)> (1.8)

| I m P ι

0 | < 3 ( m - ε ) , (1.9)

(1.10)

ε), (1.11)

|Impί° |<3(»ι-ε), (1.12)

|Imp}|«5, (1.13)

\lm(p°+p°-p'k°)\<3(m-ε), (1.14)

| I m ( P l

o - p ; o ) | < 2 ( m - ε ) , (1.15)
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where δ and ε, with 0 < δ < yεm, can be taken arbitrarily small for sufficiently
small λ. We note that the analyticity domain defined by (1.7)—(1.15) contains

3 (m - ε) < Re/c < 5 (m - ε)

where

, (1.16)

<lmp°<3{m-ε),\lmpj\<δ\. (1.17)

The other three particle irreducible functions are defined as follows

K[^((ik, 0)) p\,p'2, p'3) = (K[»3R; 'Hiik, 0) p\, p'2, p'3), (1.18)

K?\ ((ik, 0)) = - R Γ * ((ik, 0)) - (K[%R3K3

3\) ((ik, 0)), (1.19)

and are analytic in tubes defined by obvious subsets of (1.7)—(1.15).
The task now is to use this analyticity in the three body region to relate the

analytic structure of R3, K{^3, and R^1 to that already known of R03 and JR1(X)JR2,
where

jR2(x25 x3 y29 y3) = 5 4 (x 2 , x 3 , y2, y3) - S2(x2, x3) S2(y2, y3).

The central tool for this purpose is the three body Bethe Salpeter equation,

or

Σ 3R03, (1.21)

where JR02 = 2,R1(x)JR1 and K2 is the two body Bethe Salpeter kernel defined as the
connected part of —R^1, and the sum over α has three terms (two body
subchannels).

Without the second term this equation could be rather easily solved up to
Re/c = 5(m — ε), outside a neighborhood of the threshold k = 3m, where (fR03(k)g}
has a logarithmic singularity in two dimensions.

The problem is more difficult with the two-body terms in (1.21) due to the two-
body threshold at [e.g. α = (2,3)]:

2 + p 3 ) 2 ) 1 / 2 . (1.22)

Suppose that we iterate the equation and look at

K\2Rl2

2K?Rl\f. (1.23)
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Suitable analyticity domains, including two-body cuts, are yet to be defined,
but (1.23) should be analytic for at least some points below the two-body
threshold, i.e. for some points satisfying

The definition of (1.23) involves an integral over the intermediate P2 + P3
variable. The corresponding contour, originally euclidean, should cross the
Minkowski manifold below the two-body threshold, i.e. for

But the analyticity domain of Kl3RHf will typically be limited by

Im(p?+p°)<4(m-ε). (1.8')

Summing up the above three inequalities yields the following necessary condition:

Reic<4m-2ε. (1.24)

That this condition is sufficient for our purposes will be seen in the course of
the paper. A similar limitation is also present in the work of Bros [2] who proved,
in the axiomatic framework with some additional hypotheses, that asymptotic
completeness between 3m and -̂ -m (now raised to 4m) is equivalent to analyticity
of the three particle irreducible kernels in domains limited by Eqs. (1.7)—(1.15)
without the ε.

The troublesome inequality is (1.8') which corresponds to a four body
threshold in a subchannel. The only way out is to study the four body
threshold (in J^ e v e n ) before continuing the three body analysis above 4(m— ε). The
problem is slightly different without the Φ-> — Φ symmetry. (1.8') would be
replaced by

Im(p? + p°)<3(m-8), ((1.8")

which yields

Refc<^m-fε . (1.25)

Knowing the analytic structure of R3 up to \{m — ε) would allow, in principle,
replacement of (1.8") by

Im(p?+pS)<§(m-ε) (1.26)

with a three body cut starting at 3m, and to continue the analysis up to
Refc<(4 — i)(m — ε). Iterating this procedure n times would permit us to reach

Re/c<(4-2~")(m-ε), (1.27)

and to cover the whole three body region as n->co. Such a program makes
desirable a more global approach to asymptotic completeness. In a recent work
[6-8], Cooper, Feldman, Rosen develop the Legendre transform (global) ap-
proach to particle irreducibility. It is not clear however that the new kernels so
defined will be useful for studying asymptotic completeness.
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We now come back to the Bethe Salpeter equation for an even theory with
Re/c<4(m —ε). In two dimensions K*2R

a

02 has an inverse square root divergence at
the two body threshold, and K3R03 has a logarithmic divergence at the three body
threshold. These divergences can be eliminated from the equation by a re-
summation of two particle processes a la Faddeev. It is convenient for that
purpose to split the Bethe Salpeter equation as follows:

and

α

or

^03^3 ~ 1 = Σ^2^02 + Σ ̂ 2^02(^03^3 ~~ 1)*
α α

Let now Mα be the part of R03R3 — 1 which has a two body cut in the channel α.
Then

α

and

M^KlR^ + K^ΣMβ, (1.31)

or

We can now resum two particle processes, i.e. use the two body Bethe Salpeter
equation (R2

 1=RQ2 — K2) to transform (1.31) into

^ α ^ ^2^2 + ̂ 2^2 Σ Mβ. (1.32)

The improvement of (1.32) over (1.31) is that a suitable operator norm of Ka

2R
a

2 will
be bounded by 1 in the absence of two body bound states. Let now

/ 0 KfRf K?R\*\

A= {K^RI1 0 Kl'Rl1 . (1.33)

\Kι

2

2Rl2 K\2R\2 0 /

A formal solution of (1.32) is then

IK23R23\

(1.32')
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which gives

(
j>-23p23\

K2 K2 \

K\iRγ
K2 K2

(
23n23\

2 κ2 \
K 2

3 £ 2

3 (1.34)

l 2 n l 2 /

where we have again used the two body Bethe Salpeter equation in the last two
steps. Finally

R3 = R'3(l-K3R'3r
ι. (1.35)

This formal solution should of course be given a mathematical meaning. The
main difficulty is to invert the operator {I —A) near the three body threshold.
Indeed a suitable norm of A, for k<3m in the first sheet, will satisfy ||,4||-»2 as
fc—>3m and λ—>0 and we prove that the spectral radius of the leading part of A is
also strictly larger than one near k = 3m. Our positive result is

M 3 | |<1 if \k-3m\>cλ2

9

and we deduce the announced results with a(λ) = O{λ2) and b(λ)&ε(λ) of Spencer's
cluster expansion.

Three body bound states are not expected [15] for weakly coupled even
λP(Φ)2 models with a strictly positive Φ 4 term in P(Φ). It seems, however, difficult
to extract a dominant and repulsive part of A, as was done [21] in the simpler
two body problem. The conjecture Γ 6 < 0 is an alternative approach [13] to
this problem for k < 3m.

It would be more clearly possible, as in the work of Bros [2] (see also [4]) to
use a Fredholm alternative to prove that (I — A)'1 is meromorphic near 3m.
Moreover the boundedness of A should imply that the number of poles is finite.
However such results are far below what one would like to have for a specific
model like (Φ4)2.

The plan of the article is as follows:
In Sect. 2 we study the operator Ka

2R
a

2 applied to functions of pv p2i p3 that
have a two-body cut in a channel β different from α. Starting from the euclidean
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region, we establish its analytic continuation around the two-body threshold
(pί + p j )

2 + 4m 2 =0, α = ((/') and the three body threshold (pί+p2+p3)
2 + 9rn2 = 0.

We also prove the existence of only two Landau singular manifolds associated to
three body processes. In Sect. 3 we consider the 2-particle-irreducible six point
function in the center of mass frame, integrated over relative energy-momentum
variables; we prove that it has analytic continuations with respect to the total
energy variable across the interval (3m + a(λ\ Am — b(λ)). Section 4 is devoted to the
proof of discontinuity formulae and of asymptotic completeness, again for total
energy in the interval (3m + a(λ), Am — b(λ)). The last section contains some remarks
about the (unsolved!) question of three body bound states.

II. Analyticity of the Operator K^R% in the Three Body Region

In this section we study the 4 point function (K2R2) (p' l5p'2; PvP2) considered as
the kernel of an integral operator

(K2R2f){p\,p'2,p3)=$dp1dp2(K2R2)(pf

1,p'2;pvp2)f(p1,p2,p3), (2.1)

acting on functions / that belong to a suitable space of analytic functions. In order
to motivate our choice, let us first describe the singularities which come up in the
integrals: (we recall that p = (p°,p)e(C2, and p 2 = (p°)2 + p2)

Poles: p) + m2 = 0 or p? = + i

[only p? = + iωfoj) will eventually enter our domain],

Two-Body Thresholds: (p. + p;.)
2 = — 4m2 or p° +p®= ± iμ^ + p7)

[only +/μ(pί + pj) will enter our domain],

Landau Singularities: assume that poles (1) and (2) coincide together with the two
body threshold (2 + 3) (the case of the 1 + 3 threshold is analogous)

If we perform the integral (2.1), where pι + p 2 is kept fixed, the contour may (or
may not) be pinched by these singularities. Assume

P i + P 2 + P 3 = ( ^ 0 ) , (2.2)

and denote by ±p(fe) with Imp(fc)^0 for k in the first sheet (and, in higher
dimensions p(fe) parallel to p3), the solutions of

fc = ω(p) + μ(p).

The location of the possible "first Landau singularities" is then given by

1
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or (px is the integration variable)

Suppose now that one of these singularities is present in the integrand of (2.1) (in
the p1 variable), and that the contour is pinched between it and two poles present
in K2R2. We then obtain "second Landau singularities" given by

°2+PΪ=Mp(fc))+MPI ±

or

Eliminating p 1 (which is the integration variable) between these two equations
yields

What is remarkable is that the next step does not produce "third" Landau
singularities, but only reproduces the first and second singularities. One can check
the same property in higher dimensions.

We now describe a geometric limitation to the analyticity domain for Ka

2R
a

2f.
3

We fix ik = £ p°, and work in the barycentric frame for (ImpJ, Imp^, Imp?) with

Re/c

analytic in (1.8)—(1.13) and (1.15) for ίje {1,2}. Thus the expected analyticity
domain for K\2R\2f will be a subset of the hexagonal tube Θ(k) [see (1.17)] with a
cut at fc-Hp?=μ(p3). Assume now that f = KψR\zg. Then if we want to apply
K\2R\2 to it, the conserved variable p? should be chosen so as to allow us to
deform the contour of integration in (2.1) (in the variable p°):

Re/c
origin at Imp° = ——, j = l , 2 , 3 . It follows from [20] that K2(pvp2,p

f

lr>p'2) is

1) above the cut ^ 1

2) above the pole p° = ico(χ>2\
3) below the pole p^ = iω(p1).

A simple geometric construction (see Fig. 1) shows that p 3 should satisfy

Imp? <6(m-ε)-Re/c (2.3)

and

Imp? > 2 Re k -1 (m - ε) (2.4)

[taking into account the limitation (2.3) also for the integration variable p°]. We
thus define, for fixed k such that Refc<4(m —ε),

) = ̂ (/c)n{2Re/c-7(m-ε)<Imp ι°<6(m-ε)-Re/c}. (2.5)
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Im p°

Rek - 4m'

(m' = m-ε) Fig. 1

We shall prove that K\2R\2f is analytic in (J ^3(fc) except for the
3 (m - ε) < Re k < 4 (m - ε)

two-body cut, three-body cut and Landau singularities, with suitable analytic
continuations across the cuts, provided / has the same properties with the pί

variable replaced by p3, and δ is sufficiently small.
We first define an analyticity domain D for the total energy k: D is a multi-

sheeted manifold with a logarithmic branch point at k = 3m, lying in the strip

3 (m — ε) < Re k < 4 (m — ε)

with k φ 3m, and with all sheets but the first restricted by the curve

δf<δ<lni(l/mε,λ), (2.6)

where the labeling of the sheets is made respective to the cut {fc^3m}.
We now describe a multisheeted manifold D(/c, p̂  ) for the two-body energy

k + ίp® spreading around the two-body threshold μ(pJ) and around the Landau
singular points

φ° = ω(p(/c)) + ω(Pj. ± p(/c)), (2.7)

As a first step, take D(k, p) to be a two sheeted manifold with branch point
z = μ(p), lying in the strip

2Re/c-6(m-ε)<Rez<-Re/c + 7(m-ε) (2.9)

with the second sheet restricted by the curves

z = ω(ρ±iδ) + ω(ρ±iδ + p\ ρeR, (2.10)

where the labeling of the sheets is with respect to the cut

+ σ + ω σ σ ^ 0 , (2.11)
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and where in addition we exclude the possible "first Landau singular points"
z = ω(p(/c)) + ω(p + p(fe)) from one sheet (not necessarily the same sheet for both)
according to the following rule: If |Imp| < 2|Imp(fc)|, these Landau singular points
are in the second sheet of -D(/c,p) iff k is in an odd sheet in D. The general
prescription follows by keeping track of the k and p dependence of the
singularities.

Now we define D(k, p) from D[k, p) by a doubling of manifold around each
Landau singular point present in D(k, p), so as to obtain a monodromic structure
where each path going twice around a singular point is identified with a point. The
second sheets are restricted by the (parametric) curves

z = ω(p') + ω(p + p'), where

= ω(v') + ω(v'+ρ±ίδ) + ω(ρ±iδl ρelR, (2.12)

J I m p ' | « 5 ,

where the labeling of the sheets is made respective to the cut

and where we exclude the possible "second Landau singular points"

\ -

from one sheet according to the same rule as for D where p(fc) is replaced by

Now D(k, p) is defined from D(k, p) again by a doubling of manifold around
those "second Landau singular points," where the second sheets are again
restricted by the curves (2.12), and where the labeling of the sheets is made
respective to the cut

k = ω(p') + ω(p") + ω(p' + v"), (2.15)

Remarks. (1) In the simple case where |Re(ω(p) + μ(p))|<Refc, each Landau
singular point in D(fc,p) goes around the two-body threshold in the same time
as k goes around the three-body threshold.

(2) The relevant ± sign in (2.10) is the sign of— Imp.

We now define a domain Q)ι in (Jp1,p2»P3) w ^ n a two-body threshold, and
Landau singularities in the channel (ίj) (lή=ίj).

Definition 2.1.
@ι = {(PvP2>

keD,\Impj\<δ,4(m-ε)-Rek<Imp°<3(m-ε)

for any ; = 1,2,3 and k+ip?eD(k, -pz)}.
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We take as function spaces on 3)ι:
stfχ = {/; (C5->(C analytic and bounded on Θx, continuous on the closure of 2X,

and symmetric with respect to the exchange of pt and pj and with respect to
Pi'~"> —PΓ' J' = l,2,3} with the norm

IΛ = Woo + I/loo, (2.16)

where h is defined by

f(k (iω(pz), p,) p, - p,) - f(k (iω(p,), - p,) (p° - p?9 p, - p4 + 2p,))

i Pj-Pi). (2.Π)

Here and in the following, we write either f(pί,p2,P3) o r f(k'>Pι\Pi — Pj) f° r t n e

same element / of ^ ( / φ i,j), and we denote equivalently stfx by j / ( ί j ) , Q)x by ^ ( i j ) , pz

b y Pair

We also define

Definition 2.2.

7=l,2,3,p 1 +p 2 +p 3 =(ifc,0),fceD},

J3/O = {/:C5->C analytic and bounded on £^0, continuous on the closure of ® 0,
and symmetric with respect to permutation of pvp2,p3} with the norm l/l^.

The main tool of this section is the following:

Proposition2.1. Let fes/v and {pvp2^P^)e^^ For

let

where the integration contour is p\— p^elR2 α/on̂ f w/zic/z ί̂ ^ integrand has no
singularity. Then F can be analytically continued to the whole of 23. Moreover

R e / c - 2 m + ~ - < I m / ? 3 < 4 m - R e / c - - - ,
3m 6m

l +p2- p\ - p>2)

iω(p), p), (ife - p% - ΐω(p), - p 3 - p), p3)\

','1 Sup (|/| + |Λ|)((iω(p),p),(ifc-p§-ίω(p), -p 3 -p) ,P 3 )> ( 2 1 9 )
| ( f c ) | ' | f c 3 | 1 / 2

(2.20)

where h is the "odd part" of f {see (2.17)),

1/2

and c and c' are constants only depending on δ, <$', and ε.
In particular

\F(p1,P2,Pi)\<c\f\1z'f1. (2.21)



394 M. Combescure and F. Dunlop

Proof. Let MΞΞ Max {Re/c — 2(m — ε), Re/c — Imp 3 — (m — ε)}. i7 can be written as

+ J dp'idp'2δ{j)\ -\-p'2 — Pi — p 2 )
Reω(pί)<M

/(PΊ> p'2> Pi) - / ( ( M P Ί ) , PΊ), P'2, p3)

+ J dp\άp'2b{p\ + p ' 2 - P l - p 2 ) J / ; 2 2 w α 23, ( 2 - 2 2 )
Reω(pΊ)<M (Pi H~ ^ ) ($2 + m )

In the first two terms, the integration contour in p'® — p'2° can be shifted to
I m p ^ ^ M as Re/c increases up to and above 3m. The corresponding contribution
to F is bounded by c(e)|y|00 because the contour can be chosen at a distance 0{ε)
from both poles.

In the third term, the integration over p'® can be done explicitly, yielding

2iτt J dp'^dp2δ{p'^ + p 2 — Pi — P 2) fii^iVi) > Pi)? vΊf P3)
Reω(pΊ)<M

(2.23)

δ2

When Re/c increases up to and above 3m in D, the integration contour
Am

Pj = —flmp 3 may be pinched by the zeros p2 = — ^ ± ^ 3 of ik — p\

— zαXPi) — iω( — p^ — p3) = 0 and the singularities of / [taken at p/

1° = i

We then deform the contour so as to obtain the analytic continuation to £^3 [it
follows from Lemma 2.1 below that the contour cannot be pinched by the
boundary of the analyticity domain of / for p'? = icofo'J]. Note that given
pfι=ico(v\\ when /c + ip3 varies so as to encircle once the value μ(p3), thereby

changing sheet, the two poles p\ = - ~ ± z 3 perform half a circle around - ^~. On

the other hand, when k + ip\ encircles once a Landau singular point (thereby also

changing sheet) one of the two poles in p'x encircles once the value p(/c) or — p(fe)

or ± —z-\ Note also that / is bounded at the 2-body threshold and Landau

singular points. It is therefore analytic there in terms of suitable square root
variables. This implies some cancellations of residues taken in different sheets, at
the corresponding thresholds. The desired analytic continuation of F to ^ 3

follows easily.
To obtain the bound (2.19) we first prove the following result:

Lemma 2.1. Let <p(p) = fc—ω(p), and let D(k) be the intersection of the strip
|Imp| <δ with the inverse image φ~1(D(p,k)) of D(p,k). Then D(k) has a multi-
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Fig. 2. Domain D(k) of Lemma 2.1

sheeted analytic structure around the branch points p = + p(/c) and p = ±
z

induced by that of D(p, k) the image of the second sheets of D(p, k) (with respect to
the two-body threshold and the Landau singular points) is restricted by the curves
(see Fig. 2)

-ω(ρ — iδ) if Imp^O,

I) if Imp^O,

In particular it contains a neighborhood of order δ — δ' of the curve:

(2.24)

ί Imp = (5'

I Rep=|Rep(/c)

[lmp = 0

if iRep(fc)<Rep^p0,

if 0<Imp<(5',

if 0^Rep<^Rep(/c),

(2.25)

completed by symmetry p-> — p, when k belongs to the second sheet in D and Im/c >0,
where p 0 > 0 is defined by

- σ

for some σ^O.

Proof of Lemma 2Λ. The first statements follow easily from the analyticity of φ in
the strip |Imp|<(5. For the last statement, it is enough to consider the strip
O:glmp<c) (and therefore by remark (2) the curve

k = ω(p) + ω(ρ — iδ) -f ω(p + ρ — iδ\ ρ e 1R, (2.26)

which restricts the second sheets in this case) because the other case follows by
symmetry p->— p. It follows easily from expansions up to first orders that
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approximate solutions of (2.26) in parametric form are (p = x + ί » :

2 + xρ + ρ2 = m(X-3nι) + y2-δy + δ2

if |/c-3mkm,
_ mY+<5( + 2 )

X = ω(x) -f ω(ρ) -f ω(x + ρ)

if δ<\m(k-3m)\1/2,

y-
\ω(β) ω(x) +

where k=X + iY.
An easy but tedious computation then implies

>Q{δ_δl) i f

δ

if - -

if

R e P( f e )

which completes the proof of Lemma 2.1.

£τtd o/ ίfte Proof of Proposition 2./. If k is not in the concavity of the curve (2.26),
i.e. for Imfe sufficiently large, the bound (2.19) is obvious because any contour in
the strip |Imp| <δ remains in the first sheet with respect to the singularities of/, so
that the problem reduces to a two-body problem.

Let now k be in the concavity of the curve (2.26) we can assume in addition
that it is either in the lower half plane of the first sheet or in the upper half plane of
the second sheet (the other case can be treated similarly). We now separate the two
poles in (2.23), which yields

y ί
Z3Reω(p i )<M

where

p 3 ) , p 3 )

(2.27)

' ]

According to Lemma 2.1, we can define in the domain restricted by (2.24) two
contours which remain at a distance of order δ — δ' from each other except in a
neighborhood of p = 0 where they meet at a given angle, e.g. f (see Fig. 2). We can
impose in addition that both contours be symmetric under p-> — p. For each term
in (2.27), we then choose the contour which is the further from the corresponding
pole. This may produce a residue which can be shown to satisfy the bound (2.19).
The case of a pole at p = 0 is treated by a continuity argument. We are left with an
integral of the form

^ P H P M P )
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with h and g even in p, analytic in D(7c)n{Reω(p)<2(m — ε)} and bounded by

a constant times —-. The factor ε corresponds to the minimum distance to
ε

D(k)n{Reω(p)<2(m — ε)} of the zeros of the denominator in (2.28). The contour C
being symmetric under p-> — p, (2.29) equals

The poles at p = ± a either lie at a distance of order δ — δ' (or more) from the

contour (the bound is then obvious) or at a distance —= (or more) from the
1/2

contour. The bound for this last case follows by the change of variable p = |α|q.
This completes the proof of Proposition 2.1.

The main result of this section is the following:

Theorem 2.1. For any α and β, Ka

2R
a

2 is a bounded operator from s$β to s$a. More
precisely for all f in s$β:

\(K2R2f)(PM3)\<cττm^)\f\β,

where

κa = (ik, 0) - (p£, pα), (2.30)

(2.31)

Proof We first note that it follows from the proof of Proposition 2.1 that Ka

2R
a

02f
is analytic on 2Φ because K2{pbp. p[,pfj) is analytic on

ImpJ°<Re/c-2(m-ε)})].

Note that the integration variables p\ and p'2 in the proof of Proposition 2.1
always lie in the second factor of the above product. We also note that the "anti-
bound state," i.e. the pole of the operator Rl2(κ3) in the second sheet of the

9 λ2

variable κ3 located at 2m hO(A3/m2), does not belong to ^ 3 , due to the

condition δ < λ [we recall that we have chosen the coefficient of Φ 4 in P(Φ) equal to

+ 1].
Following Spencer and Zirilli [21], we now split the Bethe Salpeter kernel K2

into a dominant repulsive part and a remainder

K2=-λK'1+Kf

2, (2.32)

where K'2 is at least of order λ2 and where K\ is a positive constant equal to the
coefficient of Φ 4 in P(Φ). Then if

-1, (2.33)
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the Bethe Salpeter equation is solved by

^ 2 = ^2(1 " " ^ 2 ^ 2 )
p/ 1 p/ (\ τs> τ>t \— 1 js-t ni /"•> θ/i\

— -K-2 ' ^2V^ — ̂ 2 ^ 2 / ^ 2 ^ 2 * ^Z.j4j

Therefore it is enough to prove that λK'^R2 and K'2R2 are bounded operators
from sίβ to j / α and that the norm of K'2R2 as an operator in j / α is O(λ).

For jβ = α, these statements are obvious consequences of the 2-body analysis,
because no other singularity than the two poles occurs in the integral (2.18) for

β. Thus we only consider the more difficult case β φ α for example β = (23),

Let p~Pι — p2, p' — p'\~p'2 and κ3 be as in (2.30). Then the kernel of R2 is:

λ
R2(P> P' K3)

 = Λ02(P» K 3)^(P ~ P') ~ Λ , 0 J 2 / . . x Λ02(P» ^ 3 ) ^ 0 2 ^ ' ^3) ( 2 3 5 )

Thus

But it follows easily from 2-body analysis [21] that the integral (2.18) is the only
divergent part of

near the two-body threshold. Therefore Proposition 2.1 and the fact that
λz'f 1(1 + λd2^^))'1 is uniformly bounded in ̂ 3 imply that λKf^2R'2

12 is bounded
from s$γ to J3/3.

Let us now consider K2

12Rf22f for fesίv For points of ̂ 3 such that z'3 ><5, it
is easy to see that K2

l2Rl\f, and therefore K'2
2R2

12f is analytic and bounded. If
z3 ^ <5 (and thus |z3 | ̂  (5), we use formula (2.35) for JR;

2, and split K;

2 into a residue at

one of the two poles of R02, say — ^ - + z 3 , plus a difference which vanishes at that

pole:

ίΦΊ-p'2)Rθ2(P'l-P'2.K3)

, Id2(κ3)

P 3 + 7 P 3 7
3' 2

l+λd2(κ3)

'in n P 3 + 7 P 3 7
2 l P l > P 2 > 2 3 ' 2

PΊ - P'z κ3)f(p'vp'2, p3)

> P2

I , P 2 ; - ^ + 2 3 , - ^ - ^ ) W I , P ' 2 , P 3 ) , (2-36)
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where we have used the simplified notation:

^•2(Pi5 P2 '-> Pi9 P2) — K'2{pι, P2 j (Jω(PiX PI)J (p? +P2 ~ ί ω(Pi)X P2) 9 (2.37)

and where c(pl9p2,p3) is given by

Now it is easy to see that the singular part of Jd(pΊ — P2)^02(Pi~P2' ^3)
f{p'vp'2,p3) is that given by Proposition 2.1, and that it is therefore bounded by

c\d2(κ3)\ \f\v For |z3|<<5, one has ω ± z 3 ) ^ m —ε, so that the first term of

\K! I
(2.36) is analytic in ^ 3 and is bounded by c—~2-\f\v

A

On the other hand it follows from 2-body analysis that

and

are analytic in Θ3 and that the latter is uniformly bounded by

λ

l+λd2(κ3)
\K'2\

Therefore the second term of (2.36) is analytic in Q)3 and bounded by c'\K2\<X)\f\ί.
As in the beginning of the proof of Proposition 2.1, the last term can be

decomposed into a possible residue at p/

1° = zω(p/

1), plus an integral over p'f away
from the poles, which does not give rise to a 2-body threshold, and is thereby
bounded by c"\K'2\oo\f\ί. The residue at p/

1° = ϊω(p/

1) can be written

|Reω(pί)|<M

— K' n n r i 4.7 Γό v

, - ^ > L ( 2 3 9 )

'• 2

along a suitably chosen contour, where / is given by (2.28). As in the proof of
Proposition 2.1, this term is analytic in @3 and is bounded by c'"\Kf

2\o0\f\1.
So far we have proven that K\2R'2

12 f has the desired analyticity properties in
3)3, and that it is bounded on 3>3. Now the bound for the odd part (2.17) of
Kl2Rf

2

2f will follow from the following lemma (for λK'f2R'£2f, this odd part is
zero):
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Lemma 2.2. Let (p1 ?p2>P3)G^3 w^tn P3 —zω(P3)> an^ let f belong to $0V Then

^ (2.40)

Proof. We use decomposition (2.36) again. The integral in the first and second
terms is invariant under p3-» — p 3 . Thus the contribution of the first term to (2.40)
is bounded by:

d2(κ3)

l + λd2(κ3

It follows from 2-body analysis that the first factor of the second term of (2.36)
is /I(l+/l<ί2(?c3))~1 times a sum of integrals over suitable contours where the
integrand is not singular, and it can therefore be differentiated with respect to p 3

(at p x fixed). Thus the contribution of this second term to (2.40) is bounded by

W2UP3II/I1.
As previously, the third term is split into an integral over p'® having no 2-body

threshold, thereby satisfying Lemma 2.2, and a residue at pf^zωφ'iλ whose
contribution to (2.40) is:

Γ dpidpa

2 ^ 3

" ί " " ^2(Pl> P2 > Pi' P2)/(Pl> (lC0(P3)' P3MP1 + P2 + P3)

"2(Vv p 2 + 2p3 p't, p'2 + 2p3)/(p;, (to(p3), -p 3 ) )

-X2(p1,p2;p/

1,p/

2)/(p/

1,(MP3XP3))}^(Pi+P2 + P3)?

where K"2 is defined by

Pi + iς- - zΛ K"2{yv p 2 p'1; p2) = X 2(p 1 ? p 2 p'19 p2)

Now this term can be treated similarly to (2.39) yielding a bound of the form
c"'|p3 | l^lool/li' where the p 3 factor comes from the analyticity of K"2, and from
the analyticity in p 2 — p 3 of the odd and even parts of/ [decomposition (2.17)].
This completes the proof of Lemma 2.2.
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III. Analyticity of the 2-Particle Irreducible 6 Point Function

In the Introduction [Eqs. (1.28)—(1.35)] we have already derived, at least formally,
Faddeev type equations satisfied by the part R'3 of R3 (the 2-particle irreducible
6-point function) constituted only from two body processes.

It is not difficult to make this derivation rigorous in the euclidean region, and
to analytically continue the solution up to Re/c = 3m—2ε. Indeed a tubular
neighborhood of

remains free of any singularity in the whole range |Refc|<3m — 2ε. We shall now
give precise definitions for the case 3(m —ε)<Refc<4(m —ε).

1 — (J) j / α is the set of vectors , where

We denote by || || the norm of operators in j / α , <s/0 or stf (the specification will be
clear from the context). For suitable six-point functions R(pv p 2 , p3, qv q2, q3\
with a δ(p1 + p2+p3 — q1 — q2 — q3) incorporated in it, we define the bilinear form
R(k) on s40 x sf0 by:

<fR(k)g} = f Π (dpjdqjjδip, + p2 + p3- (ifc, 0))
1

mf(Pι>P

Definition 3.ί.

j / = {/:(C5->C analytic and bounded on Θ, continuous on the closure of
symmetric with respect to permutations of p l 5 p 2 ,p 3 } with the norm \f\^

6 : 5,Refc-4(m-ε)<Imp7°

j / = { / : C 5 - > C analytic and bounded on J^ continuous on the closure of ^ ,
symmetric with respect to permutations of p 1 ? p 2 ,p 3 } with the norm \f\ao.

It follows immediately from Theorem 2.1 that the operator A defined by (1.33)
is a bounded operator in J / . NOW we want (1) to study (1 — A)~x as an operator in
j / , and (2) to make sense of Eq. (1.34). This will be done by proving that each term
in (1.34) is an analytic (in fe) family of bounded bilinear forms in j ^ 0 x srfm As
regards the first aim, a result for k outside a neighborhood of order λ2 of the three
body threshold is given in Proposition 3.1 below, at least for an iterated form of
(1.34). Given that, the second aim will follow from Theorem 3.1.
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Proposition 3.1. There exists some constant a such that if λ<a\k— 3m|1/2, \\Λ3\\ < 1.

Proof We first note that, from (2.32) and (2.34):

2 2 ~ — Axv^Jrv2 ~^~ ( 1 — / ^ " ^ i ^ 2 / \ — -*^2 2/ **-2 2 '

and therefore

IIK2R2 + λKίR2 | |^β^^Λ<O(λ).

Thus it is enough to prove that

(3.2)

(3.3)

\\(λK'ΪR'*)(λK'fR'l
λ

for some b>0, and any αΦ/?Φyφ(ι7). But [e.g. α = (12), jS = (23), 7 = (12)]

and thus by Theorem 2.1

(3.4)

(3.5)

'i 2f\ < \λd2(κ3) (1 + λd\κ3))~11 |/ | ( ί 0. (3.6)

When we apply λKf23Rf23 to this first result, we see that the second term in (2.19) is
/ l/c—3m|1/2\~1

bounded by c 1 +d \f\(uy This bound is preserved by applying the
\ Λ /

third factor (λK;12R'2

12).
The contribution of the first term in (2.19) to ( A K ; 2 3 ^ 2 3 ) ^ ; 1 2 ^ ^ 1 2 ) / is

bounded by

λd\κγ)

Applying the third factor (/LK'/2^12) gives an O(λ) contribution plus a residue at

p? = iω(Pi) The contribution of (3.7) to

II 2 jp r ' 12 o ' 1 2 / 2 j ^ / 2 3 n ' 2 3 \ / Q ^ 1 2 r>/12\i |

IIΛA! K2 (/iί! K2 ){λK1 R2 ) \ \ ^ { i l ) - , ^ ( ί 2 )

is then bounded by

Sup
Pi

j(ip(5(fe-ω(p1)-ω(p)-ω(-p-p1))

1/1(11,- (3.8)

The function outside the integral equals one at p x = ±p(fc) and is small away from

these points. The integral equals one at pL = ± —— and is small away from these

points. It is easy to show that the product is small away from
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/ b / Y1

More precisely, (3.8) is bounded by l + -]/|fc—3m| , which completes the
\ λ I

proof of Proposition 3.1.

Proposition 3.2. For any α and β, (Ra

2®R1) (k) is a bounded family of bilinear forms
on s#0 x s$p and on s$0 x J3/O, analytic for keD. More precisely there exist positive
constants c and d such that for any festfp ges/0, keD

(3.9)

The same holds for fges/0, with \f\β replaced by

Proof We only give the proof for festfv α = (12), gestf0 and R2 replaced by R'2
[the cases fgestf0, and /6 j/ α , gEs/0 are easy consequences of 2-body analysis,
and replacement of Rf

2 by R2 will follow immediately by using (2.34) and
Theorem 2.1]. Using (2.35) we have

1 {V

2 + m2)(pl + m2){pl + m2)

dp3 λ

+ m2 λd2{κ3)+ί

where we have omitted a factor 1 + O(λ2) for the field strength renormalization,
and a remainder (coming from Lehmann formula) obviously bounded by
c\f\ao l̂ loo ^ e n o w P r o v e (3-9). The first term of (3.10) can be rewritten as

XFl F2 F3 v ; ;

i), Pi; iω(p2), p 2 p 3)}. (3.11)

But it follows from 2-body analysis and Proposition 2.1 that the second term of
(3.10) equals

f dp3 λd2(κ3) .

^ ) g M P l ) ' P i ; ί ω ( P 2 ) ' P 2 ; P 3 )

-1 ( 3 . 1 2 )
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plus a remainder that is uniformly bounded by c\f\ί Ig]^. Now the second term in
(3.11) can be rewritten as

pi + m2

(3.13)

plus a remainder uniformly bounded by c\f\o0 Igl^. Now from analyticity proper-
ties of g, we have

, P2 Mp 3X p 3 ) - 0(MPi), p t zω(p2), p 2 iω(p3), p3)

ίPi))^ '^! iω(ρ2), p 2 iω(p3), (p3),

where g' is analytic in a section of ^ 0 , and \g'\O0<c\g\O0. Thus the integration
contour in (3.13) can be shifted to p° = k — 2(m — ε), which yields a bound cl/l^ Igl^.
Now the first term of (3.11) combined with (3.12) equals

which is norm bounded by

j dp3l(2 ω (p3))- 1 §( ί ω(p 3 ) ) p3) | , (3.14)
Reω(p3) < Refc- 2(m- ε)

with

The bound (3.9) follows easily after choosing a suitable contour in (3.14).
Let now D' be the connected part of D\{k\\k— 3m\1/2^λ/a} which meets the

first sheet. We have proven:

Theorem 3.1. For λ sufficiently small, Rf

3(k) given by Eq. (1.34) is a bounded family
of bilinear forms onstf xsrfQ analytic in D'. Furthermore if fes^0, gestf, there exist
positive constants c and d such that

\g\O0. (3.15)

Remark 3.ί. For this result we have used Theorem 2.1 and the fact that a;
this implies that, while the first term in (1.34) is a good bilinear form on j / 0 x j / 0 ,
the second is only a bilinear form on s/Q x jtf. Actually one could have gone
through the whole program of this paper with ^ α replaced by a neighborhood of
the triangle of cuts, i.e. Imp?<Re/c — 2(m — ε). The analog of Theorem 3.3 would
have been less satisfactory because Θa does not have the natural boundaries (1.8)
and (1.9). However it is easy to check in this frame that Ka

2R
a

2 is a bounded
operator from s/0 to the modified j / α , so that #3 and R3 are bounded families of
bilinear forms on J/ O XJ3/ O for \k— 3m\>λ2/a2, which is a stronger version of
Theorems 3.1 and 3.2.

Now the full 2-ρarticle irreducible six-point function R3 is obtained by a
further easy step, using Eq. (1.35) and Proposition 3.3 below:
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Proposition 3.3. Let si'o and si' be defined in analogy with si0 and si in
Definitions 2.2 and 3.1 respectively, but with D replaced by D'. Then K'3R'3 is a
bounded operator in si' or in si'o satisfying

y» (3-16)

[where \K3\^ = sup \K3(pvp2,p3;p
f

ί,p
f

2,p
f

3)\\ .

\ p'teΘoik)
\ 3(m-ε)<Rek<4(m-ε) /

Proof. This follows immediately from the fact that K3 is analytic in
[see (1.16) and (1.17)] and from (3.15).

Theorem 3.2. For λ sufficiently small, R3(k) is a bounded family of bilinear forms on
i x i 0 analytic in D'. More precisely for any / G J / 0 , gej^, there exist positive
constants c and d such that

KgR3(k)f}\<(\Log(c\k-3m\'l2 + λ)\i-d)\f\O0\g\O0. (3.17)

Proof, li^loo is at least of order λ, and thus the norm of K3R'3 is small when λ is
sufficiently small. This allows us to invert the operator (1 — K3R'3) in srf' or in s/'θ9

and to obtain

R 3 = R'3(1-X3 JR'3)-1. (3.18)

Theorem 3.2 then follows from Theorem 3.1.
We can now study the analytic structure of RόiR3 (the full 2-particle

irreducible six point function amputated on its left).

Theorem 3.3. Let stf'a be defined in analogy with s/a in Definition 2.1 with D replaced
by D'. Then (see (1.30), (1.35))

is a bounded operator from si to Y^^'a (i.e. for any festf, R03R3f is a sum of
α

terms, each term being analytic in some srf'a).

The proof is an immediate consequence of Theorem 2.2, of Propositions 3.1
and 3.3 and of Eq. (1.32').

IV. Asymptotic Completeness in the Three Body Region

In this section we prove asymptotic completeness for the models under con-
sideration, in the center of mass frame and on the odd subspace of energy between
3m + a(λ) and 4m-b(λ\ denoted JΊf^+ aWAm-πxn t w e recall that a(λ) and b{λ) are
positive and tend to zero with X]. Asymptotic completeness for all states with mass
in the same interval will follow by Lorentz invariance. We first express asymptotic
completeness on ^]°3

d^+a{λ)Am-b(λ)[ under the form of "asymptotic completeness
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relations" satisfied by a set of irreducible functions, and then deduce these
relations from the analyticity properties of R3 established in Sect. 3. The first step
is a rather standard job in quantum field theory [1, 2, 22], but we include it in the
beginning of this section for the sake of completeness.

Theorem 4.1. Asymptotic completeness on ^{tm + a{λ)Am-b{λ){ for ΛJP(Φ)2 models is
implied by the set of relations (1.4)—(1.6) for any fce]3m + α(/l), 4m — b(λ)[ and any
functions f and g in stf {see Definition 3.1).

Remark 4. i. Not the whole analytic structure of R3 is needed at this stage.
However some regularity properties of ζfR3(k)g} ± as boundary values of analytic
functions for k on the real axis will be used (which imply in particular the absence
of CDD zeros). This is the reason why, even for this step, we restrict our attention
to energies in ]3m + α(X), Am — b(λ)[_, although Theorem 4.1 is true on ^jod5(m-ε)[
(under rather weak assumptions, but we do not want to go into more details here).

Proof of Theorem 4.ί.It is easy to see that only particles of mass m will be present
in this range of energy (three body bound states near 3m, if any, will of course not
contribute). Therefore we introduce a complete orthonormal basis {fez(p)} in
L2(lMp/2ω(p))

δ i r , (4.1)

Σ HvM<U (4ω(p)ω(q)Γ m = % - q), (4.2)
/

and an associated orthonormal basis on Jfex

< = n ( « f r 1 / 2 K * r ^ , (4.3)
i

where niV = (nf)ί, N = ]Γ wf < oo? "ex" denotes either "incoming" or "outgoing", Ω is
i

the physical vacuum and Ae

hf is the creation operator for a free asymptotic particle
of mass m with wave function hv Then asymptotic completeness on J^°d d (where /
denotes the interval ]3m-j-α(X), 4m — b(λ)[) reads

£/=£/Σ <>«£/> (4.4)

where Ej is the spectral projector of the energy operator on the interval I (at zero
total momentum).

Now, following a result due to Glimm et al. [16], (note that appealing to this
result is not necessary but allows for a simplified formulation) the closure of the
span of

^={Φ0(f0)Ω,eitP°Φ0(f3)Φ0(f2)Φ0^^ (4.5)

contains ^od5(m-ε(A))[ f° r ^ sufficiently small and Φ0{f) the physical time zero field,
smeared by the function /. Thus asymptotic completeness on ̂ d d is equivalent
to:

, EΓff} (4.6)
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for any θ and θf in J^ and any interval /' C /, where < , > denotes the scalar
product in Jtf. We now use the "reduction formulae" ([12], see also [1, 3, 22]) to
rewrite the right hand side of (4.6). (Note that the "reduction formulae" usually
written in terms of the so-called "time ordered expectation values" of the
axiomatic QFT can equivalently be expressed in terms of analytic continuations of
momentum space Schwinger functions [11].) Thus taking

(4.6) reads

= 3! Σ i'Vπ&Sdk'e+W
h,h,h I' 1

3

' ί W τS3,3)±{pvP2>P3> 4i> I* tf 3) Π (dqjg/ΆJί) xTdim^-^ί, g^f), (4.7)
1

where

2 2 ° , (4.8)

fc = (ifc°,0), (4.10)

upper bar denotes complex conjugation, dE(k°,k) is the spectral resolution of the
energy momentum operator,

(P3> <?i> 42> ^3) - P e r m ( P i ) > (4Λ1)

)), (4.12)

where all arguments are in the first sheet with respect to all variables.
But using (4.2) (namely completeness of the basis {/ijz), the right hand side of

(4.7) reads:

J dk°eik^' -» 3! (2iπZ)3

3

- Σ Pj '
1 /
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Note that ± subscripts in (4.7) correspond to "ex" = Q"). Now (4.13) holds for any
t and ί', any fj, gp and any /' c /. Therefore for almost all fc° in I, we have

)3
= 3!(2iπZ)3

•δ{k- ΣP^({Ros1TS3,3)τ{(ψg^(pvP2,P3), (4.14)

where the right hand side is continuous in k° for k°el [continuity follows from the
analyticity properties of R3 established in Sect. 3, and from Eqs. (1.1), (1.3), (1.18),
and (1.19) connecting Green's functions to irreducible functions]. For simplicity
we write the right hand side of (4.14) as

Remark 4.2.' We shall use the fact that the left hand side of (4.14) equals almost
everywhere a continuous function of k° when we want to relate it to the

// 3 \ / 3 \\

discontinuity along the three body cut of (I (X) / ; \S6{k°) (X) gj \\ This property

looks similar to that used by Bros [1] as an extra postulate in the proof of the
equivalence between two body asymptotic completeness and suitable analyticity
properties of the Bethe-Salpeter kernel. Actually it is only needed as an extra
assumption when going from asymptotic completeness to analyticity properties,
whereas (as in the present paper) it appears as a subproduct of the analysis in the
converse direction.

We now proceed with the proof of Theorem 4.1. Assume fe = (ΐ/c°,0)elR2. Then

3

j f] (dpjd

.E(kfO,k')Φo(g3)Φo(g2)Φo(gi)Ωy (4.15)

has an analytic continuation to each of the half planes Im/c°^0, and the
discontinuity with respect to fc° along the interval /

3

Π (dp}ώ

(4.16)
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is nothing but

because of (4.14), and of continuity of the right hand side of (4.14) for k°el. This
implies for any fe° in /:

Varying θ and θf in $F allows one to prove two analogous results with S2 and S4 in
the left hand side instead of S6. The system of three equations thus obtained
expresses asymptotic completeness on f̂7

odd. But this system easily follows from
the analogous system of Eqs. (1.4)—(1.6) satisfied by the 1-particle irreducible
functions. (That both formulations are equivalent was established in [3], at least
for total energy momenta in the complementary set of the zeros of the two point
function (CDD zeros).) Indeed î 1(ι7c, 0) and R^iik^O) have bounded boundary
values in / [this follows immediately from (1.19) and the bound (3.17) for λ small].
Thus

ΔR1(ik,0)=-Rϊ(ik90)AR-\ik9ΰ)RΪ(ik90)

* i}K 0) *™{K%\Rdτ (ifc, 0)

and similarly for the others. This completes the proof of Theorem 4.1.
We now prove the "asymptotic completeness relations" (1.4)—(1.6).

Theorem4.2. Let f and g belong to si, and 3m + λ2/a2<k<4(m-e). Let
(fR3(k)g}± be the limits asη[0 of {fR3{k±iη)g} with k±iη in the first sheet of
D. Define

ifΛR,{k)Qy = <fR3(k)g} + - </R3(fc)fif> _ . (4.19)

Then

•δ(p1+p2 + p3-(ik,0))(RO3

1R3f)τ(pvp2,p3){RO3

ίR3g)±(pvp2,p3l

(4.20)

where the range of integration is bounded and where

±
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is a sum of functions analytic in 2a, limits as η[0 of the same expression evaluated
at PiT(η,0) in the first sheet.

The proof of this theorem splits into a series of intermediate results:

Lemma 4.1. Let {fAR03(k)g} be defined similarly to (4.19). Then

^ fl dPjδ(p]

l9p29p3). (4.21)

Proof The only nonzero contribution to (fΔR03(k)gy comes from the term

Z 3 Π (pί + mTM® W ) in Rov where
7 = 1

Now

lim if dPίdp2dP3 ^(Pf^.+Pi^-Kk+iηM _ ( }

i(k - ω(p2) - ω(p3)), yi iω(p2), P2 MP3)> P3)

ω(p1) + fc-ω(p2)-ω(p3)

• δ(Pi + P2 + Pa) (Λ) ( M P I ) ? PI iω(p2), p 2 iω(p3), p 3 ).

Given any function gf in, say, s^23, we define its "2-body and 3-body
discontinuities" as follows:
Let p°j be pure imaginary (i.e. Minkowskian) and let

g ί = lim # ( P l + (5f/, 0), p2 + (η, 0), p 3 + {η, 0)), (4.22)

, (4.23)

where all the arguments of g are taken in the first sheet in ^ 2 3 .

{Δ23g)±~gX-g-±, (4.24)

(4.25)
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where the contour lies in the first sheet of the total energy. (Note that the
superscripts ± refer to 2-body energies, and the subscripts ± refer to the 3-body
energy.)

We then prove:

Lemma 4.2. Let fej/, # e j / 2 3 , and (fAR03(k)g} be defined similarly to (4A9).
Then the following identity holds for 3m<k<4(m — ε):

ηϊO

+ p3-i(k-iη90))(f(Δ23g)+)(pl9p2,p3). (4.26)

The same result holds with +-> —, gX~*gZ, A23g+->A23g_.
Analogous results hold for j / 1 2 or jtf31 instead of s$ 23.

Proof. ifR03{k±iη)gs) can be replaced by

ϊ2p 1

(4.27)

We first assume that g has no three body cut [but has a two body cut in the
channel (23)]. Then, after getting rid of the contribution to (4.27) of p x such that
ω(px) > Rek — 2(m — ε), the integral over p\ can be split into a residue at p°x = iω(p1)
plus a contour integral which has no cut in fc. Thus

= Hm3(2πZ) j φ 2

+lim 3 j dp2dp3R02(p2, p3)δ{p1 +p2+p3- i(k - iη, 0))
η{0

•(fΔ23g)(Pl,p2,p3)\. (4.28)

If g has in addition a three body cut, denote by g its analytic continuation
through the three body cut from the first sheet from above. Then

(4.29)
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g is analytic in k in the neighborhood of the interval 3m<k<4(m — ε) and
(fAR03(k)gy can therefore be treated as above. This completes the proof of the
lemma.

Lemma 4.3. Let fes£. Then

(i) (ΛβMβf)+ =

(ii) Let ΔMf (respectively I) be the column vector in ®stfΛ whose components
a

are ΛMJ (respectively

2{2πZf{\+K2R2) Σ

where α = (//), j being the element common to pairs α and β and where δ%2 in the
channel β = (ij) is nothing but δ + (pi)δ + (pj). Then

Proof. It follows from Eq. (1.32) that the discontinuity of M23 f in the variable
P2 + P3 only comes from JR 2 3 . But from two-body analysis [21] it follows that:

l / 2 ( 2 π Z Γ 2 { ( Λ ! 3 ) + - ^

= [1+ 0R23)- Kf ](5?2[1 +K\\R\*)+]. (4.30)
Thus

(Mβf)± +/Λ

(4.31)

because the factor δ%2 before Mβf implies that the two-body and three-body
energies have the same imaginary parts. This completes the proof of (i).

In order to prove (ii) we start from (1.32) again. As / has no two-body cut by
assumption, the inhomogeneous term in (1.32) does not produce a 3-body cut.
Thus we need only consider the three body discontinuity of a term of the form

d P R ^ ) (Pi, p2, p3) (4.32)

with g22e j / 2 3 . Assume first that g 2 3 only has a two body cut in the channel 23, but
no three body cut. Then it follows easily from the proof of Proposition 2.1 that the
three body discontinuity of (4.32) is

ί)R1(p2))A23g23.

In the presence of a three body cut in g23, we write

2 2 2 1 2 l 2 (4.33)
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where g23 denotes the analytic continuation of g23 through the three body cut
from the first sheet from above. Then

(4.34)

Applying to 023
 = ^23/> a n d more generally to Mβf with β φ α for α instead of

(12), and using (i), we get (ii).

Proposition 4.1. Let f.geά and (fAR'3(k)g) be defined similarly to (4.19). Then,
for 3m + λ2/a2<k<4(m-ε)

(fΔR'3(k)g} = y.(2πZ)3l f\ (dp^ + (p j))δ(p 1+p 2 + p3-(ifc,0))

•(R^Rf3g)-(PvP2,P3)(R03R'3f)+

+(PvP2,P3)- (4.35)

Proof. For any k in Df

<fR'3(k)g) = <fR03(k)g}

Now using Lemmas 4.1-4.3, we have

<fΔR'3(k)g> =(2πZ)3 J3! (fδ+ ®δ

( (4.36)

But the third term is

Now due to the relation

we have a cancellation with the second term of (4.36). We are left with

3!(2πZ)3J Π
7 = 1

because {Ro3MβRo31){PvP^P3^P'vP>^P>3) = (Mβ) (P'VP'^P^ PvP&Ps)- τ h i s c o m "
pletes the proof of Proposition 4.1.

In order to complete the proof of Theorem 4.2 we use the equation
R3=R/

3(1-K3R3)~1. Given f9geά, we have

KzR!2r
1g)+y +
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But as elements of s#'

A(ί - K3R'3)~ ιg = (ί- K3R'3)Z' {(1 - K3R'3)_ - (1 - K3R'3)+} (1 - K3R'3)~+

19

because \im(K3(k + iη) — K3(k — iη))R'3(k)+^>0 strongly in <»K Thus

<fAR3(k)g} = <(1 + K3R3)+ fΔR3{k) (1 + K3R3)+ g}

because (1 — K3R3)~1 = 1+K3R3 as operators in stf'. Now using Proposition 4.1
completes the proof of Theorem 4.2.

The last result of this section is the following:

Corollary 4.1. Let fesϊ, and 3m + λ2/a2 <fc<4(m-ε). Let (K™3f)±{k)
(respectively R^1(k)±) be the limits as η I 0 of (K^\f) (k + ίη) (respectively
Rϊ1(k±iη)) with k±iη in the first sheet of D. Define

[V3 f) (fc) = (Kγ?3 f) + (k) - (K^3 f) _ (fc),

Then

(dPjδ(pj+ m2)θ(Imp°))

7K3/)±^

- ΔR- \k) = 3! (2πZ)3

P

We do not give the proof which is an obvious consequence of Eqs. (1.18) and (1.19)
and of Theorem 4.2.

V. How to Exclude Three Body Bound States?

The problem is essentially to invert the operator (1 — 4̂) near the three body
threshold or, alternatively, to give a meaning to ΣAn. We note that Ka

2R
a

2 is of
order one near the two body threshold but of order λ away from it. One could
hope that integrating over the two body energy κ°a in a convolution Kβ

2R
β

2K\Ra

2

would make a small average and that, by iteration, the norm of An would be small.
We prove that such is not the case near the three body threshold, at least for the
leading part of A when λ-+0.

For comparison we recall that in the presence of a two-body bound state, the
dominant (and of course unbounded) part of K2R2 near the two body threshold is
the pole at mB. A study of three body bound states [19] is then essentially a two-
body problem with unequal masses mB and m. Even in that case however,
difficulties similar to those described below prevent us from showing boundedness
of JR3 inside a small neighborhood of k = 3m; this point was overlooked in [19].
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We restrict our attention to Minkowski space and k<3m. Then (see Sect. 1)

2f) (Pι,p2, p3) = -t + ~*2{κj j άp\ dp'2

p'vP'z, Pz) (P? + m2y1 (p'i + m2)-1 δ(Pι+p2 - p\ - p'2) + O(λ\f\J

— πλ

\~\-λd (K3
lω(p'1)<2(ιn-6)

V'1dp'2δ(p1+p2-p'ι-p'2

(5.1)

We are interested in (1 — A)~ι = X(^)n. This involves iterating the above formula
o

where, by induction, the leading part of / will depend only upon P2 + P3, and
where the result will be used at the next step for P3 = iω(p3) only. Also the
α-channel term in An is (Ka

2R
a

2) times a chain of n — 1 factors with different
consecutive channels; but each such chain gives an equal contribution to An,
yielding a factor 2"" 1. Therefore we define an operator acting on functions of one
(space) variable:

l+λd2{k-ω(p\p) ω(pΊ<2(m-ε)

l-(k- ω(p) - ω(pψ -f- ω2

-Iπλik-m)'1

dp'ω-\p')f{p>)

(5.2)

+ λπ2(k-my1\m[3rn-k+
4m

4m1

- 2 fe))
J — +0(Λlogλ|/| 0 0),

where q = p[rn{3rn-k)y112 and % = τr 2 (/c-m) ^ m ( 3 . m fc).
A

(5.3) follows by an expansion (up to second or fourth order) in p and p' near
zero, and by noting that

λd2(k-ω(p),p)
Fl+λd2(k-ω{p\p)

We now define an operator Bx acting on even functions of one variable
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which is such that if S is the dilation operator

l (5-5)
3m)

gλ\fU, (5.6)

where f^s$γ is such that there exists a function fγ :1R->ΊR with

We now prove that £ # " , which could approximate YJA
n, is not an absolutely

o o
convergent series.

Theorem 5.1. (i) | |BJ|L O O_L 0 O= ~ 2

+ x

(ii) For x sufficiently small, there exists c>l such that for all positive integers n

Proof, (i) is obvious, using an explicit calculation for {Bli){q).
(ii) is proven in five steps:
a) — Bx is positivity preserving,

ll^||Lco-.LOo = [(-β χ )" l ] (0) ,

( — Bx)
nl is a positive even function, decreasing for q>0.

b) Let

/(lWl + ̂ 1

( — B'x)
n\ is a positive even function, decreasing and convex for q>0.

c) {(-B'x)
nl){0)>c{x)\ where

Arctgα

c(x) = sup .

κ a < - ^ l + 2X ^ (5.8)

d) Let / be a positive even function, decreasing for q>0. Then
-BJ^-B'J.
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n - 1

e) (-l)n(Bn

xl-B';i) = (-l)n Σ Bp

x(Bx-B'x)B™-ι-n^0.
p = 0

We only give the proof of c). Let / be a positive even function, decreasing and
convex for q > 0. Then

1/3.
Arctgα

l/3,
1

]/3 ;

Then there exists a function ib(̂ ) with b(0) = 1 such that for all n:

((-B'xri)(q)>b(q)c(x)\

where c(x) is given by (5.8).

4 2
We finally remark that c(x)-> — Arctg—- > 1 when x->Ό. This completes the

proof of Theorem 5.1. V
As a conclusion, we note that it is necessary to use the repulsivity of Φ 4 [i.e. the

alternate character of the series (1 — A)~ι~\ to prove that Φ4-like models do not
have three body bound states. One hope would be to decompose Bx into a rank
one operator associated to an eigenvalue between one and two (for x small) plus a

D«+ 1 i

remainder of norm less than one. The eigenvalue should be b= l im—^— and the

eigenfunction fb(q)= \imb~nBn

xl. One could then invert explicitly 1—BX.
n
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