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Abstract. An estimate on the correlation of functionals of Gibbs fields satisfying
Dobrushin’s uniqueness condition is given. As a consequence a result of Gross
saying that the truncated pair correlation function decays in the same weighted
summability sense as the potential can be extended to the whole Dobrushin
uniqueness region. Applications to the central limit theorem and the second
derivative of the pressure are also given.

0. Introduction

The well-known uniqueness theorem of Dobrushin [3] states that there is only
one Gibbs state if the interaction is weak which means that the temperature
is high or the activity small. This theorem has the advantage of being very general.
No condition like finite range, pair interactions, finiteness of the single spin space
or translation invariance is needed. Despite its generality the condition is
surprisingly sharp as shown by Simon [12]. Moreover one gets not only uniqueness
from it, but also properties of the Gibbs state: Dobrushin [4] showed that it is
uniformly mixing, and Gross [6], [7] proved results on the decay of correlation
and on the differentiability of the pressure. However one of his results, Theorem 2
in [6], was not proved in the whole Dobrushin uniqueness region, and his expression
for the second derivative of the pressure in [ 7] is different from the ususal covariance
series. In our paper here we close these two gaps.

In Sect. 2 we recall results from Dobrushin [4] in the form we will need them
later. In Sect. 3 we state then our main result on the decay of correlation
(Theorem 3.2). As corollaries we get the results of Gross [6] in the whole Dobrushin
uniqueness region. In Sect. 4 we apply our results to check known conditions for
the central limit theorem for functionals of Gibbs fields, and in Sect. 5 we show
that the second derivative of the pressure is equal to the usual covariance series.
The main theorems are proved in Sect. 6 by an extension of Dobrushin’s uniqueness
proof in [4]. We do not construct a dynamics which has the Gibbs state as an
invariant measure like in Vasershtein [13] and Gross [6]. Finally in Sect. 7 we
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formulate our results for a general Vasershtein distance which covers also
interesting non-compact examples.

1. Notations and Definitions

Let L be a countable set of sites, X a compact metric space, the individual spin
space, and Q = X’ the configuration space containing all functions s:L — X. For
M < L we denote by &, the o-field generated by the maps s —s,, ae M. Instead
of #, we write simply . The set of all continuous real-valued functions on Q
(with respect to the product topology) is denoted by C(Q). For feC(Q) and aeL
put

pulf) =sup{1f(s) — f(O)l5 = t except at a}. (L.1)
For such f the following holds for all 5,teQ:
O =FEIZ Y pd ). (1.2)

aelL

Let ¥~ be the class of finite non-empty subsets V of L and let (p"), ., be a
specification on Q. By this we mean that for each V p¥(A|s) (4eZ ,,seX*V) is a
probability kernel, i.e. a probability in the first and a measurable function in the
second argument. For many purposes it is convenient to introduce the associated
kernels n"(A|s) (Ae &, seQ) which are uniquely defined by the following properties
(compare Preston [10], Chapter 1):

n'(4l) is #,,-measurable,
n”(:|s) is a probability on (Q, #) which coincides with
the Diract measure 6, on %, and with p"(-|s.,,) on 7. (1.3)

We will always assume that the specification is continuous in the sense that ¥ fe C(Q)
for all feC(Q), where

7’ f(s) = [=¥(dt|s) £ (0). (1.4

A Gibbs state to a specification (p¥), ., is a probability u on (2, #) whose
conditional distribution with respect to &, are given by n", ie.

plAl7 L, 10)=7"(Al) p-as. (AeZF,Ve?), (L.5)
or equivalently
un¥ f)=uf) (feCQ),ve?). (1.6)

The set of all Gibbs states is denoted by %(p). 4(p) is convex and compact in
the weak topology if (p"), ., is continuous. In order to prove the existence of Gibbs
states we must assume that the specification is consistent which means that

'@ )=n"f (feCQ), W Vey). 1.7

By compactness arguments the weak limit of (n"(:|s)), €xists for seQ and V,TL
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(at least if we choose a suitable subsequence), and using (1.7) it is easy to see that
the limit is in 4(p).

By a potential we mean a family of continuous % ,-measurable functions
oy Q- R, Vev, satisfying

Y. [VIsup {lpy(s)],seQ} < o0 (aeL). (1.8)

Vaa

Let v be a finite measure on X, the a priori single-spin measure. The case of main
interest is when all p (dt|s) are absolutely continuous with respect to the product

measure [] v(dz,) and the density is given by a potential:
acV

pV(dt|s)=ZV(sr1exp<— Y qow(rs))[l Wdt,) (19)
WnV+¢ agV

Here Z,(s) is a normalizing constant and ¢s is the configuration which is equal to
t in V and equal to s in L\V. Such specifications are always continuous and
consistent. However the potentials will be used only in Sect. 5.

If X is not compact, then all the results which follow can be proved in the
same way: we only have to take instead of C(Q) an appropriate class of functions.
However the hypotheses we will make are never satisfied in the interesting examples
with a non-compact X. In order to deal with such examples it is useful to introduce
a general Vasershtein distance as it was done in Dobrushin [4]. In Sect. 7 we will
briefly state our results in this more general situation.

2. Comparison of Gibbs States and Uniqueness

Let (p)), ., i = 1,2, be two continuous specifications and put
Yab =58P {IP(:]5) = P10l vars =t €xcept at a,i=1,2}(a # beL),
Vaa =0 (a€L), 2.1
Ba=7z5up {IIP1(-1s) — P3(19)lvarse X"} (a€L).

Let I' be the infinite matrix (y,), ., and I'y its restriction to aeV,beV. We put

tw= o, M (a,beVey),
n=0
(2.2)

0

Xab = z (Fn)ab (a,bEL)'

n=0

Xap(xL) is nothing else than the Green’s function (of the set V) for the random
walk on L with transition probabilities y,, provided ) y,, < 1.

The next theorem is essentially contained in Theorem 3 of Dobrushin [4]:

Theorem 2.1. Suppose (p!),.,,i=1,2, are two continuous specifications such that
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Y Ve S <1 and p,e%(p,), i =1,2. Then for all feC(Q) we have

s (f) — ua () £ Zb Baxaros(f)-

Remark 2.2 It will become clear in the proof that ) y,, <a< 1 can be replaced

by the slightly weaker condition )’ y,, < co(beL). However we will state all our

a
results with the former condition which is easier to check.
The proof will be given in Sect. 6. We will state now some consequences of
Theorem 2.1. Whenever we have only one specification (p”), ., we will take an
analogous definition of y,, as in (2.1) just omitting all indices i.

Corollary 2.3 (Dobrushin). Let (p") ., be a continuous specification with ) vy, <
a< 1. Then |%(p)| £ L.

Proof. Let ji; and p, be in %(p). Then B, =0 for all aeL, whence u,(f) = u,(f) for
all feC(Q),ie. p;=p,. O

Corollary 2.4. Let (p¥),., be a continuous and consistent specification with ) y,, <

o < 1. Then for any sequence V,'L and any seQ n""(-|s) converges weakly to the
unique Gibbs state u, and the difference u(f)—n"f(s) can be estimated by
formula (2.4) for f in C(Q) with Y p,(f) < 0.

b

Proof. Fix Ve and seQ. By the consistency condition (1.7) p¥(:|s) is a Gibbs
state on Q, = X" to the specification (p”(*|-s)) < - Therefore by Theorem 2.1 for
JeC(Q)

" f(£) — 7" f($)| | f (ue)(p" (dult) — p¥(duls)| + [ £ (ur) — f(us))p” (duls)]

< ) < Y 7ca>x5bpb(f )+ ) pdf): (2.3)
aeV ,beV \ c¢V c¢V
Therefore also
() =" fl= Y (Z vm)xﬁbpb(f )+ Y pdf)- (2.4)
a,beV \ c¢V céV
Now for all aeL ) v, tends to zero for V1L, and
céV
ZLV ( > vca>x5bpb(f )< o bZ AP f) Sa(l —o)~* ; pu(f)-
a,be cg¢V a,beV

Therefore by dominated convergence n¥ f(s) —» u(f) for f in C(Q) with ) p,(f) < 0.
b
Such f generate weak convergence. []

From the estimate (2.3) we can easily deduce an estimate of the uniform mixing
rate of the Gibbs state u:
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Proposition 2.5. (Dobrushin). Let p be the unique Gibbs state to a consistent and
continuous specification (p)y oy with . y,, S o< 1. Then for all W= Ve we have

Q)(VV; V)=Sup{],u(A|B)—,u(A)|, Aeg‘:W’Be‘g;L\V’/'l(B)#:O} é Z ( z ycaXab)
beW \ c¢V ,aeV
which tends to zero for W fixed and V1 L.

Proof. 1t is sufficient to prove the inequality for open sets Ae.# . Approximating
f=1, by a suitable sequence of continuous functions we find from (2.3)

Ip"(Als) —p" (Al < > m)x& 2.3)

acV beW \ cg¢V

So for Be 7 |, we get

|W(A " B) — w(A)u(B)| = || 15(s)p" (Als)ulds) — [ [ 15(s)p" (A )pldr) p(dls)|

SuB) Y ( Y m)xﬁr (2.6)

acV beW \ c¢V

Because yY, < ., the inequality is proved. The convergence to zero follows from

dominated convergence: For fixed aeL Y y,, goes to zero for V1L, and for fixed
¢V

bew
Z ZycaXabgaZXabsa(l—a) 1' D

acV c¢V

3. Decay of Correlation

It is well known that the uniform mixing coefficients @(W, V) which were estimated
in Proposition 2.5 tell us something about the correlation of functions localized
in disjoint domains. Namely if f and g are in C(Q) and f is % ,-measurable and
g & ., y-measurable, then we have

|Cov(f,9)l = 20(W, V)IIfll 19l - (3.1

In order to put this into a more intuitive appealing form it is convenient to consider
a semimetric d on L, i.e. d(-,") is a nonnegative symmetric function on Lx L for
which the triangle inequality holds.

Proposition 3.1. Let u be the unique Gibbs state to a consistent and continuous
specification (p¥),., satisfying Y y,e**” <a <1 for some semimetric d. Then for

fand g in C(Q), f Z ,-measurable and g F ,-measurable with d(W, V) = inf {d(a, b),
acW,beV} >0

ICov(f,9)l < e "™ VW 2l — o) | fll.o gl

Proof. Let V be the set {acL,d(W,a) < d(W,V)}. Then using (3.1) and Proposition
2.5 with ¥ instead of ¥ we have

ICov(f.9),l£2 Z( Py vcaxab>|lf|l l1gllo-

beW \ c¢V ,aeV
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Now for be W, aeV,c¢ V:e?™V) < ¢4t < pdh:0pd@0) Therefore

ICov (f,g),l S 274" 3 ( Y. Ve are™® ”’>||f lloo g0

beW \ c¢V,aeV

= 26"“W’V’|W|a5up{z Kape™ ™, beL}Nflloo g1l

But ) y,,e%*? < < 1 implies by the triangle inequality

D Aae P S(1-0)7h O (3.2

The next theorem which is our main result improves Proposition 3.1 in two
ways: First it applies also to functions not necessarily localized in disjoint domains,
and second we will get a decay of correlation at the same speed as the coefficients
Ya- Let us define

= sup{(e — 1)~ ,aeL} < 1, (3.3)

Theorem 3.2. Let p be the unique Gibbs state to a continuous and consistent
specification (p")yy with Y y,, <o < 1. Then for any two functions f and g in C(Q)

|Cov(f,9),l = y* Zb <Z xcaxcb>pa(f )P5(9)-

We will give the proof together with the proof of Theorem 2.1 in Sect. 6. Let us
give now two corollaries of it which extend results of Gross [6] (see also the
Remark 3.5i) below).

Corollary 3.3. Let u be the unique Gibbs state to a continuous and consistent
specification (p*), ., satisfying 3y y,,e*“? <a <1 for some semimetric d on L. Then

for any two functions f and g in C(Q) and any points a,beL
|Cov(f,9)l S e @*(1 —a)™2) e"“Ip(f) ). e"®pg).

Proof. By the triangle inequality we find

el y <Z Yea Xeb >pa'(f (@) S Y (Z xcafe"“’“"xcble‘““b")
a’,b’ c

a',b’ c

e p ()™ py(g). 34
Furthermore by (3.2) ZXC 0@y et < ZX e, ZX 1) <(1—a)~ 2,

So the corollary follows 1mmed1ately from Theorem 3.2, []

Corollary 3.4. Assume L= 7". Let u be the unique Gibbs state to a continuous and

consistent specification (p"),., satisfying Y 7, <o <1 and Yy y,e" " <y <1
a b
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for some translation invariant semimetric d on Z*. Then for any functions f and g
in C(Q) and any point be 7®

2 1Cov(£,920,),le"™? < y* (1 — o)~ 11 =) 71 Y e Dp,(f)- 3. e 9pg).

Here 0,:Q — Q is the shift operator defined by (0,s), = s

a+b*

Proof. Using Theorem 3.2 and formula (3.4) we get

Z |COV (f’ go oa)#Ied(b,a),y* -t é Z < Z Xca’ed(c’al)ch’ed(c,bl))

a,a’ b’ ¢
e ®p ()P py(g°0,).

But since d(a,b’) =d(0,b’' —a) and p,(g-0,) = p, _.(9), we can first take the sum
over a and then the corollary follows immediately using (3.2). [J

Remarks 3.5. i) In the Corollaries 3.3 and 3.4 we have smaller constants than
Gross [6] in his Theorems 1 and 2, and—what is more important—Corollary 3.4
holds under a weaker condition: We request only o« <1 and y <1 while Gross
needs a < 1 and (1 + o) < 1.

ii) In Corollary 3.4 the case d =0 is also of great interest. In the applications
in Sect. 4 and 5 we will use only this case.

ili) If L= 7" and (p"),, is of finite range, i.e. p*(4|s) depends only on s, , ,, beN,
for some Nev, then ) y,, <o <1 implies ) y,exp(ela —b|) o’ <1 if ¢ is small

a

a

enough.
(iv) Assume L= 7" and the specification (p"), ., is translation invariant. Then
Yap = Va—p» SO in particular o = 7. Assume moreover that ) y, <1 and ) y,lalf < oo

for some f>0. We then consider the metric d, ,(a,b) = min (gla — b|, flog (1 +
la—bl)). It is not hard to see that for ¢ small enough ) y,exp(d, 4a,0)) <1.

Therefore we have in Proposition 3.1 at least asymptotically a decay like
dist (W, V)~ # =inf{|a — b|,acW,beV} #, and from Corollary 3.4 it follows that

Y. ICov(f,go0,) llalf <o for f and g in C(Q) with Y p f)lalf <oo and

2. Pdg)lalf < oo.

4. The Central Limit Theorem

In this section we always assume that L= 7" and the specification (p"), ., is
translation invariant. Then y,, =y, , and « =y =) 7, Moreover if there is only

a
on Gibbs state, all its finite dimensional distributions are also translation invariant.
Let us denote the cube {a =(a,,...,a,)eZ", —n<g;<n,i=1,...,v} by V. We
investigate here when the central limit theorem holds, i.e. for which functions f
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and probabilities u
Sx(N)=@n)7"2 % (fo0,— u(f)) (4.1)

agV,
converge weakly to a normal law. This is known to be true if f is % ,-measurable
for some Ve and p is a Gibbs state to a specification with weak interaction, see
Dobrushin-Tirozzi [5], Sect. 1.3. We give here precise conditions on the specifica-
tion without assuming finite range, and we allow also for general feC(Q).

Theorem 4.1. Let u be the unique Gibbs state to a translation invariant, continuous
and consistent specification (p"),., with Y y,<1 and let f be in C(Q). If

Y ydal’*? < oo for a $>0 and ) p,(f)lal’ < oo, then S¥(f) converges weakly to

a Gaussian random variable with mean zero and variance ) Cov (f, f°0,),.
a

Proof. If f is & ,-measurable for some Ve¥”, then Proposition 3.1 and Remark
3.5 iv) imply that the conditions of Bolthausen [2] for the central limit theorem
are satisfied. Equivalently we can also use Proposition 2.5 and adapt Nahapetian’s
result [8] to the case of bounded variables. For a general feC(Q) we fix seQ and
approximate f by f™, where f™(t)= f(t,, sz, ) Because f is continuous,
Cov(f™, fm0,), converges to Cov(f,f>8,), for m— co and fixed aeZ *, and since
Pdf™ = p(f), We have by Theorem 3.2 that [Cov(f™, /™0 S ¥ e aie s

c,a',b

pa(f)pp—df) Therefore by dominated convergence the normaf ’law N0,
Y. Cov(f™,f™30,),) converges weakly to the normal law 470, Cov(f,f° 0.),)-

Furthermore by Corollary 3.4 lim Var(S¥(f)—S¥(/™), = Y. Cov((f—1™),

2

(f = ™20, < 7*(1 —a>-2(z pa(f—f'")) . But for agV,,p,(f — /™) = p,(f) and
for aeV,,, po(f —f™ < 2sup{|f () —f @)}, =uin V,} S2 ¥ p,(f). Since by as-

a¢V,,
sumption m® Z p.(f) = Z pa(f)lal’ converges to zero for m— co, we have
a¢ym ag¢gVm

li”xp li'rln Var (S¥(f) — S#(f™), =0. So the theorem follows by a standard argu-

ment, see e.g. Billingsley [1], Theorem 4.2. [

We can weaken the assumption on the decay of y, and p,(f) if we assume
instead that the real-valued random field (f <0,),.,. satisfies the FKG inequalities:
For all Ve ¥ and all increasing functions F, G: R —» Ris Cov(F(f<0,,aeV), G(f -0,,
aeV)), =2 0. Then the following result is an immediate consequence of Corollary
3.4 and the work of Newman [9].

Theorem 4.2. Let u be the unique Gibbs state to a translation invariant, continuous
and consistent specification (p¥),., with Y y, <1, and let f be in C(Q) with

Y puf) < 0. If (fo0,)szv satisfies the FKG inequalities, then S*(f) converges

weakly to a Gaussian law with mean zero and variance ) Cov(f, f °0,),
a
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5. Second Derivative of the Pressure

In this whole section we take L = Z* and we consider specifications which are
given as in (1.9) with the help of a translation invariant potential ¢ = (@), .y
satisfying (1.8). The set of all such potentials is denoted by &. Taking as norm
loll= Y |VIsup{l@y(s)l,s€2} 2 turns into a Banach space. The Dobrushin

V30
uniqueness region & ={pe?, a(p)=) y,(p)<1} is then a non-empty open

subset of 2 (see Gross [7], Proposition 2).
The pressure is defined as usual by

aeV

= ,}imv |V|’1logjexp<— Y qu(s)> [ 1 v(ds,). (5.1

This limit exists if V17 ¥ is suitably defined, see Ruelle [11]. The main result of
this section is the following.

Theorem 5.1. The pressure P is twice continuously differentiable on 9. Specifically
the second derivative

P +uy +vy?)

62
” 1 2y
P YY) ==

u=v=0
exists for pe@, Y* and Yy*eP, and it is equal to
Z Cov(fnjﬂ’ fwloea)w
where f, ()= — Y [VI"'Wi(t) (i=1,2) and p is the unique Gibbs state in %(p(¢)).

Va0
Remark 5.2. The existence of the second derivative was already proved by Gross
[71, but the identification of the limit as the above covariance series in new. This
series converges absolutely by Corollary 3.4 because o =y and ) p,( fy) < o0, see

Gross [7], formula (4.24).
The proof of Theorem 5.1 is based on the following result.

Proposition 5.3. For peP let p, be the unique Gibbs state to the potential ¢ and
let g be in C(Q) with Y p,(g) < c0. The map ¢ — 1,(g) is then once continuously

. . . o0
differentiable on 9. Specifically the derivative 5“w+uw(g) B exists for pe D, YyeP,
and it is equal to ) Cov(g, f,°0,),, where f, is as in Theorem 5.1.

Proof. For ¢ >0 we put y, =sup {y,(¢ + u),|u| <&}, and we choose ¢ so small
that Zya < 1. This is always possible, see the proof of Proposition 2 in Gross

[7]. We fix seQ and use for the measure n¢+ud,( |s) the shorter notation =
Similarly we write y, instead of y,,,,,. For |u] <¢ we have by Corollary 2.4 that

U,(g) = lim n'(g). By a simple calculation we get -;—nu(g)z(jov(g’_
vizy u
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Y. Yylnl). Therefore it is sufficient to show that this covariance converges
WnV#o
to " Cov(g, f,°0,lu,) uniformly for |u| <e.
a

In a first step we replace — Y Wy, by ) f,c0, which is equal to
WnV+d acV

— Y YulWnV||W|. Because p)(-|s) is a Gibbs state on Q, =X" to the

WnV£e .

specification (p¥(|-5))yc » We get from Theorem 3.2 that the error in this step is

bounded by

2 (ZX&X&)%(Q)%( ) (l—lWﬁVI/IW|)¢W>

a,beV \ceV WnVtd
23 <foaxfb>pa(g) Y sup{[y, (1), teQ}.
a,beV \ ceV W'-V‘lycb#(b

Now the sum over W in the last expression converges to zero for fixed b and
V1 Z’. Moreover it is surely bounded by ||y/|| and we can use dominated convergence
as in previous proofs in order to see that the error in this first step converges to
zero for V1 Z* uniformly for |u| <e.

In a second step we replace the expectations with respect to ! by expectations
with respect to p,. For any V, = V we split the error into four terms, namely

1lg Y, 13000 —mig ) f,000), (5.2)
aeVo aeVqy
.uu(g),'lu< Z fw09a> —T[L/(g)n::( Z fw09a>a (53)
aeVo aeVy
Y. Cov(g, £,°0,)u,) (5.4)
ag¢Vo
and *
Y. Cov(g, f,°0,|n)). (5.5)
aeV\Vo

Using Corollary 2.4, respectively formula (2.4), and similar arguments as before,
the terms (5.2) and (5.3) can be shown to be arbitrarily small for fixed ¥, and V
big enough (uniformly for |u| <¢). For the terms (5.4) and (5.5) we use Theorem
3.2: they are arbitrarily small if ¥ is big enough (again uniformly for |u| <, the
term (5.5) also uniformly in ¥ V). So the proof is completed by choosing first
a suitable V, and then a, suitable V. []

Proof of Theorem 5.1. This is now straightforward, see also Gross [7], p. 70. If
there is only one Gibbs state u,, then there is only one tangent functional to the

0
pressure P at ¢ (see e.g. Preston [10], Theorem 8.3), and we have %wa,l =

u=0

1t fy1)- So it is sufficient to apply Proposition 5.2 with g =f,.. O

6. Proofs of the Main Theorems

We first give a proof of Theorem 2.1 though it will be essentially the same as in
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Dobrushin [4], but we will use an analogous argument for Theorem 3.2 which
can be understood more easily in the simpler case of Theorem 2.1. We call (a,),.;.
an estimate for u, and p,, u,€%(p,), if

I (f) = (NS 3 opal /) (fC(Q)). (6.1)
aeL
For any (a,),., and beL we define (d,(b)),., by
co )% ifa#b
aa(b) B {ﬁb + Z %cYeb if a= b (62)
c*b

The clue for the proof is the following lemma.

Lemma 6.1 If (o), is an estimate for u, and u,, then for any beL (&,(b)),c is
also an estimate for u, and p,.

Proof. Using formula (3.5) of Gross [6] we find
i1 (f) = 12N S Mg (7 f) = iy SN + (7S f) — pa(ms £
é ﬂbpb(f) + Z aapa(ngf) é ;Bbpb(f) + Zb O(upa(f)
at

acL

+ Z ocaYabe(f)‘ D

atb

So starting with an arbitrary estimate, e.g. «, = 1, one can apply (6.2) repeatedly

acL

by (6.2). However we do not show such a convergence, our proof is indirect: if the

for different be L and hopefully one will reach (Z Bdea which is not changed

best possible estimate is bigger than <Z ,BCXM> , we can always make it smaller by
c aeL

(6.2) which gives a contradiction.

Proof of Theorem 1.2. We fix Ve~ and consider

1 if
= { Hag? | (63)
S Z ﬁcXcl'/a + S Z VchXa lf ae V
ceV be¢V ,ceV
By the definition of y), we have
Y Ve =1 — 0y (cEV,bEV), (6.4)
aeV
which implies for beV
Y Y= 2 Y+ S ) Bexes =SBy +S DY Vacks
aeL ag¢Vv ceV d¢V,ceV
-5 Z Yap = 0‘5 ~SB,—(S—1) Z Vav- (6.5)
dév dg¢v

Let us assume that f§, > 0 for all aeL. This is no essential restriction since we can
always consider first f, = 8, + ¢ and then let & tend to zero. Under this assumption
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(05),., is an estimate for y, and u, if S=max(, ', aeV). We put S=inf{S,
(5),e,, is an estimate for yu, and u,} < co. We suppose that S> 1 and show that
this leads to a contradiction. .

To any estimate (a,),, for g, and p, satisfying o, < 3! *?(aeL) for some
5> 0 there is by the definition of S a point beV such that a, > opt 7. To any
such estimate we consider the estimate (b)), defined by (6.2). Then we get from
(6.5) GBS Py+ Y og Ty, St T+ 2880y — (S(L+6) — DBy + ) var) S

aeL d¢V
a3 =9 if § is small enough because S > 1. So by repeated application of (6.2) we can
find an estimate satisfying o, < a5 =9 for all aeV and therefore also for all acL
which contradicts the definition of S. Hence S < 1.
Finally we want to expand V. This can be done easily because y’, increases

t0 x4 for V1L and for fixed aeL ) y,x!, tends to zero, see the argument
béV,ceV

in the proof of Proposition 1.4. [

Turning now to the proof of Theorem 3.2 we call (o), e, With a,, =, a
covariance estimate for ue%(p) if

ICov(f,9),l = ). awpdSIpsg)  (f,9€C(Q)). (6.6)

a,beL

o, = 1 is always a covariance estimate for any u because inf f(s) < u(f) < sup f(s).
The analogue of (6.2) is

oy fas#candb+c,
Y OgyYwe fa#candb=c,

&a(c = < : .
9) Y OpaVae fa=candb+#c,

Qg Vactye + 1 ifa=b=c.
u%/ b VarcVp a ¢ 6.7)

and the following lemma corresponds to Lemma 6.1

Lemma 6.2. If (x4), per is a covariance estimiate for p, then for any ce L(34(C)), per,
is also a covariance estimate for p.

Proof. |Cov(f,9),l | 1(n(fg)) — w(nfng)| + |u(x fntg) — w(n“fu(rg)l < p(p.l9)
+ Z Pl LIP(m D S p (P + Y. carpd HPs@) + Y 0Vepal £)Pe9),

afFc,b¥c afcb
+ Z %apYacl /)P(9) + Z YapVscVacle /)P(9), and we note that o, = 2, [
b#c,a
The proof of Theorem 3.2 follows now the same lines as the previous proof.

The only difference is that y* < > Xchb) with y* defined by (3.3) does not
a,beL
remain unchanged by (6.7), but it is at least not increased by (6.7) which is sufficien

for us (see also Remark 6.3 below).
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Proof of Theorem 3.2. We fix V, put M = 1/y* and consider

s (1 ifagVorbgy
ab= v (6.8)
S Neaken + M-S 3 velaat xm) if aand beV.
ceV c¢V,deV
Then using (6.4) we find for aeV, beV
Z aac’))cb Z Veb + S Z Xc aXc b S'Xllr/a + MS Z ’))C'dXIli/a‘ z 'ycb

cgV c'eV c'¢V ,deV ceV

+ M-S Z ychZb—MS Z ’Vc’béaib'—slxga
c'eV,deV c'¢V

~(M-5=1)3 (6.9)

cg¢V
since Yy, < 1. From (6.9) it follows that for be V
ceV
Z dacyabycb = Z yab Z ycb + z o(abﬁ/'ab S Z X;/ayab - (MS - 1)
agV c agV aeV
Z ycbz yabé Z '))ab+al§deXl‘)/b’M.SZ Veb
cgV agV (3% cgV
=Sty +S—(M-S—=1) Yy =0, — 1 = (SQyz, — 1) — 1)
cgV
—2AM-S—1)Y 7, (6.10)
cgV

(we have used o3, =ay, and ) y, <1). The important point is that for §> y*

the final bound in (6.9) and (6.10) is less than «3, respectively o, — 1 if we
assume that y', >0 for all ae¥,beV. If this assumption does not hold we can
take first 3, =v,, + &B,, for a suitable ($,,) and then let ¢ go to zero.

We put S =inf{S,(e},), e 18 @ covariance estimate for u} < co. Suppose that
S>y* and let (a,), 4, De any covariance estimate for p satisfying a,, < of§' %
(a,beL) for some § > 0. By definition of S there is then a pair a,eV,b,eV such
that o,, >o5i-9. To such an estimate we consider the estimate (d,,(do))

defined by (6.7). From (6.9), (6.10) and Z%b <1 we get then &, y(ag) = d;,(dg) =

S“ MbeL) for § small enough. So by repeated application of (6.7) we come
to a contradiction like in the previous proof.
Finally for letting V tend to L we argue as before. [

Remark 6.3. It is a little disturbing that the estimate (?*mexcb> is not
c a,beL
optimal because it can still be made smaller by (6.7). In the case y,, =y,,(a,beL),

e.g. if we have pair interactions, (y,), »., is unchanged by (6.7), and the same proof
as before shows that then (y,), 5., is also a covariance estimate for p. It can be
proved that always y,, < y* Y X (a, beL), however this new estimate gives in

c
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the Corollaries 3.3 and 3.4 only the smaller constant (1 — o)~ * instead of y*(1 — &)~ 2,
but no substantial improvement.

7. Generalization to the Non-Compact case

Let (X, %) be a measurable space with a metric r(-, ) which is a measurable function
n (X,4%) x (X,4). For two probabilities g, and g, on (X, %) the Vasershtein
distance is defined by

R(q1,95) =inf§r(51a52)Q(d51’d52)’ (7.1)

where the infimum is taken over all probabilities Q on (X, %) x (X, %) with
projections ¢, and q,. For the metric r(s,,s,) =0 if s, =s,,7(s,,s,) = | otherwise,
we have R(q,,q,)=3lld; — @allva For two specifications (p}),.,, i=1,2, on
Q= X' we define

Y = SUp {R(P2(:Is), p2(-10))/r(s, 1), s =1 expect at a, i =1,2}
B = sup {R(p{(:]s), p5(|s)),s€ 2}, (7.2)

The role of C(Q) is taken over by the “Lipschitz continuous” functions: For
f:Q—- R we put

paf) =sup{lf(s) — f(O)I/r(s, ,), s = t expect at a} (7.3)
and let LC(Q) be the set of functions for which p(f) < oo

(aeL)and |f(s) = fOI = X puf)(sasta) (s€Q,1€Q).
Like Theorem 2.1 the next result is essentially in Dobrushin [4].

Theorem 7.1. Suppose (p!),.y, i=1,2, are two specifications such that Zyab__

<1 and =} (LC(Q)) = LC(Q). Let u; be in %(p;) such that for some ueQ jr(sa, .
u;(ds) £ C < o0 (i=1,2). Then we have for all fe LC(Q)

llul(f) - ﬂz(f)‘ = Zbﬂbxbapa(f)-

Proof. By the definition of LC(Q) we have for feLC(Q):
() = (NS JI1F() = f(0) 11 (ds) ()
<2 P (s upy (ds) + friu,, t)us(dt))

S2C) pf),

so there exists a uniformly bounded estimate for u; and u,. The rest of the proof,
in particular Lemma 6.1, is the same. For details see Dobrushin [4]. [
For the generalization of Theorem 3.2 we need one more definition. Let

ol = sup {inf { {r(u, m(s))*p*(duls), m: X"\* - X}, seX"\%}. (7.4)
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Theorem 7.2. Suppose (p"),., is a specification such that ) y,S<a<l1, o2 <

0® < o0 and n"(LC(Q)) = LC(Q). Let p be in %(p) such that for some ueQ [r(s,,u,)*
u(ds) £ C < o0. Then we have for all f and g in LC(Q)

ICov(£,9),l £46%9* 3 YeatevP ol /)Ps(9).
a,b,c

Proof. First we observe that
ICov(£,9),l = [§f1£(s) = f(®)llg(s) — g(v)|(ds)ldt)u(dv)
< Zb Pl )Po(9) [ § § (505 ) + 1ty 1)) (15, t4y) + 1(t4y, 03))

‘uds)u(dtp(dv) £ 4CY p,()ps9),
a,b

so there exists a uniformly bounded covariance estimate for pu. Furthermore

W@ (f9) = un’fng)l = pl Splg)sup § 1 §r(u, )r(u, v)p(duls)p*(dt|s)p(dvls)

<dolpdp.(9),

so Lemma 6.2 will be correct if we define a,(c) in (6.7) by Y 07 aeVpe + 407
a’,b’
The rest of the proof is the same. [
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