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Abstract. An estimate on the correlation of functional of Gibbs fields satisfying
Dobrushin's uniqueness condition is given. As a consequence a result of Gross
saying that the truncated pair correlation function decays in the same weighted
summability sense as the potential can be extended to the whole Dobrushin
uniqueness region. Applications to the central limit theorem and the second
derivative of the pressure are also given.

0. Introduction

The well-known uniqueness theorem of Dobrushin [3] states that there is only
one Gibbs state if the interaction is weak which means that the temperature
is high or the activity small. This theorem has the advantage of being very general.
No condition like finite range, pair interactions, fmiteness of the single spin space
or translation invariance is needed. Despite its generality the condition is
surprisingly sharp as shown by Simon [12]. Moreover one gets not only uniqueness
from it, but also properties of the Gibbs state: Dobrushin [4] showed that it is
uniformly mixing, and Gross [6], [7] proved results on the decay of correlation
and on the differentiability of the pressure. However one of his results, Theorem 2
in [6], was not proved in the whole Dobrushin uniqueness region, and his expression
for the second derivative of the pressure in [7] is different from the ususal co variance
series. In our paper here we close these two gaps.

In Sect. 2 we recall results from Dobrushin [4] in the form we will need them
later. In Sect. 3 we state then our main result on the decay of correlation
(Theorem 3.2). As corollaries we get the results of Gross [6] in the whole Dobrushin
uniqueness region. In Sect. 4 we apply our results to check known conditions for
the central limit theorem for functionals of Gibbs fields, and in Sect. 5 we show
that the second derivative of the pressure is equal to the usual covariance series.
The main theorems are proved in Sect. 6 by an extension of Dobrushin's uniqueness
proof in [4]. We do not construct a dynamics which has the Gibbs state as an
invariant measure like in Vasershtein [13] and Gross [6]. Finally in Sect. 7 we
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formulate our results for a general Vasershtein distance which covers also
interesting non-compact examples.

1. Notations and Definitions

Let L be a countable set of sites, X a compact metric space, the individual spin
space, and Ω = XL the configuration space containing all functions s:L-^X. For
M c L w e denote by <FM the σ-field generated by the maps s^sa,aeM. Instead
of $FL we write simply J*\ The set of all continuous real-valued functions on Ω
(with respect to the product topology) is denoted by C(Ω). For feC(Ω) and aeL
put

pβ(/) = sup{|/(s)-/(ί) |,s = t except at a}. (1.1)

For such / the following holds for all s, teΩ:

Σ (1-2)

Let ψ" be the class of finite non-empty subsets V of L and let (pv)VeΨ be a
specification on Ω. By this we mean that for each V pv(A\s) (Ae^v,seXL^v) is a
probability kernel, i.e. a probability in the first and a measurable function in the
second argument. For many purposes it is convenient to introduce the associated
kernels πv(A\s) (Ae^, seΩ) which are uniquely defined by the following properties
(compare Preston [10], Chapter 1):

nv{A\') is J^^-measurable,
πv{- \s) is a probability on (Ω, &) which coincides with

the Diract measure δs on ̂ hχv and with pv('\sLχv) on 3Fv. (1.3)

We will always assume that the specification is continuous in the sense that πvfe C{Ω)
for all feC(Ω\ where

πvf(s) = \πv{dt\s)f{t\ (1.4)

A Gibbs state to a specification (pv)Veiί is a probability μ on ( & , # ! whose
conditional distribution with respect to tFL\V are given by π F , i.e.

L\κ (1.5)

or equivalently

(1.6)

The set of all Gibbs states is denoted by 0(p). ̂ (p) is convex and compact in
the weak topology if {pv)Veiί is continuous. In order to prove the existence of Gibbs
states we must assume that the specification is consistent which means that

πv(πwf) = πvf (feC{Ω), Wa VeV). (1.7)

By compactness arguments the weak limit of (πVn('\s))neN exists for seΩ and Vn\L
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(at least if we choose a suitable subsequence), and using (1.7) it is easy to see that

the limit is in ^(p).
By a potential we mean a family of continuous J^-measurable functions

φv: Ω -* M, Veir

9 satisfying

X|F|sup{ |φ κ (5) | ,seΩ}<oo (aeL). (1.8)

Let v be a finite measure on X, the a priori single-spin measure. The case of main

interest is when all pv(dt\s) are absolutely continuous with respect to the product

measure γ[ v(dta) and the density is given by a potential:
aeV

)U (1.9)
WnVψφ

Here Zv(s) is a normalizing constant and is is the configuration which is equal to
t in V and equal to s in L\V. Such specifications are always continuous and
consistent. However the potentials will be used only in Sect. 5.

If X is not compact, then all the results which follow can be proved in the
same way: we only have to take instead of C(Ω) an appropriate class of functions.
However the hypotheses we will make are never satisfied in the interesting examples
with a non-compact X. In order to deal with such examples it is useful to introduce
a general Vasershtein distance as it was done in Dobrushin [4]. In Sect. 7 we will
briefly state our results in this more general situation.

2. Comparison of Gibbs States and Uniqueness

Let {pVi)Veir, i = 1,2, be two continuous specifications and put

yβb = isup{||p?( |s)-p?( |ί)||v.,,s = ί except at α,i==l,2}(fl^feeL),

yaa = 0(aeL\ (2.1)

βa = ^P{\\Pai('\s)-pa

2(-\s)\\Yar,seXL^} (αeL).

Let Γ be the infinite matrix (yαb)OibeL and Γv its restriction to αeV,beV. We put

n = 0

(2.2)

Xαb= Σ ( α (α,beL).
H = 0

XαbiXάb) *s nothing else than the Green's function (of the set V) for the random

walk on L with transition probabilities yαb provided Σyαb S l
α

The next theorem is essentially contained in Theorem 3 of Dobrushin [4]:

Theorem 2.1. Suppose (pl)Vei/,i = 1,2, are two continuous specifications such that
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X yab ^ α < 1 and μte^{p^ ΐ = 1,2. T/iβn /or α/ί /eC(Ω) we

a,b

Remark 2.2 It will become clear in the proof that £ yab <̂  α < 1 can be replaced
a

by the slightly weaker condition YJχab< ooφeL). However we will state all our
a

results with the former condition which is easier to check.
The proof will be given in Sect. 6. We will state now some consequences of

Theorem 2.1. Whenever we have only one specification {pv)VeΨ we will take an
analogous definition of yah as in (2.1) just omitting all indices i.

Corollary 2.3 (Dobrushin). Let (pv) VeΨ be a continuous specification with £ yab ^

α < l . Then \%(p)\ ^ 1.

Proof. Let μί and μ2 be in ^(p). Then βa = 0 for all aeL, whence μx{f) = μ2if) f° r

al l/eC(Ω), i .e .μ 1 =μ 2 . •

Corollary 2.4. Let (pv)VsΨ be a continuous and consistent specification with £ yab ^
α

α < 1. Then for any sequence V^ L and any seΩ πVn{'\s) converges weakly to the

unique Gibbs state μ, and the difference μ(f) — πvf(s) can be estimated by

formula (2.4) for f in C(Ω) with £ pb(f) < oo.
b

Proof. Fix Vei^ and seΩ. By the consistency condition (1.7) pv( \s) is a Gibbs
state on Ωv = Xv to the specification (pw{ \ s))w c κ . Therefore by Theorem 2.1 for

- πvf(s)\ S \\f(ut){pv{du\t) - pv{du\s))\ + \\f{ut) -f(us))pv(du\s)\

£ Σ (Σyca)χv

abpb(f)+Σpc(f) (2.3)
aeV,bsV \cφV / c^F

Therefore also

IM/) - nvf(s)\ ^ Σ f Σ 7c a V^(/) + Σ Pcifl (2-4)

Now for all aeL ^ yCfl tends to zero for V]L, and

Σ (
a,beV \cφV ) a,beV

Therefore by dominated convergence πvf{s) -• μ(f) for / in C{Ω) with ^ pb(/) < oo.
b

Such / generate weak convergence. •

From the estimate (2.3) we can easily deduce an estimate of the uniform mixing
rate of the Gibbs state μ:
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Proposition 2.5. (Dobrushin). Let μ be the unique Gibbs state to a consistent and

continuous specification (pv)Veiί with Σyab^aL<l. Then for all Wa Vet^ we have

V9V) = sup{\μ(A\B)-μ(A)\9Ae&W9Be&L\V9μ{B)£O}£ £ £ ycaχa

beW\c4V,aeV

which tends to zero for W fixed and V\L.

Proof It is sufficient to prove the inequality for open sets Ae^w. Approximating
/ = iA by a suitable sequence of continuous functions we find from (2.3)

\pv{A\s)-pr{A\t)\Z Σ ΣΎca ώ (2-5)
aeV,beW \cφV J

So for Be^Lψ we get

\μ(AnB) - μ(A)μ{B)| = | J lB(s)pv(A\s)μ(ds) - f J ίB(s)pv(A|t)μ(dt)μ(ds)|

Σ Σycahl- (2-6)
aeV,beW \cφV )

Because χζb ̂  χab the inequality is proved. The convergence to zero follows from

dominated convergence: For fixed aeL £ yca goes to zero for F | L , and for fixed
cφV

beW

Σ ΣycaXab^xΣxab^Φ-xΓ1. D
aeV cφV a

3. Decay of Correlation

It is well known that the uniform mixing coefficients φ(W, V) which were estimated
in Proposition 2.5 tell us something about the correlation of functions localized
in disjoint domains. Namely if / and g are in C(Ω) and / is ̂ ^-measurable and
g ^^-measurable, then we have

In order to put this into a more intuitive appealing form it is convenient to consider
a semimetric d on L, i.e. d( , ) is a nonnegative symmetric function on Lx L for
which the triangle inequality holds.

Proposition 3.1. Let μ be the unique Gibbs state to a consistent and continuous

specification (pv)Veiί satisfying ]Γ yabe
d(a'b) ^ α < 1 for some semimetric d. Then for

a

f and g in C(Ω), f # w-measurable and g 3Pv-measurable with d(W, V) = inf [d(a, b\
aeW,beV}>0

ICovifgll^e-^^Wllail-ay'UUlg^.

Proof Let V be the set {aeL,d(W,a) < d(W, V)}. Then using (3.1) and Proposition
2.5 with V instead of V we have

(
beW \c4V,aeV
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Now for beW,aeV,cφV:ediW>V} ^ ed^c) ^ e

d^a)edM. Therefore

beW

/ \

Y v ed{c>a)γ u e d ^ b ) III f II | | ί? | |
\cφΫ,aeV /

χ a b \ \ \

B u t Σ yab
ed{a'b) ^ α < 1 implies by the triangle inequality

(3.2)

The next theorem which is our main result improves Proposition 3.1 in two
ways: First it applies also to functions not necessarily localized in disjoint domains,
and second we will get a decay of correlation at the same speed as the coefficients
γab. Let us define

y * - s u p { ( 2 χ f l f l - l ) - 1 ^ 6 L } ^ l . (3.3)

Theorem 3.2. Let μ be the unique Gibbs state to a continuous and consistent

specification {pv)Veiί with Σ yab ^ α < 1. Then for any two functions f and g in C(Ω)

|CθV (/, g)μ\ S T* Σ ( Σ XcaXcXa(f)pM
a,b\c )

We will give the proof together with the proof of Theorem 2.1 in Sect. 6. Let us
give now two corollaries of it which extend results of Gross [6] (see also the
Remark 3.5i) below).

Corollary 3.3. Let μ be the unique Gibbs state to a continuous and consistent

specification (pv)Veiί satisfying Σ yab
ed(a'b) = α < 1 for s o m e semimetrίc d on L. Then

a

for any two functions f and g in C(Ω) and any points a,beL

Proof By the triangle inequality we find

a',b' \ c

•ea(a'al)pa(fV{bM)pAg). (3.4)

Furthermore by (3.2) Σ Xca'ed(c'aΊχcb^^ ^ Σ J ^ ^ ' 1 - Σ JU e*'*'1 ^ ( 1 - * ) ~ 2

c c c

So the corollary follows immediately from Theorem 3.2. •

Corollary 3.4. Assume L= Zv. Let μ be the unique Gibbs state to a continuous and

consistent specification (pv)Veiί satisfying Σ Ίabeά{aM ^ α < 1 and Σ Ίabed{a'h) ^ Ί < 1
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for some translation invariant semimetric d on Zv. Then for any functions f and g

in C(Ω) and any point beZv

Here θa:Ω^Ω is the shift operator defined by {θas)b = sa+b.

Proof Using Theorem 3.2 and formula (3.4) we get

But since d(a9b
f) = d(09b

f —a) and pb,{g°θa) = pb>-a(3), w e c a n first t a ^ e the sum
over a and then the corollary follows immediately using (3.2). •

Remarks 3.5. i) In the Corollaries 3.3 and 3.4 we have smaller constants than
Gross [6] in his Theorems 1 and 2, and—what is more important—Corollary 3.4
holds under a weaker condition: We request only α < 1 and y < 1 while Gross
needs α < 1 and y(l + α) < 1.

ii) In Corollary 3.4 the case d =Ό is also of great interest. In the applications
in Sect. 4 and 5 we will use only this case.

iii) If L = Zv and {pv)Veiί is of finite range, i.e. pa(A \ s) depends only on sa+b9 b e iV,

for some Nei^, then £ yab ^ α < 1 implies ]Γ yabεxp(ε\a — b\)^acr<l if β is small
a a

enough.
(iv) Assume L= Zv and the specification (pv)Veiί is translation invariant. Then

lab = ya-fr s o ^n particular α = y. Assume moreover that ^y α < 1 and Σya\a\β < oo
a a

for some β>0. We then consider the metric dεβ(a,b) = min(ε|α — b|,/Jlog(l +

\a — b\)). It is not hard to see that for ε small enough £y f lexp(dε/?(α,0)) < 1.
a

Therefore we have in Proposition 3.1 at least asymptotically a decay like

dist (W,V)~β =M{\a-b\,aeW9beV}-β

9 and from Corollary 3.4 it follows that

Σ|Cov(/,0o0β)μ | | f l |/><oo for / and g in C(Ω) with Σ pa{f)\a\fi < <x> and

4. The Central Limit Theorem

In this section we always assume that L = Zv and the specification (p κ ) F e ^ is

translation invariant. Then yαb = ya_b and α = y = ^ yfl. Moreover if there is only
α

on Gibbs state, all its finite dimensional distributions are also translation invariant.
Let us denote the cube [a = ( α l 5 . . . , αv)eZv, — n ^ flf g n, i = 1,..., v} by Vn. We

investigate here when the central limit theorem holds, i.e. for which functions /
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and probabilities μ

S*(/) = (2HΓ V ' 2 Σ if°θa-μ(f)) (4.1)
aeVn

converge weakly to a normal law. This is known to be true if/ is J^-measurable
for some VeΨ" and μ is a Gibbs state to a specification with weak interaction, see
Dobrushin-Tirozzi [5], Sect. 1.3. We give here precise conditions on the specifica-
tion without assuming finite range, and we allow also for general feC(Ω).

Theorem 4.1. Let μ be the unique Gibbs state to a translation invariant, continuous

and consistent specification (pv)Veψ with Σ la < 1 an^ ^et f ^e *n C(Ω). If
a

Σ y J f l i v + < 5 < 0 0 for a <5>0 and X p β ( / ) W v < o o , then S*(f) converges weakly to
a a

a Gaussian random variable with mean zero and variance Σ Cov (/, /° θa)μ.
a

Proof. If / is immeasurable for some Vef^, then Proposition 3.1 and Remark
3.5 iv) imply that the conditions of Bolthausen [2] for the central limit theorem
are satisfied. Equivalently we can also use Proposition 2.5 and adapt Nahapetian's
result [8] to the case of bounded variables. For a general feC{Ω) we fix seΩ and
approximate / by fm, where fm(t) = f{tVmsΈΛVn). Because / is continuous,
Cov(fm,fm°θa)μ converges to Cov(/,/°0α)μ for m-> oo and fixed ael \ and since
Pa(fm)ύpa(f\ we have by Theorem 3.2 that |Cov(/"\r°0 Ω ) | ^ Σ Xc-a-Xc-b

c,a',b

Pa'(f)Pb-aif)' Therefore by dominated convergence the normal law J^(0,

ΣCov(fmJm°θa)μ) converges weakly to the normal law ^(O,£Cov(/,/°0 α ) μ ).
a a

Furthermore by Corollary 3.4 lim Var(S*(/)-S*(/w))μ =
n

(f-f")°θχ uy*(l-ot)-2(yPa(f-nJ- But for aφVm,pJJ-n = pJJ) and

f o r α e K m , p β ( / - / " ) g 2 s u p { | / ( ί ) - / ( « ) | , t = iιin Vm}^2 £ pa(f). Since by as-

sumption mv ^ Pa(f) ~ Σ Pa(f)\a\v converges to zero for m->oo, we have

lim lim Var(S*(/) - S*(fm))μ = 0. So the theorem follows by a standard argu-

ment, see e.g. Billingsley [1], Theorem 4.2. •

We can weaken the assumption on the decay of ya and pa(f) if we assume
instead that the real-valued random field {f°θa)aeZV satisfies the FKG inequalities:
For all Ve -jT and all increasing functions F, G: Uv -> U is Cov(F(/ o θφ a e V), G(f o θa,
aeV))μ ^ 0. Then the following result is an immediate consequence of Corollary
3.4 and the work of Newman [9].

Theorem 4.2. Let μ be the unique Gibbs state to a translation invariant, continuous

and consistent specification (pv)Veiί wiίΛ Σ y β < l 9 and let f be in C(Ω) with
a

Σ i 9 α ( / ) < 0 0 V (/°^α)αezv satisfies the FKG inequalities, then S*(/) converges
a

weakly to a Gaussian law with mean zero and variance Σ Cov(/, / ° θa)μ.
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5. Second Derivative of the Pressure

In this whole section we take L = Zv and we consider specifications which are
given as in (1.9) with the help of a translation invariant potential φ=(φv)Veir
satisfying (1.8). The set of all such potentials is denoted by 0>. Taking as norm
||<p|| = £ \V\sup{\φv(s)\,seΩ} & turns into a Banach space. The Dobrushin

uniqueness region ^ = {φe^, oί(φ) = Yjya(φ)<l} is then a non-empty open
α

subset of 0> (see Gross [7], Proposition 2).
The pressure is defined as usual by

Pφ = lim \V\-Mog j exp( - £ φw{s)) Π v(dsa). (5.1))
W c V J aeV

This limit exists if F |Z v is suitably defined, see Ruelle [11]. The main result of
this section is the following.

Theorem 5.1. The pressure P is twice continuously differentiable on Θ. Specifically
the second derivative

exists for φe@, ψ1 and ψ2e0), and it is equal to

where fψι(t) = - £ I^ΓVUO (* = ^ 2 ) an^ μ is t n e unique Gibbs state in &(p(φ)).

Remark 5.2. The existence of the second derivative was already proved by Gross
[7], but the identification of the limit as the above covariance series in new. This
series converges absolutely by Corollary 3.4 because α = γ and ]Γ pα(/^) < oo, see

Gross [7], formula (4.24).
The proof of Theorem 5.1 is based on the following result.

Proposition 5.3. For φe@ let μφ be the unique Gibbs state to the potential φ and

let g be in C(Ω) with YJpa{g)< oo. The map φ-+μφ(g) is then once continuously

differ entiable on Q). Specifically the derivative exists for φe@,

and it is equal to £ Cov(g,fψ°θa)μφ where fψ is as in Theorem 5.1.
a

Proof. For ε > 0 we put ya = sup {ya{φ + uψ\ \u\ < ε}, and we choose ε so small

that ]Γyα< 1. This is always possible, see the proof of Proposition 2 in Gross
a

[7]. We fix SEΩ and use for the measure π£+U(/,( |s) the shorter notation πζ.
Similarly we write μu instead of μφ + uφ. For \u\ < ε we have by Corollary 2.4 that

μu(g) = lim πζ{g). By a simple calculation we get —πζ(g) = Cow(g, -
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Σ Ψwfru)- Therefore it is sufficient to show that this covariance converges
WnVφφ

to Σ Cov(gjφoθa\μu) uniformly for \u\ < ε.
a

In a first step we replace — £ φw by ^ / ψ ° θ f l which is equal to

- Σ ^ I ^ ^ Ί / W Because pv

u(-\s) is a Gibbs state on Ωv = X κ to the
specification (pJΓ(Ί' s)W κ> w e S e t fr°m Theorem 3.2 that the error in this step is
bounded by

Σ Σ ώ ώ )pa(g)pb{ Σ (i -\wnv\/\w\)ψw
a,beV \ceV J \WnVφφ

lg) Σ s\ip{\φw(t)\,teΩ}.
ceV J WnVcψφ

Wsb

Now the sum over W in the last expression converges to zero for fixed b and
V t Zv. Moreover it is surely bounded by | |^| | and we can use dominated convergence
as in previous proofs in order to see that the error in this first step converges to
zero for V] Zv uniformly for \u\ < ε.

In a second step we replace the expectations with respect to πζ by expectations
with respect to μu. For any F o c F w e split the error into four terms, namely

μu(g Σf*°θa)-<(g' Σ h°^l ( 5 2 )

^aeV0

Σ Cov(g,fφoθa\μu) (5.4)

and

Σ Cov(jg,fψ°θa\πζ). (5.5)
aeV\V0

Using Corollary 2.4, respectively formula (2.4), and similar arguments as before,
the terms (5.2) and (5.3) can be shown to be arbitrarily small for fixed Vo and V
big enough (uniformly for \u\ < ε). For the terms (5.4) and (5.5) we use Theorem
3.2: they are arbitrarily small if Vo is big enough (again uniformly for \u\ < ε, the
term (5.5) also uniformly in V => Vo). So the proof is completed by choosing first
a suitable Vo and then a, suitable V. •

Proof of Theorem 5.1. This is now straightforward, see also Gross [7], p. 70. If
there is only one Gibbs state μφ, then there is only one tangent functional to the

pressure P at φ (see e.g. Preston [10], Theorem 8.3), and we have — J

^φifφ^ So it is sufficient to apply Proposition 5.2 with g —f^i. •

6. Proofs of the Main Theorems

We first give a proof of Theorem 2.1 though it will be essentially the same as in
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Dobrushin [4], but we will use an analogous argument for Theorem 3.2 which
can be understood more easily in the simpler case of Theorem 2.1. We call (αfl)αeL

an estimate for μx and μ2, μ fe^(p f), if

lμi(/) - μi(f)\ ύ Σ Wai) (feC(Ω)). (6.1)
aeL

For any {aa)aeL and beL we define (αβ(ϊ>))αeL by

(6-2)
b+ Σ Web ύa = b

cψb

The clue for the proof is the following lemma.

Lemma 6.1 If (oca)aeL is an estimate for μ1 and μ2, then for any beL {Sίa(b))aeL is
also an estimate for μx and μ2.

Proof. Using formula (3.5) of Gross [6] we find

lμi(/) " μ2(f)\ ύ \μMf) - μx(π2/)| + | μ i (π 2 /) - μ2(πb

2/)|

SβtPt(f)+ Σ ocaPa(πb

2f)Sβbpb(f)+ Σ «aPa(f)
aeL aψb

+ Σ αΛi.Pf>(/) •
aψb

So starting with an arbitrary estimate, e.g. αα = 1, one can apply (6.2) repeatedly

for different beL and hopefully one will reach ( ]Γ βcχca | which is not changed
\ c / aeL

by (6.2). However we do not show such a convergence, our proof is indirect: if the

best possible estimate is bigger than ( £ βcχca J , we can always make it smaller by
\ c )aeL

(6.2) which gives a contradiction.
Proof of Theorem 1.2. We fix VeV and consider

a 1 r~ X—i ~ r/ —, v—i f/ . Λ _ r V * /

ceV bφV,ceV

By the definition of χζb we have

Σώ«* = ώ - ^ (ceV,beV), (6.4)
aeV

which implies for beV

Σ <yab =Σyab + sΣ βΛ -sβb + s Σ ωίί
αeL α^K ceK d^K,ceF

- s Σ ?«» = « ? - s j 8 t - ( s - i ) Σ y * (6-5)

Let us assume that βa > 0 for all αeL. This is no essential restriction since we can
always consider first βa = βa + ε and then let ε tend to zero. Under this assumption
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(αJ)fleL is an estimate for μx and μ2 if SΞ> max(β~\αeF). We put S = inf{S,
(<xs

a)aeL is an estimate for μx and μ2} < oo. We suppose that S > 1 and show that
this leads to a contradiction.

To any estimate (αα)αeL for μi and μ2 satisfying α f l^αf ( 1 + <5)(αeL) for some
δ > 0 there is by the definition of 5 a point beV such that αfc > aξa~δ). To any
such estimate we consider the estimate (δta(b))aGL defined by (6.2). Then we get from

(6.5) ab(b) ̂ βb+Σ 4{l+δ)ya* ^ 4{ί~δ) + 25δ*l - (S(i + δ ) - ί){βb + Σ yJ ^
asL _ HV

αs(i -δ) jf ^ j s s m a i i enough because S > 1. So by repeated application of (6.2) we can
find an estimate satisfying aa ^ a^ί~δ) for all aeV and therefore also for all aeL
which contradicts the definition of S. Hence S ^ 1.

Finally we want to expand K This can be done easily because χζb increases

to χab for V\L and for fixed aeL £ JbcXL tends to zero, see the argument
bφV,ceV

in the proof of Proposition 1.4. •

Turning now to the proof of Theorem 3.2 we call (aab)afbeL with aab = aba a
covariance estimate for μe^(p) if

μ Σ (6.6)
a,beL

aab Ξ 1 is always a covariance estimate for any μ because inf/(s) ^ μ(f) ^ sup/(s).
The analogue of (6.2) is

aah iϊaφc and b Φ c,

Σα α α 7 β , c if a φc and b = c,

L αbfl,yα,c if α = c and b ^ c,
α'

Σ αα'b7α'c7b'c + 1 ifα = b = c .

and the following lemma corresponds to Le^nma 6.1:

Lemma 6.2. If(Gcαb)α>bsL is α covariance estimate for μ, then for any ceL(ίab{c))abeL

is also a covariance estimate for μ.

Proof \Cov(fg)μ\ £ \ μ(πc(fg)) - μ(πcfπcg)\ + \μ(πcfπcg) - μ(πcf)μ(πcg)\ ^ pc{f)pc{g)

a,b aψc,bψc aψc,b

+ Σ *abyacPc{f)Pb{9) + Σ ZabybcyacPc(f)pM a n d w e n ° ίe that aab = ocba. D
bψc,a a,b

The proof of Theorem 3.2 follows now the same lines as the previous proof.

The only difference is that γ* ΣXcaXcb I w i t h 7* defined by (3.3) does not
\ c Ja,beL

remain unchanged by (6.7), but it is at least not increased by (6.7) which is sufficient
for us (see also Remark 6.3 below).
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Proof of Theorem 3.2. We fix V, put M = 1/y* and consider

αs P iίaφVotbφV
ab \sΣ ώ ώ + M-s Σ yJxL + ή) ** and bev. y '

ceV cφV,deV

Then using (6.4) we find for aeV,beV

Σ ^acΊcb = Σ Ίcb + S Σ fc'afc'b -S'χζa + M S Σ Ίc'άUa Σ Ίcb
c ciV c'eV c'φV,deV ceV

+ MS Σ Ίtiήb - M-S Σ 7c-6 ̂  «f» - S χ^
c'eV,deV c'$V

since £ ycb < 1. From (6.9) it follows that for be V
ceV

Σ ^aciabycb ^Σy*bΣ yCb + Σ α k b - s Σ xL?^ - ( M S - 1 )

• Σ ?ct Σ rαi ̂  Σ ^ + «*» - sχϊb - M s Σ Vc6

cφV aeV aφV cφV

- Sχζb + S - (MS - 1) Σ ϊcb = <& - 1 - (S(2χ{; - 1) - 1)

- 2 ( M - S - l ) £ y c 6 (6.10)

(we have used as

ab = oίla and Σycb<l) The important point is that for 1S>y*
c

the final bound in (6.9) and (6.10) is less than oζb respectively as

bh — 1 if we

assume that χζb>0 for all aeV,beV. If this assumption does not hold we can

take first yab = yab + εβab for a suitable (βab) and then let ε go to zero.

We put S = mϊ{S,(aζb)afbeL is a covariance estimate for μ} < oo. Suppose that

S>y* and let (α f l b) f l b e L be any covariance estimate for μ satisfying aabS^abi + δ)

{a,beL) for some ^ > 0 . By definition of S there is then a pair aoeV,boeV such

that αα o b o> <x.a{

olo
δ) To such an estimate we consider the estimate (ααb(α0))

defined by (6.7). From (6.9), (6.10) and Σycb < ι w e Ee t t h e n ^aob(ao) = αbfl0(α0) ^
c

as

a^b~
δ\beL) for δ small enough. So by repeated application of (6.7) we come

to a contradiction like in the previous proof.
Finally for letting V tend to L we argue as before. D

Remark 6.3. It is a little disturbing that the estimate I y*Σ%caXcb ) ^s n o t

\ c )a,beL

optimal because it can still be made smaller by (6.7). In the case yab = yba(a,beL),

e.g. if we have pair interactions, (χαb)α>beL is unchanged by (6.7), and the same proof

as before shows that then (χab)a>beL is also a covariance estimate for μ. It can be

proved that always χβ b^y*Σχc αχCi,(β,beL), however this new estimate gives in
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the Corollaries 3,3 and 3.4 only the smaller constant (1 — α)~ * instead of y*(l — α)~ 2,
but no substantial improvement.

7. Generalization to the Non-Compact case

Let (X, <M) be a measurable space with a metric r( , •) which is a measurable function
on (X, Jf) x (X, Jf). For two probabilities ^ and g2 on (X,J*) the Vasershtein
distance is defined by

^ 1 ^ 2 ) = infjr(51,52)Q(d51,ds2), (7.1)

where the infimum is taken over all probabilities Q on (X, 0β) x (X, $) with
projections ^ and q2. For the metric r(sί,s2) = 0 if sx = s ^ φ ^ s ^ = 1 otherwise,
we have Λ(<h,g2)

 = 2lkh ~~ ̂ llvar For t w o specifications (p[%ef> * = 1>2, on
Ω = XL we define

?(- |s), p?( |ί))/Φβ, ίJ» s = ί e x P e c t at α, ΐ = 1,2}

ί l ^ p ^ O l ^ s e Ω } , (7.2)

The role of C(ί2) is taken over by the "Lipschitz continuous" functions: For
/:Ω-» U we put

Pα(/) = sup {\f(s) - f(t)\/r(sa, ί j , s - ί expect at a} (7.3)

and let LC(Ω) be the set of functions for which pa(f) < oo

(aeL) and \f(s) - f(t)\ £ X pa{f)r(sa, ta) (seΩ, teΩ).
a

Like Theorem 2.1 the next result is essentially in Dobrushin [4].

Theorem 7.1. Suppose (p\)VeΨ, i = 1,2, are ίwo specifications such that ^lab =
a

a < 1 and πf(LC(Ω)) c LC(Ω). Let μt be in ^(p.) suc/z that for some ueΩ Jφ β,w a)
μf(d5) ^ C < oo (i = 1,2). Tfcen we have for allfeLC(Ω)

a,b

Proof. By the definition of LC(Ω) we have for feLQΩ):

\μi(f) - μ2(f)\ ύ $\\f(s)-f(t)\μ1(ds)μ2(dt)

£ ΣPa(f)i\r{sa,ua)μi(ds) + \r(ua, ta)μ2(dή)

so there exists a uniformly bounded estimate for μ1 and μ2. The rest of the proof,
in particular Lemma 6.1, is the same. For details see Dobrushin [4]. D

For the generalization of Theorem 3.2 we need one more definition. Let

σ2

a = sup {M{$r(u,m(s))2pa(du\slm:XL\a -+ X}, seXLKa}. (7.4)
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Theorem 7.2. Suppose {pv)Veiί is a specification such that £ y α f t ^ α < l , σj ^
a

σ2 < oo and πv(LC(Ω)) a LC(Ω). Let μ be in &(p) such that for some ueΩ jY(sfl,wα)
2

μ(ds) ^ C < oo. Then we have for all f and g in LC(Ω)

\Cov(f,g)μ\S4σ2γ* £ χcaχcbPa(f)ρM
a,b,c

Proof. First we observe that

|Cov(/,0)J £ f if |/(s) - f(t)\\g(s) - g(v)\μ(ds)μ(dt)μ(dv)

S Σ Pa(f)Pb(0)lWr(s*> ua) + r(ua, ta))(r(sb, ub) + r(ub, vb))
a,b

a,b

so there exists a uniformly bounded covariance estimate for μ. Furthermore

(w9 OK", t;)pc(du|s)pc(Λ|5)pc(Λ|

so Lemma 6.2 will be correct if we define άcc(c) in (6.7) by £ &a>b>ya>cyh>c + 4σ 2 .
α'.fr'

The rest of the proof is the same. Π
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