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Abstract. We investigate the possibility to generalize the KMS-boundary
condition for a thermodynamical system by following essentially the same
procedure that for a finite system would amount to choosing a certain class of
more general density functions on phase space (or density matrices) than the
ones corresponding to the canonical or grand-canonical ensemble.

1. Introduction

Gibbs states of thermodynamical systems in classical physics are described by
means of conditional probabilities that are related to the energy of interaction of
the configurations of finite systems with the outside world by means of an
exponential function.

In [1] states of classical systems are considered where the above mentioned
exponential function is replaced by a set of more general (albeit invertible)
functions. These states are called regular conditional equilibrium (CE) states. A
subclass of these states can, under suitable conditions, be shown to be Gibbs states
[1]. The CE states are to be viewed as states obtained as thermodynamical limits
of microcanonical states for finite systems. On the other hand Gibbs states are
thermodynamical limits of canonical states for finite systems with specified
boundary conditions (or convex combinations thereof) (cf. [2]).

Once one can show as in [1] that, under suitable conditions, regular CE states
are Gibbs states, then one has made statements about the "equivalence of
ensembles." Loosely speaking one can say that the exponential function, represent-
ing the Gibbs character of the state, is the thermodynamical significant object.

For quantum systems, under suitable conditions on the way one performs the
thermodynamic limit on the finite volume correlation functions and the dynamics,
one obtains the well-known KMS-boundary condition [3]. The KMS-boundary
condition as introduced in [3] reads:

J ω(Aat(B))f(t-iβ)dt= J φt{B)A)f(t)dt (1)
— OG - 00
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with

t^ω(Λ<xtB) a continuous function on IR1.

Here {<xt}teJSLi is a one-parameter group of automorphisms of a C*-algebra II, / a
function with its Fourier transform feD and ω a state on U.

By Fourier transforming (1) we obtain

FAB(fe-βε) = FBA(f)> (2)

where FAB is the Fourier transform of the distribution determined by the function
t-*ω(A(xt(B)), f(x) = f{ — x). From (2) one sees that the Gibbs-like nature of the
thermodynamical KMS state ω is reflected in the appearance of e " ^ as a
multiplier in the sense of distribution theory.

Regular CE states in [1] are obtained by replacing the exponential weight-
function appearing in the conditional probabilities for configurations of finite
systems by another invertible function. In this paper we intend to study to what
extent something similar for thermodynamical systems as a whole, can be done.
More precisely we are going to study the following equation:

FAB(fΦ) = FBA(f), (3)

or equivalently

GO GO

J ω(AαtB)fφ(t)dt= J ω(αt(B)A)f(ήdt, (4)
— oo — oo

where t->ω(ΛαtB) is continuous for all A and B, fφ = f φ and φ is a C°°-function
from IR into (C such that φ(x) — 1 has no zeros except at x = 0. States satisfying
condition (4) with a given φ are called φ-KMS states. If φ(x) = eβx (3) and (4) are
nothing but the KMS-boundary condition.

Equation (3) and (4) are also obtained as an intermediate step in deriving the

KMS-boundary condition for a system with a strongly continuous dynamics i.e.

||αt(>4) — ^4|| -»0 from stability properties of the system, sufficiently fast decrease
ί->0/

properties of the time-correlation functions up to fourth order and the assumption
that the spectrum of the generator of time translations fills IR1. By making use of
the cluster-properties of the two-point function it is then shown that φ is an
exponential function [4, 5] (cf. also [6, 7]). The cluster-properties used in the proof
restrict its applicability to a one-phase region since the obtained KMS state is
extremal.

We will find, without further assumptions, that for quantum lattice systems, φ
satisfying (3) and (4) is necessarily an exponential function on the spectrum of the
generator of time-translations (the Liouville-operator). Generalizing to continuous
quantum systems we find that for such systems with a sufficiently regular
dynamics and a compactness assumption on the set of states ω that obey (3) and
(4) φ is also an exponential function on the spectrum of the generator of time-
translations (Theorem 1, Sect. 3). Hence under these conditions (3) and (4) admit
nothing but KMS states as solutions.
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We will furthermore show that in the classical limit (3) coincides with the
classical KMS condition for some (possibly negative) temperature.

Since the generalized KMS condition as proposed by J. V. Pule in [8] is a
particular case of the condition formulated in (3) and (4) (see Sect. 4) all our
conclusions apply also to the condition formulated in [8].

2. Invariance, Separating Character and the Modular Group of a 0-KMS State

We start with the most simple case: a finite Quantum spin system. Some of the
features discovered here will hold true in general. Let U = (Cπ x n the algebra of n x n
complex matrices. The one parameter group of automorphisms αt is given by ott(A)
= UtAU_t where Ut is unitary. The infinitesimal generator of Ut is denoted by H.

n

We write H= Σ £i'%i where Eι are orthogonal rank one projectors and εt the
1=1

eigenvalues of H. A state ω is defined by a positive matrix ρ with trace ρ — l.ω
satisfies the φ-KMS equation if

j Ύΐ(ρAat(B))fΦ(t)dt= j Ίr(ρat(B)A) f(t)dt. (5)
— 00 - 00

n

Lemma 1. ρ determines a φ-KMS state if and only if ρ= Σ Qi^i and Qi/Qj

00 00

Proof. The integrals j f(t) oct(B) dt and J f φ ( ή at(B) dt are both well defined. One
c o m p u t e s : ~ °° ~ °°

J f(t)<φ)dt= Σ Σ hi-h^BE,
- o o fc=l Z = 1

and
oo n n

- o c fc= 1 J = 1

If we choose / = 1 on Σ: = {εz — εk \ I, k = 1,2,..., n} we see that (5) implies

Tr (ρ^Γ(jB)) = Tr (ρBA), (6)

where Γ : U-*U is defined by:

fc=l 1 = 1

(6) is equivalent with

Γ(X)'Q = ρX for all XeH

and from this one easily finds ρ = Σ QιEι(Γ(E^) — Ez) and ρjρ- = 0(εj — εf). It is easy
I— 1

to see that this is also sufficient. •
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Remark ί. It follows from this lemma that the density matrix ρ is a function of the
Hamiltonian and ω is therefore invariant. Furthermore ρ is invertible and ω is
therefore separating. Note that also φ(x)eIRand φ(x)-φ( — x)=l for xeΣ = {εi — εj;
/Je(l ...n)}. These properties turn out to be true in general. We now consider the
general case and prove that every φ-KMS state is invariant and separating.

Lemma 2. // ω is a φ-KMS state then ω is invariant for at.

Proof. For BeU we write

We consider GB as a distribution on Z(Z = D). If we take A = 1 in (4) we get

(GBJΦ) = (GBJ).

Hence

(GBJΦ) = (GBJ).
And therefore:

(GB,f(φ-ί)) = 0 for all feD.

Since φ(x) — 1 has no zeros except at the origin, it follows that GB has its support in
0. It follows from a standard argument [9a] that ω is invariant for α r •

To proceed further it is convenient to write Eq. (4) in the GNS representation.
Let (Jf, π, Ω) the GNS triple associated to ω. Since ω is invariant αf can be
implemented by a strongly continuous group of unitaries Ut such that UtΩ = Ω.
The generator of Uv i.e. the Liouvίlle operator, will be denoted by L. Σ is the
spectrum of L. In the representation φ-KMS reads:

j (Ω,π(A)Utπ(B)Ω)fφ(t)dt= f (Ω,π(B)U.tπ(A)Ω)f(t)dt.
— oo — 00

This equation can be extended to the von Neumann algebra π(U)// (cf. [9 b])

J (Ω,AUtBΩ)fφ(t)dt= ] (Ω,BU_tAΩ)f(t)dt. (7)
— GO — 00

We can rewrite this equation by defining bounded operators Uφ and U on J4? by

J (x,Uty)fφ(t)dt = {x,Uφy),

One computes easily:

Uφ = (fφY{L) and U = f{L).

Now (7) can be rewritten as

(v4*Ω, (fφY(L)BΩ) = (B*Ω, f(L)AΩ) (8)

for dλ\A,Beπ{U)".
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Lemma 3. // ω is φ-KMS then Ω is separating.

Proof. Suppose BΩ = 0, then for all feD

(B*Ω,f(L)AΩ) = 0.

We now take fneD such that /n->l (equal to 1 on large intervals) then /n(L)->l
strongly and therefore

{B*Ω,AΩ) = 0 for all A.

Hence JB*£2 = O and therefore, by standard arguments [9b], B = 0. •

Lemma 4. // ω is φ-KMS then:
i) φ(x)eΊR, xeΣ

ii)

Proof. (8) implies

{A*Ω,(fφY(L)A*Ω)elR.

for all A when / is real. Hence (fφ) (/1)EIR for λeΣ and therefore i) holds. To prove
ii) we apply (8) twice to get

{B*Ω, f(L)AΩ) = {B*Ω, {fφφ) {L)AΩ).

So

f(l-φφ)(L) = 0 for all feD,

and therefore φ(x)-φ( — x) = l be the spectral mapping theorem. •
Since Ω is separating one can define the modular operator A corresponding to

it. A turns out to be a function of L.

Lemma 5. A 2 = φ(L).

Proof. The reasoning is the same as the one followed in [4]. •

3. The 0-KMS Condition on Quasi-Local Algebras

In this section we consider thermodynamical systems which have the following
properties :

a) The C*-algebra U is quasi-local (cf. [10]).
b) The dynamics (αf)ίe]R is strongly continuous on a σ(U,N) dense C*-

subalgebra UOCH. JV is the set of locally normal states (cf. [11]).
c) The set of φ-KMS states, Kφ, is compact in the weak * topology of U*.
d) There exists an amenable abelian group G, like space translations, which

acts on U by the automorphisms (τx)xsG commuting with av This group (τx)xeG acts
(weakly) asymptotically abelian.

(In particular quantum lattice systems have these properties.)

Lemma 6. Let coeKφ and suppose ω is G-invariant. Then ω is KMS.
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Proof. Let /G(U) denote the set of -^-invariant states on U. We will argue that ω
has a decomposition in extremal invariant φ-KMS states, i.e.

ω = J ωγdμ(y) (9)
Ext(JG(H)πXψ)

with ωy extremal invariant.
First note that KφnIG(U) is a simplex. Due to assumption c) we find that

KφnIG(Vί) is metrizable and Ext{KφnIG(U)) is a Gδ. (These results can be found in
[12].) Therefore the decomposition (9) can be made. Since {τx)xeG is weakly
asymptotically abelian (i.e. ω([^4,τx(β)])->0, x->oo) we can apply Theorem 2.3 of
[13] and Lemma 4.7' of [12] to conclude that IG(U) is a face of KφnIG(U) and
therefore the decomposition of ω is into extremal invariant states. Hence ωy is
weakly clustering for (τ x) x e G, i.e.

ηx(ωy(Aτx(B))-ωy(A)ωy(B)) = O,

where ηx is a mean over G. Let pfy, π , Ωy) be the GNS triple for ωy. We know
from Lemma 4 that

where Ly is the Liouville operator of cct in this representation. We have the
following groups of automorphisms of the von Neumann algebra πy(U)".

1) Time evolution ocy

t(A)=Uy

tAUlt, Uy

t=QxpίtLγ.
2) The modular group A-^Δγ"AΔ~ίs.
3) The translation group τ X(A) = TXAT_ x.
We define the 2-parameter group

WUS(A)= Uμ^AΔ ^UL,, Aeπy{U)".

There exists a C*-algebra C0Cπy(U)" such that
i) C o is σ(πy(U)f\ πy(U)l) dense in πy(U)",

ii) WttS is strongly continuous on Co.
00

To see this define U0 = {Af | / e D , i e l ί 0 } and ^ = j at{A)f{t)dt
~ ~ ~~ °°

Take C o the C*-closure of πy(U0). Every Aeπy(U0) is anylytic for both a] and
the modular group, therefore Wt s is strongly continuous on πy(U0), hence on Co,
proving ii). Since Uo is σ(U, N) dense in lί and π^U)^ C N (cf. [12]), it follows that i)
is true. The group Wt s commutes with τx. We now apply Theorem 3.4 of [14] to
conclude that the spectrum of WttS is a subgroup of IR2.

On the other hand the spectrum of Wt>s is equal to

where Σy is the spectrum of Ly. Hence there exists /?yeIR such that

λeΣy.

However the set Σy is independent of y. This was proved for KMS states in [10].
Theorem A, the same proof applies in our case and therefore:

φ(λ) = eβλ on Σω.
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So

and therefore ω is a KMS state for at. •

Theorem 1. Under the assumptions a)-d) every 0)eKφ is KMS.

Proof. Let ωeKφ and let η be a mean over G. It follows from Lemma 3 in [15]
that there exists a linear map Mη:U*->U* which projects on the G-invariant
states. Therefore ώ: = Mηω is G invariant. Mηω is in the weak * closure of the
convex hull of the set {ω°τJxeG} and since Kφ is compact ώ is also a φ-KMS
state. It follows from the proceding lemma that

eβλ on Σ&9

but since Σ& = Σω = spectrum of αί5 we find

2 _

and therefore ω is KMS for α r Π

Remark. β = 0 is excluded for a quasi-local algebra that contains infinite von
Neumann algebras.

4. Pule's 0-KMS Condition and the Classical Limit

In this paragraph H is a C*-algebra of observables, at a strongly continuous group
of * automorphisms. We shall show that every g-KMS state in the sense of [8] is
also φ-KMS. We start from the following equation of [8] :

ω{τtA(B)-B)=-i\FfA,τsAB)ds. (10)
0

Here τsA(B) = Qxp(isΛ)BQxp( — is A) for A,BeU. fAJB(x) = ω(a_ix{A)B) for A an
analytic element for α r Furthermore F is a distribution in S' with compact support
and F an entire analytic function with no zeros on the imaginary axis except at
zero. We take the derivative, with respect to ί, at both sides of (10) and put t — 0:

ω(BA) = (T,fΛB)9 (11)

where T = F + δ. For B an entire analytic element for at with ω(AoczB)eZ there
exists a function ζAB^D such that:

ω(A«z(B))= f e-ίztξAB(t)dt.
— oo

Now (11) can be rewritten into:

ΛB)= J f(ix)ξAB(x)dx, (12)
— OO

where j£?/ denotes the two-sided Laplace transform of /. Clearly ξAB satisfies
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Combining this with (12) we get for feD:

00 GO 00

j ω(as(B)A)f(s)ds= J j f(ix)ξAas(B)(x)f{s)dxds
— 00 — 00 — 00

= f ? e-isxf(s)f(ix)ξAB(x)dxds
— 00 — GO

= J f(ix)ξAB(x)f(x)dx.
— 00

Define φ(x) = T(ix) then the latter equation is equivalent to

f ω(as(B)A)f(s)ds= f ξAB(x) f(x) φ(x) dx
— 00 — 00

= J ω(Aas(B))fφ(s)ds,
— oo

which is the φ-KMS condition. This equation can be extended to all A,BeU
because in [8] at is strongly continuous, and the elements B, as we have chosen
them, form a dense set in U.

The Classical Limit

The generalized KMS condition has no a priori meaning for classical systems.
However if we take the classical limit, i.e. h-+0 in such a way that

and

δ{n\A)

where {A,B} denotes the Poisson bracket and {A,H}{n+1) = {{A,H}{n\H} then it
turns out that the generalized KMS equation yields the classical KMS condition.
An easy way to see this is to start from (11)

= Tω{a_ix{A)B)

or

ω{BA) - ω(AB) = Tω(oc _ ίx(A) B-AB). (13)

We divide both sides by ih and let h->0. Take A analytic for at then:

n=0

The right hand side of (13) tends to
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whereas the left hand side tends to

-(T9x)ω({A9H}B).

So this gives us

ω{{A, B}) = (T, (x)) ω(U, # } 5),

which is the classical KMS condition with inverse temperature [16]

β = (T,x).

With φ(x) = T(zx) one easily computes

Remark 2. For a finite classical system one would now expect ρ(x) = e~βH{x) as the
only solutions of the φ-KMS equation. This is indeed the case. For a finite classical
system φ-KMS should be (in view of Lemma 1)

It is easy to see that this implies φ(x) — eβx on the range of H.
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