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Abstract. We prove stability and instability theorems for solitary-wave solutions
of classical scalar field equations.

0. Introduction

In this paper, we study the stability of special travelling-wave ("solitary-wave", [1])
solutions of classical scalar field equations of the form

ΠΦ + U'(φ) = 0. (0-1)

This problem has attracted much attention recently in the physics literature ([2]), in
part because classical solutions may be recovered from suitable expectation values
of quantum fields in the classical limit ([3]).

Apart from the main motivation, which is to provide a simple and clear
mathematical theory of stability for classical field equations, there is also a three-fold
physical motivation. Firstly, most of the discussion in the physics literature ([2]),
which is heuristically correct, relies on the linear theory. It may be shown, however,
using methods of the present paper, that the latter is not applicable, because the
linearized operator (on the natural Hubert space, after proper "subtraction" of the
zero mode) is skew-adjoint, a reflection of the fact that the mechanism of stability in
these theories is dispersive, not dissipative (see also the discussion in [6] for K-dV
equation). Secondly, the existing rigorous nonlinear stability theories ([4], gener-
alized and corrected in [5], and [6]) are in principle applicable only to a class of
equations (such as the K-dV equation) which may be treated either by inverse
scattering theory ([6]), or which possess more than one scalar conservation law ([4],
[5]), and are, therefore, unsuitable to describe, for instance, the stability of "kinks" of
the nonlinear Klein-Gordon equation ([2]). Thirdly, and perhaps most importantly,
the heuristic discussion disregards the somewhat delicate technical problems posed
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by the zero-mode, which is always present due to translation invariance ([2]): this is
also the reason why stability of the solitary-waves is a form-stability ([4], [6]).

The plan of the paper is as follows. In Sect. 1 we describe the relevant class of
equations and solutions, state and prove our stability result (Theorem 1), and in
Sect. 2 we prove a general instability result (Theorem 2). In Sect. 3 we provide
a brief discussion of applications of Theorems 1 and 2 and prove, in particular, insta-
bility of the solitary-waves in higher dimensions which have been constructed by
Parenti et al ([13]) and Strauss ([17]). The Derrick-Strauss theorem ([7], [8])
is thereby revisited.

1. Stability

Let φ be a bounded static (time-independent) solution of (0-1), i.e., satisfying

φ»(x) = U'{φ{x)), xeU. (1-1)

We further assume

φ'{x)>09 VxeR, φ\x) —• 0, (1-2)
X ~ + ± GO

and that there exist constants — o o < α _ < α + < o o such that

φ(x) -> a_ and φ{x) —• a+. (1-3)
χ-+ - oo χ-> + oo

Since U(φ(x)) = ^φf(x)2 -f const, it follows that U{a_)= U{a + ). We normalize the
energy of the "vacua" φ(x) = a+ and φ(x) = α_ to zero and assume

U(a_)=U(a+) = 0 and (7(x)^0, xeM. (1-4)

We also assume that

Eo= J £φ'2 + U(φ))<π. (1-5)
— co

This means that φ has finite energy relative to the vacua. This point and the
restriction to one space dimension are related to the Derrick-Strauss theorem ([7],
[8]), see the discussion in Sect. 3. On U we further impose the following condition:

UeC2 in a neighbourhood of [α_,α + ] and U"(a±)> 0. (1-6)

We note that by the first of (1-2) we are describing "lumps" ([2]). "Antilumps"
{φ'{x) < 0, xeU) may be handled by reflection x-> — x.

Let Hlc(U) = }ψ:M-+n: Jdx[ψ'(x)2 + ψ(x)2] < oo for every bounded region
I Ω

dx[ψ'{x2)2 + ψ(x)2] < oo
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Hloc(U) is the natural space for solutions of (0-1) ([12]), and we shall therefore
assume φeHloc(U). Such a φ defines (under the previous assumptions) a
Hubert sector in the language of ([12]), and it is natural to inquire upon stabi-
lity within a sector, which means that "perturbed" solutions are required to

satisfy ( |eur'(R) ® L2(U). Due to translation invariance, the following is (for

V Ψ JV J
q > 0) a natural distance function (see also [4]):

dq(φ)2 ΞE min J dx[_(φ'(x) - φ'(x + c)f + q(φ(c) - φ(x + c))2]
— oo < c < oo —oo

We may now state our stability theorem:

Theorem 1. There exist positive constants r, q and k such that ifueHloc(U) satisfies

(ux(.9to)9ut(.9to))eL2(U)xL2{U)

and is a solution of (0-1) satisfying

dq(u(.,t0))<r

at some time ί0, having energy

E = j dx\_\u2

t + \u2

x + U(u)-] <E0 + kr2,
- 00

then the solution exists for all t and has

for all t.

The theorem is a consequence of the following

Proposition 1. There exist positive constants q,k and r such that any solution
φeH\JU) o/(0-l) with dq(ψ(.,to))£r satisfies

ί dxtiψ'(x)2 + U(ψ(xm ^Eo+ kdq(ψ)2.
— oo

Proof For clarity we divide the proof into a succession of steps:

1) φ'(x) = 0[e~λ±lx^ a s x - + ± o o , λ± = y/U"{a±) > 0, since (φ, φ') = (a + ,0) or
(α_,0) are saddle points of the equilibrium equation (1-1).

00

2) The potential energy V(ψ) = j dx(^φ'2 -f U(φ)) has φ as a critical point:
— oo

00

(V'(φ),ψ)= J dxiφ'ψ'+U'(φ)ψ)=O for all

and
00 00

(φ,V"(φ)φ)= j dx(ψ'2 + U"(φ)φ2)= J dx(φAφφ),
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where Aφ = — d2/dx2 + U"(φ{x)) is a self-adjoint operator in L2(U), bounded below,
with essential spectrum σe(Aφ) = [b, oo], fc = min(lΓ(α+), l/"(α_)) > 0([9], Theorem
16, pg. 1448 and Theorem 4, pg. 1438). In particular, Oφσβ(Aφ). If τc :^ -» ψ(. + c) is the
translation operator in L2(U) then τ~ιAtcφτc = Aφ9 so σ(^ τ φ ) = σ(Aφ) for all c.

3) φ" =U'(φ) so φ'" = U"(φ)φf, i.e. Aφφ' = 0. By hypothesis E0<oo, hence
φ'eL2([R). Since φf>0,0 is the smallest eigenvalue of ,4^ and it is simple, by
standard methods.

4) Let β > 0 denote the first positive eigenvalue of v4φ, or b, whichever is smaller.

Then, for ψeH^U), J ^x^φ' = 0 implies

(ψ,V"(φ)ψ)= J
— 00 — 00

The same estimate holds (with the same β) when φ is replaced by Φ(. + c).
00

5) Suppose q ^ V"{φ(xj) for all x and J dxψφ'(q - U"(φ)) = 0; then

π /L 2 ?
where

f dxφ'\q - U"{
— oo

00

To see this, set φ = ocφf + 0, α = constant, j dxφ'Θ = 0. Then

and

0 = α jdxφf2(q - U"{φ)) + \dxθφ\q

so

00

6) f̂ j ίίx(w(x) — φ(x + c))2 -> oo as c -> ± oo, so there exists c with dq(u)2 =
— oo

00

j dx[(w'(x)-0'(x + c))2 H-g(w(x)-φ(xH-c))2]. The minimum may be achieved
- oo

at several values of c, but any one will serve, and we shall assume c = 0 for simplicity.

The derivative with respect to c must vanish at c = 0 and

0 = J dxl(u' - φ')φ" + q(u - φ)φ'-\ = ] dx(u - φ)[_qφ'
~oo - oo

= ϊ dx(u - φ)φ'(q - U"(
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so with ψ = u — φ in step 5),

((« - φ)9 V"{φ)(u - φ)) = (φ9 V"{φ)φ) ^ I j dxφ2.

The same estimate holds with φ replaced by any translate φ(. + c).
7) Let φeH1 (R). By an inequality of Sobolev type,

Suppose φ as in step 5). Choose ε > 0 so that w"(α + s) > w;/(α) - (β/2)(l + X g)
2 for

ε < 7 1 / 4

α_ ^ α ̂  a+ and - ε ^ 5 ̂  ε. If ( j dx(ιA/2 + qφ2))1'2 g -~=r- = r, it follows that

ύ ε and

Φ)- V(φ) = J dx{W2 + U{φ + ψ)- U(φ) - U'{φ)φ}

P \ dxφ2.
- 4(1 + Kq)

2 Jx

Also U(φ + φ)~ U(φ) - U'(φ)φ ̂  -
where

l = infί/"(#c)),
X

β

So

H ] dx(φ'2+qφ2)-(Bι+q)\\ψ\\2

δ °° ί

έ - J dx(ψ'2+qψ2) + )-±δ(B1+q) +
Z -co (.

for any 0 ̂  δ ̂  1. Choose ^ such as to make
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so as to get

V(φ + φ)- V(φ) ^ K ] dx(ψ'2 + qψ2)x(ψ'2 + qψ2)
— oo

β/4
κ _

By (6), (7) and V{φ(. + c) = V(φ) we obtain finally

dq(u)^r=>V(u)^V(φ) + Kdq(u)2.

In particular, E(u) ̂  Eo + Kdq(u)2.

Proof of Theorem 1. Suppose φ ( . , 0 ) ) < r, E = j dx(^u2) + F(κ) < K(φ) + Kr 2 at
- 00

t = 0, and wίf — wxx + U'(u) = 0 for t > 0 (the equation is reversible, ί -> — ί, so we
need only consider ί > 0. There exists a unique mild solution with {ux(.,t), ut{.,t)}e
L2 x L2 continuous in ί and with constant energy E which exists on some maximal
interval 0 ̂  t < t^. If ί̂  < + oo, {ux(.9ή, ut(.,ή} cannot converge in L 2 x L 2 as
ί - ^ ί ^ - s o || U'(μ(.,t))\\h2 must be unbounded as ί-^ί^. But on 0 ^ ί < ί O T , )
V(φ) + Xr2 > E ;> F(φ) + X % ) 2 so φ ( . , ί)) < r. Thus for each t there is a c = c(ί) so
that

00

I dxl(ux -φ'(x + c))2 + q{u - φ(x + c))2] < r2.
— oo

So

I[/'(φc, 0)1 ̂  I t/'(ψ(x + c))| + const \u{x, t) - φ(x + c)|

for all xeU, so that [| Cr/(w(.9 ί))|( ̂ 2 is uniformly bounded as t -• ί̂ . Hence ί^ = + oo
and the solutions exist for all t ̂  0 — and similarly for all t ̂  0.

Remark. If the initial values have {uxx(.,0), uxt(.,0)}eL2 x L2 as well, then
ί->{wχ(.,ί), wt(.,ί)}GL2 x L 2 is continuously differentiable for all t and we have a
strict solution (see, for example, [10], Th. VIII, 3.2).

2. Instability

The following theorem is featured along the lines of reference [16].

Theorem 2. Let X be a Banach space, UeX an open set containing 0, suppose
T :U ->X has T(Q) — 0, and for some p > 1 and continuous linear L with spectral radius
r(L)>l.

||T(x)-Lx||=0(||xH as x^O.

Then 0 is unstable as a fixed point of T.

In fact, we may estimate the direction in which points move away from 0 under

successive applications of T. Choose any positive integer m and any μ, 0 < μ < l/>/2,
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Fig. 1.

and define the cone

where r = r(L). lϊθ<q< (1/^/2 -μ)/(μ + r~m||Lm||) there exists aq >0 such that: given
any a in 0 < a ̂  aq, arbitrarily small ε0 > 0 and arbitrarily large No > 0, there exist
N>N0 and xeX such that | |χ|| ^ β 0 . l|ΓM(x)|| ^ a for 0 ^ n^ N and dist (TN(x),
Σ) i> qa. In particular, || TN(x)\\ ^ gα.

Remark. If Γ is a C 1 curve of fixed points of T with OeΓ, the tangent of Γ at 0 will be
in N(L — 1 ) G Σ ( M , 1/2) if rm ^ 2). Choosing a small, so Γ is close to its tangent, we
may conclude there exist arbitrarily small x such that, for some AT, || T"(x)|| ^ a when
0 ^ n S N but dist(TN(x), Γ n J5α) ̂  ^ α . (Here J5fl is the ball of radius a about 0.)
Thus the points {Tn(x\n ^0} not only move away from 0, but also away from Γ:
the curve Γ is unstable.

Proof. Since r = r(L) > 1, p > 1, we may choose yy in 0 < ̂  < rp — r, and then choose
Kso ||Ln|| ^ K(r + ff)n for all n ̂ 0 . There exist α o > 0 and b9 so ||χ|| g α0 implies XG (7
and || T(x) — Lx|| ̂  fr||x||p Given μ, m, ̂ f as above, choose δ > 0 and 0 < α̂  ̂  α0 so
small that

-av~ι < 1 and
^ - r - \

Choose λeσ(L) with |λ| = r, say A = reiΘ, and choose N ̂ No so rN ^ ao/εo and

|gi(N+m)β _ j; i < ^ 3 j n c e ^ j s j n ̂ g boundary of the spectrum, it is an approximate

eigenvalue and there exist ζeX + iX (the complexification of X) with ||ζ|| ̂  1 but

|| Lf - λf || arbitrarily small. Choose ζ = ξ + ̂ (ξ,^ in X) so ||ξ|| = 1 ̂  ||^|| and for

OSn^N + m \\RQ{Lnζ-λnζ)\\ = \\Lnξ-rn(cosnθξ-smnθη)\\Sδrn. Note ||Ln£||
S (y/2 + δ)rΛ and LN + mξ\\ ^ r N + m ( l - 3δ). We prove dist(LNξ, Γ) ̂  QrN, by con-

tradiction. lϊveΣ and ||LNξ - ι;|| < Cδr
N

9 then ||ϋ|| < ( Q + Jl + ό)rN and Qr N | |L m | |
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> || Lm || || Lnξ - v || ^ || LN + mξ - Lmv || > rN+m{ί - 3δ) - μrm+N{Cδ + ^/ϊ + δ) =
Car

N\\Π>\\, a contradiction.

Now let 0<a^aq, R = (^/2 + δ)/(ί-Δ), and ε = a/RrN. Note a^aϋ and
ε ^ ao/rN ^ ε0. Let x0 = εξ,χn + 1 = T(xn) ϊorn^O; then

Xn = L"x0 + "X L«-1 ~k(T(xk) - Lxk).

Suppose n ^ N and [| xk |[ ^ εi^r^ for 0 ^ fc ^ n - 1 this is certainly true for n = L i t
follows that

\\Xn-Πx0\\tk
hK(pRrn)p

r r η

so || x J ^ ( J l Λ- δ + AR)εrn = £i^rπ. By induction, || xn || ^ εi^r" ^ α for all n ^ JV, and

||xN - L % || ^AεRrN. Finally dist ( L % , Γ ) = e dist (LNξ,Σ)^cy, so dist
( Γ ) ( C / ) N

3. Applications

Solitary-wave solutions of (0-1) are of type

for suitable u. In order to apply Theorems 1 and 2 to the stability of (3-1), we first
transform to a fixed-point problem by a Lorentz-transformation (which leaves (0-1)
invariant)

n-u2

(3-1) describes then (for \u\ < 1) static (i.e., τ-independent) solutions of (0-1). In one
space-dimension, s = 1, there are two types of nontrivial solutions of the form (3-1)
(see Fig. 2):

a) solutions joining two distinct absolute minima α_ and a+ of U: lim φ(x)
χ-> — oo

= a_ <a+ = lim φ(x\ with U(a_)=U{a+); or solutions joining two distinct
x-* + oo

relative minima b_ <b + f with U(b_)= U{b+);
b) solutions around a relative minimum a of U: lim φ(x) = α = lim </>(x).

JC-> — oo x - > + oo

In case a), Theorem 1 applies directly yielding form-stability of the solitary-wave

([4], [6]).
The following condition follows from b):
c) sgn φ'(x) is not constant in xeU.
In view of the wealth of solutions for s> 1([13], [17]), we now state the

appropriate analogous conditions for general 5:

cl) lim φ(x) = α and OL1 = U"(oc) > 0 and Φ( ) is not constant;
l*l->oo

c2)
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b- b+

In Theorem 2 Ft(t ^ 0) is a (nonlinear) semigroup and T is Ft at any fixed t > 0.
L= DFt(0) = exp(L4), where A is the linearized operator

A~ o r
X 0

on , where

and

We have

-A

= -A

The first operator is skew adjoint on D((- A +<x1))@D(( - ^ + α 1 ) 1 / 2 ) ( [ 1 5 ] ,
Theorem 1, pg. 26). The multiplication operator (U"(φ) - α :) is by c2) a relatively
compact perturbation ( — Δ+OLX) on L2([R

S), hence it is a compact operator on

H' (Us\ and is a compact operator on H\ (Us) ® L2(US). Therefore
\

|Reσ(>4)| ^constant, and L = exp(ίτ4) exists as a semigroup of bounded linear
operators. We have now

Proposition 2. Under assumption (c) (for s = 1) or cl) and c2) (/or 5 > 1), K has an

eigenvalue eo<0 and A has an eigenvalue ^/jej > 0, so r(L) > 1.

Proo/. It follows from cl) and c2) that (U"(φ)-oί)) is a relatively compact
perturbation of (— A -f αx), as remarked above. Hence σ(K)\[αx, oo] consists of
point eigenvalues of finite multiplicities which can accumulate at most at oc1. We
have

KdXiφ = 0, i = l,...,s.

Hence (by (c3)) zero is a discrete eigenvalue, and the bottom of σ(K) is an eigenvalue
eQ. By ([12], theorems XIII-43 and XIΠ-45), K is ergodic and by ([12], theorem
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XΠI-43) e is a simple eigenvalue and the corresponding eigenfunction ψeD(K) =

D(Δ) is strictly positive. But by c) (for s = ί)dxφ φ λψ. For s > 1, dx.φ φ λΨ for all

i = l , . . . , s because ψ is simple and δx.φφλdxφ for some iφj (i.e., the zero

eigenvalueis degenerate). To see this, suppose £ λjdxB = 0 for some constant λeUs.
1

This implies

^φ(x + λt) = 0, φ(x) = φ(x + λt)
at

for all x, ί: if A ̂  0, let ί -> oo and conclude from cl) that φ(x) = α for all x. Hence, in
all cases, e0 < 0. Let β = —\eo\. The vector

v = ] G L 2 ( [ R S ) ® L 2 ( R S )

is an eigenvector of A corresponding to eigenvalue -syβ > 0 . But ψeD(Δ\ hence
φeH'jW) and VGH'JW)®^^).

The above proposition proves instability for case b) (and 5 = 1) under
assumption (3). There are many examples in higher dimensions ([13], [17]). For an
explicit example in dimension 5 = 3, consider the following potential ([13]):

gί(Φ- cf - 3(φ - c)4], c s Φ S i + c,

U{φ)=< g{φ-c)\ ϊovφSc,

where / e C 2 , smoothly matched at φ = 1 -f c, with \f"{φ)\ ^const(1 -f φ2), g>0
and c is a given constant. UeC2, and φ = c is a relative minimum. The function

with a2 = 2/3gf, is a radial solution of (0-1). It satisfies cl) and c2). Proposition 2,
coupled with Theorem 2, implies therefore that the above solution is unstable, as
conjectured in [13]. Similarly, the (infinite series of) radial solitary-wave solutions of
(0-1) constructed by Strauss in [17] are unstable, by the same reasoning.

The above results lead us to revisit the Derrick-Strauss theorem ([7], [8]). The
latter states (in the form originally proposed in [7]) that solitary-wave solutions of
scalar field theories do not exist for s > 1, provided they have finite energy relative to
the absolute minimum (or minima) of U. However, solutions joining two relative
minima of U (as b_ and b+ in Fig. 1) are stable and define a Hubert sector, although
they have infinite energy relative to the absolute minima. Hence, the finite energy
property does not seem to be relevant. If we accept this, there exist solutions around
relative minima of U (as defined in b)) both for 5 = 1 and 5 > 1, as the previous
examples show. The latter are, however, unstable. Stability seems therefore to be the
main issue.
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