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Monotonicity of the Free Energy
in the Stochastic Heisenberg Model*

William D. Wick**

Mathematics Department, University of Washington, Seattle, WA 98195, USA

Abstract. The specific free energy of the state at time t of the stochastic
Heisenberg model is shown to be non-increasing with f, and to strictly decrease
whenever this state is not a Gibbs state of the Hamiltonian. The initial state is
assumed to be translation invariant and suitably smooth. For such states a
convergence theorem is obtained.

I. Introduction

The classical Heisenberg model is one of a class of lattice spin models in which the
range of a single spin is a sphere S", n ̂  1, rather than the two-point set S°, as in the
Ising model. The Hamiltonian for these models is given (formally) by :

# = - i ΣΣ ξ{χ)<(y), (i)
x, yeL

\χ-y\ = i

where ξ(x)eSn is the spin at site x, L is a d-dimensional lattice, and the " •" denotes
dot product in Rn+1. Special cases include the planerotor models (n=l) and the
classical Heisenberg model (n = 2, and usually d = 3).

For these models with continuous symmetry groups invariance of phase is
expected if d = 2 and phase-transition with associated continuous symmetry
breaking if d^3. These facts were established in [1,2].

The stochastic Heisenberg model, a probabilistic model for the dynamics of the
classical Heisenberg model, was introduced by Faris in [3]. This is a Markovian
model with infinitesimal generator

Ω = A-βVH d. (2)

In this equation the first term is the infinite-dimensional Laplace operator and
generates a Brownian motion of the individual spins. The second term is the inverse
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temperature (β) times the gradient of ( — H)9 forming a vector field X which
generates a deterministic drift. The Markovian diffusion process generated by Ω
has the Gibbs states associated with H as invariant, or equilibrium, measures.
More precisely the Gibbs states of H form the set of reversible states for this
process.

The existence of this Markov process was established in [3], and a high-
temperature uniqueness theorem for the equilibrium state was proved in [4], In
[5] the process was shown to converge, at an exponential rate, to the (unique)
equilibrium state at high temperatures. ([5] also contains a discussion of reversible
states and of the global Markov property.) These developments parallel earlier
work on the stochastic Ising model.

It is not presently known whether uniqueness of the Gibbs state (absence of
phase transition) implies convergence to equilibrium of the Markov process. (To
the author's knowledge it is not even known whether non-Gibbs invariant states
exist for either the stochastic Ising or Heisenberg models.) However if we impose
additional symmetry and regularity conditions on the initial state, we can prove
convergence to equilibrium whenever the Gibbs state is unique. If non-uniqueness
holds, convergence occurs to the set of Gibbs states. We will exploit the properties
of a functional on the set of states called the specific free energy (or free energy per
spin). This functional plays the role of a Liapunov function: it is monotonically
decreasing in time and reaches a minimum on the Gibbs states.

We will work in the same generality as [5]. We take the spin space M to be a
compact, orientable C°° Riemannian manifold with metric tensor g and volume
measure σ (normalized to be a probability measure). It will be conveniant to
assume that L = (Z + ̂ )d, the lattice of points in Rd obtained by translating the
integer lattice Zd by the vector (̂ , ...,χ). The state space of our Markov process is
Ξ = ML. The Hamiltonian will be given (formally) by

H=- ΣΆF), (3)
FCL

where {J(F):FCL, F finite} forms a family of potential functions satisfying:
(i) Smoothness: J(F) is a C00 function of ξ(χ), xeF.

(ii) Translation in variance: τxJ(F) = J(τxF) for all xeZ d , where
τxf(ξ) = f{τ~ίξ) for a function / on Ξ, and τ xξ(y) = ξ(y — x) is the induced action
on Ξ of translation by x.

(iii) Finite-range condition: J(F) = 0 if diam F > r, where r (the range of the
interaction) is a fixed positive number, and the distance on L is given by: dist

Although (3) does not define H as a function on Ξ, the expression

xeL xeL

[where dx is the differential with respect to ξ(x)~] yields a well-defined differential
operator with domain the C00 functions of finitely many manifolds. Equation (2)
then defines Ω on this domain.
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From (ii) and (iii) it is easily seen that there exist finite constants K1 and K2

with
IIPiϊΊl<K, IIP VH\\ < X ,
II v χxx II =r x v l ? II r χy y11 II = r J V 2 '

for all x and y in L, where we use Vx also for the covariant derivative with respect
to ξ(x), and the norms are supremums over Ξ of the magnitudes of the tensors.
Assuming these bounds and the finite-range condition, Faris in [3] proved that
the closure of Ω generates a Markov semigroup on C(Ξ). (We denote the closure of
Ω again by Ω — a convention we adopt throughout the paper for closable
operators. Dissipative operators are automatically closable.) Condition (ii) implies
additionally that S(t) commutes with τx for all ί^O and xeZd.

We now define the free energy functional. Let v be a state (probability measure)
on Ξ. We define the energy inside a finite set A C L by:

FCΛ

and the average energy inside A of v by: v(HΛ) = j HΛdv. We define the entropy
inside A of v (with respect to the product measure σ) by:

-$Φ(d(v\A)/dσ)dσ, if v\A<σ\A;

— oo, otherwise.

Here v\A denotes v restricted to the σ-algebra generated by ξ(x) for xeA, and
φ(t) = t logί — t + 1 for t > 0 and Φ(0) = 1. (For future reference, note that Φ is non-
negative and continuous for 0 ^ ί < o o and differentiable with derivative logί for
ί>0.)

The free energy FJy) of v inside A is defined to be:

FΛ(v) = v(HΛ)-TSΛ(v)

(T = β~1). The specific free energy of v is then defined as

/ ( v ) = l i m s u P μ | - 1 F i l ( v ) , (4)

where the limit is taken along a sequence of finite boxes A which increase to L "in
the sense of van Hove" [7] that is, |/l|-»oo in such a way that |^t| x [̂ t̂ | —> 1 for any
positive number r. (Here \Λ\ denotes the cardinality of A and A°r is the "r-interior"
of A i.e. the set {xeA: dist(x, dA) > r}) If H has finite-range potentials and both H
and v are translation invariant [v is translation invariant if v(τxf) = v(f) for all
fe C(Ξ) and xe Z d] it can be shown that the superior limit in (4) is actually a limit. In
this case we have also an infinite-volume version of the Gibbs Variational
Principle: If μ is translation invariant and f(μ) = inf/(v), the infimum being over
the translation invariant states, then μ is a Gibbs state of H. For discussion of these
ideas see [7], especially Chap. 7.

For the stochastic Ising model Holley in [8] proved that the specific free
energy of the state at time t is non-increasing with t, and if the initial state was
translation invariant, strictly decreases whenever the state in not a Gibbs state of
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H. It follows in the translation invariant case that the state at time t approaches
the set of Gibbs states as ί->oo. Thus uniqueness of the Gibbs state gives a
convergence theorem. Holley's theorem was generalized to include long-range
interactions by Higuchi and Shiga [9] and to more general jump processes by
Sullivan [10]. Using an improved expression for the time-derivative of the free
energy due to Moulin Ollagnier and Pinchon [11], Holley and Stroock in [12]
proved that for d^2 every equilibrium state of the stochastic Ising model is a
Gibbs state.

Our approach will be almost identical to Holley's. The single essential
difference is that we have to restrict further the class of initial states. We shall call a
state v locally smooth if

(i) v\Λ < σ\Λ for all finite A C L
(ii) qΛ = d(v\Λ)/dσ is a C1, positive function and there exists a constant C such

that

for all x and A.
The class of locally smooth states is fairly large. For instance, it includes all

Gibbs states of Hamiltonians H for which VXH is uniformly bounded. We restrict
all initial states to be locally smooth. The purpose of the theorems in Sect. II is
essentially to allow us to prove that this class is invariant under the time evolution.

The following theorems will be proved.

1.1. Theorem. Let v be a locally smooth initial state and v(t) = vS(t) the state at time
t. Then the specific free energy f(v(t)) is non-increasing with t. If in addition v is
translation invariant, then /(v(ί)) strictly decreases over a time interval [ί0, t0 + ε)for
some ε>0 whenever v(ί0) is not a Gibbs state of the Hamiltonian H.

Corollary. The only locally smooth and translation invariant equilibrium states are
Gibbs states.

1.2. Theorem. Let v be a translation invariant, locally smooth initial state with
/(v)< oo. If μ is a weak limit point of{v(s):s^t}for each ί^O, then μ is a Gibbs state
ofH.

Corollary. Ifv is as above and the Gibbs state μ ofH is unique, then v(t)-+μ weakly as
£-•00.

Remark. As another corollary of Theorem 12 we obtain the variational principle
mentioned previously for locally smooth states.

The proof of these theorems has been divided into several sections. In Sect. II a
smoothness-preserving property of the time evolution operator is established. In
Sect. Ill a formula for the rate of decrease of the specific free energy is derived. As a
guide to the reader we list the essential steps in this derivation.
Steps (1) and (2) : The infinite-volume time evolution is replaced by a limit of
finite-volume evolutions. Translation-invariance is restored by imposing periodic
boundary conditions on the potentials.
Steps (3) through (6) : The time derivative of the free energy in a box A is
computed for the time evolution in a box Γn D A. Boundary terms are shown to be
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of order |δ,.ylj!|, where for FCL, drF = {yeL\Λ\dist(y,F)^r}. The remaining terms
are non-positive. Taking the limits ΓJL, then A\L, the boundary terms drop out
and we obtain a bound on the time-derivative of /(v(t)).
Steps (7) and (8) : Imposing translation invariance on the initial state, the bound
on the time-derivative of the free energy in A is shown to be monotonic in A. This
yields an improved formula for the rate of decrease of /(v(ί)).

In Sect. IV we prove the theorems with the aid of a proposition characterizing
the Gibbs states of the Hamiltonian by a set of partial differential equations.

After completing this manuscript the author received paper [14], in which the
authors obtain analytically better results for the planerotor models. They prove a
smoothness-improving property of the time evolution and are thus able to drop the
local smoothness assumption on the initial state as well as the condition /(v)< oo.

II. Smoothness-Preserving Properties of the Time Evolution

In this section we employ methods similar to those used by Faris in [3] to prove
that the semigroup associated with our diffusion process preserves certain classes
of smooth functions on the configuration space. We shall work on finite-
dimensional manifolds, but the bounds proved will be independent of the
dimension of the manifold. The theory elaborated herein may be regarded as an
addendum to Faris'existence theorem [3].

Let (N,g) be a finite-dimensional, C00 Riemannian manifold. We will use an
index notation for the values of tensors on N with upper indices representing
contravariant values and lower indices, covariant ones. Thus Xa is a vector, ua is a
one-form, etc. Indices are raised or lowered with the metric tensor g and repeated
indices imply contraction. The covariant derivative will be written as Va. [Note:
on scalar functions f, Vaf = daf will denote the differential of/ (a one-form); the
gradient of / will be written Vaf = gabVhf.~] The magnitude of a tensor T at a point
of N will be calculated with the metric and written: | T\. Thus e.g. \X\ = (XaXa)

1/2 for
a vectorfield X.

Let H be a smooth function on N, Xa = - βVaH, and Ω = Δ+X-d with domain
C°°(N). The semigroup {S(t):t^O} generated by the closure of Ω has a unique
reversible measure μ = Z~ι exp( — βH) cf. [5, Sect. V]. We shall be interested in the
Banach space //(JV, T1, μ) of measurable one-forms on N with norm

We shall need in addition the operator Ω with domain C°°(N9 T
1), the space of

smooth one-forms on JV, defined by:

(Ωu)a=VbVbua+XbVbua.

Faris proved in [3] that the closure of Ω generates a c0-contraction semigroup on
C(N, T1), the space of continuous one-forms on JV. (c0 means strongly continuous
in ί.) This process had been discussed originally by Ito [6].
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II. 1. Theorem. Ω generates a c0-contraction semigroup on LX(N, T1, μ).

Remark. Defining LP(N, T1 μ) similarly with norm

u\\p=n\u\pdμ lίp

one can extend this theorem to Lp for 1 !gp< oo.

Π.2. Theorem. Let /eC°°(JV). There is a bound, for all t^O:

with C a positive constant equal to \\R\\ + β\\ VVH\\, where R is the Riccί tensor on N,
and the norms are the supremums over N of the norms of the linear transformations
Rb

a and VaV
bH. (Alternatively one could take the magnitudes of the tensors.)

When N is a product of Riemannian manifolds, N = MΛ with A a finite set, it
will be convenient for the developments in the next chapter to consider a different
Banach space of one-forms. For this purpose and for clarity of exposition we
introduce projections πλ, xe A which project tensor indices in the direction of the
tangent or con tangent space to the manifold Mx. Thus if X is a vector field on N,
πJC is the vector field on N obtained from X by projecting X(ξ) into the tangent
space to Mx at ξ(x) (and similarly for one-forms and tensor fields). We then define
L\{MA, T1, μ) to be the Banach space of measurable one-forms with norm

||M|| l f i l = max \\πxu\dμ.
xeΛ N

Π.3. Theorem. Ω generates a c0-contraction semigroup on L\(MΛ, T1, μ).

II.4. Theorem. Iff is in C^iM*) there is a bound, for all f^O:

\\dS(t)f\\ltA^eCt\\df\\ltA9

where C= \\R\\ + msixJ^β\\πxVπyVH\\, R is the Ricci tensor on M, and the norms are

the supremums of the magnitudes of the tensors.

Proof of Theorem ΠΛ. Clearly Ω is densely defined and, by Faris' theorem and the
density of C(N, T1) in L 1,1—κΩ has dense range for all κ^0. Thus we need only
show that Ω is dissipative. For the proof of this we need the following criterion: If
A is an operator on a Banach space B, then A is dissipative if for every u in D(A)
there exists a normalized tangent functional u* to u (that is, an element w*ei3*, the
dual of 5, of norm one with <w*,w> = ||w||) such that (u*,Au}t^0. In fact then

Let ueC^iN.T1) and define a measurable vector field on N by setting
γa = \u\~ 1ua on the set E where u doesn't vanish, and set 7 = 0 outside E. Define a
linear functional on L1 by: <^ u) = j Yauadμ. It is easily checked that this defines a
normalized tangent functional to u and we will show that (Y,

We have

<X Ωu) = j YaΩuadμ = f \u\~ ιuaΩuadμ
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(where the integral is restricted to E). Since μ = ρσ with ρ smooth we have, by an
application of the Leibniz rule,

-QV\\u\-χua) Vbua}. (1)

The second term on the right side of (1) vanishes since — Vρ + ρX = 0. For the third
term note that on the set E where u doesn't vanish,

V\\u\~ V ) Vbua = V\\u\~ V ) Vb(\u\~ V\u\)

Thus the third term makes a negative contribution to the integrand.
This leaves the first term, to which we apply the divergence theorem, as follows:

First shrink E to Eε = {\u\^ε} for β>0. Note that

J dσVb(ρ\uΓίuaVbua)= J
Eε Eε

so that by the divergence theorem the latter equals

J dsρVb\u\-n\
dEε

where n is the unit outward normal vector to dEε and ds is the surface measure on
dEε. Since Vb\u\ points inward, the integrand is non-positive. Letting ε-^0 we obtain
the first term in (1) which thus also makes a non-positive contribution to the
integral. Therefore Ω is dissipative. •

Proof of Theorem 11.2. We begin with the equation intertwining Ώ, Ώ, and the
differential operator d used by Faris in proving his existence theorem:

valid for any /6C°°(iV). Here R is the Ricci tensor of (N,g). We rewrite this
equations as

(Ω + P)df. (2)

The closure of Ω generates a ^-contraction semigroup by Theorem II. 1. P
represents a bounded perturbation:
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where the norms on the tensors represent supremums over N of the operator
norms. (Alternatively one may take the magnitudes of the tensors calculated with
the metric g-these represent the Hilbert-Schmidt norms of the linear transfor-
mations and so are larger than the operator norms.)

We shall need the following well-known proposition from semigroup theory.

Proposition 1. Let (the closure of) Ω be the generator of a c0-contraction semigroup
on the Banach space B, and let P be a bounded perturbation. Then the closure of
Ω + P generates a c^-semigroup {S(t):t^O} and there is a bound, for all ueB:

[Proof It is easily checked that the closure of Ω + P— \\P\\I generates a c0-
contraction semigroup {S(ή} and that S(t) is related to S(t) by: S(ί) = βl |p| | ίS(f).]

Since {I-KΩ)"1 C^C/VHC^JV) (by elliptic regularity) we obtain from (2):

d(I-κΩy1f = (I-κf)-ίdf (3)

for all /c^O and /EC°°(A0, where Γ is the closure of Ω + P. Iterating (3) n times
with κ — t/n and letting n—>oo, we obtain from the Hille-Yosida theorem

dS(t)f = S(t)df9

where {S(t)} is generated by Γ. Now the proposition applies. Q

Proof of Theorem 11.3. Again we need only prove that Ω is dissipative on L\. Let
UECCO(M, T1) and define a measurable vector field as follows. Let xoeΛ be the
element for which

$\πXQu\dμ= max $\πxu\dμ

and define πXQYα = \πXQu\~ 1πXQuα or zero and πxY
α = 0 for x φ x 0 . Again it is easily

checked that Y defines a normalized tangent functional in (L\)*. Since πXo

commutes with Ω we have

= ίKou\~1πXou
α'ΩπXouαdμ.

Thus the proof of Theorem II. 1 applies with uα replaced by nXQuα and we obtain
< Y, Ωu} S 0. Thus Ω is dissipative. Π

Proof of Theorem IIA. The proof of Theorem II.2 applies but with a different
bound on the perturbation term. We have

Since nxRπy = 0 if x φ y we obtain the constant used in the theorem on the right-
hand side. •
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III. Rate of Decrease of the Free Energy

Step ί. Let i C L be a finite set. The free energy FΛ(v) inside A is a lower
semicontinuous function of v in the weak topology:

l m m f F > π ) ^ F » . (1)

if vn->v weakly. The proof of this assertion follows from the fact that HΛ is
assumed to be continuous, and from the following lemma (stated in somewhat
greater generality in [10]).

Lemma. Let {gv .. ,gm} be a finite partition of unity on MΛ consisting of Borel
functions, and define a state v* by:

i= 1

Then SΛ(v*)^SΛ(v). Furthermore if a is any real number with a>SΛ(v), there exists a
partition of unity {gv ...,gm} consisting of continuous functions on MΛ for which
<*>SΛ(v*).

Step 2. In this step we introduce finite-volume evolution operators approximating
S(t). Let Γn = [—n,n]dnL for n>3r. (r is the range of the potentials.) In order to
preserve translation invariance we impose periodic boundary conditions on the
potentials, as follows. Let {Jn(F):FcΓn} be the uniquely defined set of potentials
which are invariant under translations (mod — 2n) of Γn and satisfy: Jn(F) = J(F) if

F C (Γn)°r. Define Hn = — £ Jn(F). By pulling back along the canonical projection:
FcΓn

Ξ^MΓn we may regard functions on MΓn as being defined on Ξ and define
Ωn = Δ — βVHn-d. Ωn generates a Markov semigroup {Sn{ή} on C(Ξ) leaving the
space C{MΓ

n) invariant and commuting with translations (moά-2n) of this space.
The space D of C00 functions of finitely many spins is a common core of all Ωn

and Ω, and Ω ^ Ω on D. [Note that VxHn = VxH if x e ( / χ ] By the Trotter-Kurtz
theorem [13], Sn(ή-+S(t) as n-+cc strongly on C(Ξ). Hence vSn(t) = vn(t)-^v(t)
weakly. We then have from Step 1, for any finite ΛcL:

FΛ(v(ή) - FJy) g lim inf (FΛ(vn(t)) ~ Fjy))

Step3. If n is sufficiently large [such that Ac(Γχ] we have

FA\{t))-FΛ^)=\GΛ,n{τ)dτ (3)
0

with

GΛtn(t) = ΪΩn{HA+ T \ogqΛJt))dvn(t)9 (4)
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where

qΛJt) = d(vn(t)\Λ)βσ. (5)

To establish this formula we prove that FΛ(vn(tj) is differentiable for ί > 0 with
derivative GΛJt) and continuous at ί = 0. Let g be a C 2 function on MΛ. Since
qΛ,n(t){ξ) is a C00 function of (ί, ξ)e{0, oo) x AT1 we have

, n(£)rfσ = d/dΐ J gfgyli B(t)dσ

= \Ωngdvn(t).

The derivative of the energy term in the free energy is therefore

d/dt$qΛJt)HΛdσ=lΩnHΛdvn(ή,

and the derivative of the entropy term is

d/dtT$ Φ(qΛJή)dσ= T$Φ'(qΛJt))d/dtqΛtn(t)dσ

= T$Ωn\ogqΛJt)dvn(t).

To prove the continuity assertion, let qn(t) = d(vn(t)\Γn)/dσ. It is readily shown
that qn(t) is the solution of the "forward equation"

with initial condition qn(0) = d(v\Γn)/dσ. Since Ql

n is the formal adjoint of Ω with
respect to σ, it is the sum of first and second order terms (which generate a
contraction semigroup on C(MΓn)) and a zeroth order term (representing a
bounded perturbation). Hence its closure generates a c0-semigroup on C(MΓn).
Thus qn(ή-^qn(0) uniformly as ί-»0. Since qΛn{t) is obtained from qn(X) by
integrating out spins with product measure, qΛtn(t)-^qΛtn(O) as well. This gives the
continuity of FJyn(t)) at ί = 0.

Step 4. Define

GΛ.n{t) = 1 ΩΛ(HΛ + T l o g ^ ^ d v ^ ί ) , (6)

where ΩΛ = Δ — βVHΛ>d. In this step we show that

°r\ (7)

with C(ί) bounded independently of n and A.
To prove this we need uniform L1-bounds on the differential of qΛ>n(t). We

appeal to Theorem II.4 of Sect. II. Let μn = ρnσ be the unique reversible measure for
{Sn(ή}9 cf. [5]. [ρn is a constant times exp(-jMϊJ.] Writing pn(t) = d{vn(ή\Γn)/dμn it
is easily seen (using the reversibility of μn) that pn(t)==Sn(t)pn(O). Since qn(t) = pn{t)ρn
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we have

sup J \dxqn(t)\d<r= sup j \djpn(t)ρn)\dσ

(8)

[Theorem II.4 was used in the third line with C = \\R\\ +β(2r+l)dK2.'] Since v was
assumed to be locally smooth this last bound is independent of n. The same bound
holds with qA β) replacing qn(t), since the former is obtained from the latter by
integrating out spins.

The difference between GΛ n(t) and GA n(t) is a term equal to

- Σ βΠKHA - VXH) • dx(HA + T • logqΛJt))dvJtt).
xedrΛ?

This term is bounded by

\xedrΛ°

which in turn is less than

2βKJ Σ (K1 + T$\dxqΛJή\dσ)). (9)

Combining the bounds (8) and (9) we obtain Eq. (7).

Step 5. Applying the divergence theorem to the integral in the definition of GA n(t)
yields

GΛln{t) = J qAtn(ί)(J - βVHΛ d)(HA + T' logqA>n(t))dσ

= - Σ ΠKqΛ,M + βqΛJt)VxHΛ)'dx(HΛ + T'
xeΛ

= - Σ TiqΛJtΓ1\VxqΛJt) + βqΛJt)VxHΛ\
2dσ. (10)

xeΛ

Step 6. Define

GΛ(t)=limsupGΛn(t).
n-+ oo '

Applying Fatou's inequality [note that GAn{t)^O by Eq.(10)] and the results of
the previous steps we see that

FΛ(v(t))- FΛ(v) S } GA(τ)dτ + C(t)\drΛ°r\.
o
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Dividing by \A\, letting A\L in the sense of van Hove, and applying Fatou again
we obtain:

f(v{t))-f{v)^\g{τ)dτ, (11)
0

where

g(t) = lim sup l^l" 1 GΛ(t). (12)

Step 7. We assume from now on that v is translation invariant. Our aim now is to
obtain improved versions of formulas (10)—(12) by exploiting translation in-
variance. Let Am = [ — 2m, 2m]dc\L and define for each integer m and sufficiently
large n [such that ΛmC(Γ£\,

Πm,n(t)=- Σ T$qΛmίn(tyψxqΛmJt) + βqΛmJt)VxH\2dσ (13)
xe(Λm)9

and
Πm(ί)=limsupJ7m i l I(t). (14)

From Step 5 we see that Πm(t) represents the rate at which the free energy in Λm is
decreasing due to the evolution of the spins in (Am)°. In this step we establish the
inequality:

Since \ΛJ = 2{m+1)d it follows that the infinite-volume limit

Π(t) = Urn \ΛJ ~ ιΠm(t) = inf \Am\ ~ *Πm(t)

exists.
To prove inequality (15) let Λi

m_ί,ϊori = l,..., 2d, be the decomposition of Λm

into disjoint boxes all of which are translates of Λm_v We have

Πmβ)ύ~ ΣτhΛmJtΓι Σ KqΛmJt) + βiΛm,MKH\2dσ. (16)
ί = l xe(Λin-i)?

We employ the following inequality, valid for measurable functions /and ^ > 0 o n
a measure space (X, Σ, μ) by Holder's inequality:

. (17)

Integrating in the ίth term on the right side of (16) first over the variables ξ(x) for x
in the complement of Ai

m_1 and using inequality (17),

Πm.am Σ tfm-X.πW,
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where Πi

m_ln(t) is defined similarly to Πm_ln(t) but with Λi

m_1 replacing Λm_v

Since Sn(t) commutes with translations (mod — In) of Γn and v is translation
invariant it is easily shown that

provided that both A and Λ + x are in Γn. Applying this fact to the integral
defining Πi

m_1 n(t), we conclude that Πi

m_ln(t) = Πm_ln(t) for each i.

Step 8. Applying Fatou's inequality again we obtain

where

f(v(t))-f(v)^$Π(τ)dτ, (18)

i7(ί)=jimμmr^limsupj-

This is the required expression.

(19)

IV. Proof of the Theorems in Sect. I

The proof of the first claim in Theorem LI was completed in Step 6. For the proof
of the second statement we need the following proposition and Lemma.

Proposition 2. Let H have potentials of range r, and let μbe a state on Ξ. Then μis a
Gibbs state of H if and only if it is locally absolutely continuous with respect to
product measure σ and for every finite ACL the Radon-Nikodym derivative
qΛ = d{μ\Λ)/dσ satisfies

VxqA + βqAVJί = Q (1)

for allxeΛ°r.

Remarks. (1) This proposition is closely connected with the characterization of the
Gibbs states by their quasi-invariance under rotation of finitely-many spins. (2)
For plane-rotor models (M = Sλ) it is easily seen that (1) is equivilent to the
equations (in the notation of the appendix to [5]):

n(x)μ{n) + βΣ m{x)H(m)μ(n - m) = 0
m

holding for all multiindices n, where μ(n) is the Fourier coefficient

Proof of Proposition 2. Let μ be Gibbs and ACL finite. Let QΛtζ{ ) be the density
with respect to σ of the conditional Gibbs state μΛζ (with boundary condition
ζeMLχA) defined in [5, Sect. V]. QA^ is the unique solution of the equations
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for xeΛ. Let u be any smooth one-form on MΛ. By pulling back u along the
canonical projection: ML-+MΛ, we may regard u as a one-form on Ξ. Using the
divergence theorem we have, for all boundary conditions ζ,

Integrating over ζ with μ and using the DLR equations we obtain

S (2)

Now assume that ux = πxu is non-zero only if xeΛ°. Then VH-u= Σ ^ ^ ' u χ
xeΛ$

is independent of ζ and so (2) may be written

Since u was arbitrary we obtain (1).
Conversely assume that (1) is satisfied. Let u = gv with g a smooth function of

η(x) for xedrA°r and v the pull-back of a one-form on MA°.Then (2) holds for this u.
If μ( \df.Λ°)(η) is a regular conditional expectation for μ given the configuration η
on drA°r we obtain from (2):

0 = J dμ(η)g(η) j dμ{ξ\drA%η){- V v(ξ) + βυ(ξ) VHA9tη(ξ)).

Letting ^ and v range over suitable countable dense subsets we conclude that
μ(-\drΛ°)(η) is, for μ-a.e. η, a weak solution of the first order system

for xeΛ°. Uniqueness and regularity theorems for first order linear PDE.'s then
give

for μ-a.e. η. Thus μ satisfies the DLR equations with A°r replacing A. Π

Lemma. Suppose that μ is not a Gibbs state of the Hamiltonian H. Then there exist
positive numbers ε and δ and a neighborhood U of μ in the weak topology such that if
v is locally smooth, translation invariant and contained in U then

Proof of the Lemma. If μ is not Gibbs, then by the preceding proposition there
exists a smooth one-form u (the pull-back of a one-form on MΛ for some finite A)
and δί>0 such that

>δ1\\u\2dμ. (3)
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Define Ui to be the set of states for which (3) holds. Uί is open in the weak
topology and contains μ. By the continuity of the map (v, ί)->v(ί) we can find ε > 0
and a possibly smaller neighborhood U of μ such that v(t)e UιiϊveU and Orgί^ε.

Now let v be locally smooth, translation invariant and contained in U.
Defining qΛ n(t) as in Step three we obtain (by an application of Holder's
inequality):

After an application of the divergence theorem and making several obvious
substitutions we obtain

- Σ
xeΛ

- u)dvn(ή)2/(ί \u\2dvn(ή). (4)

Since vn(ί)->v(ί) as n->oo, vn(ί) is eventually in U. Let m0 be so large that
ΛC(Λmo)°r. We conclude from Sect.Ill, (13), (14) and Sect.IV, (4) that

for 0 rg t S ε. Defining δ = <51|̂ 4Ĵ O| ~
1 and remembering that \ΛJ ~ 1Πm(t) decreases as

m-»oo we see from Sect. Ill, (19) that

for 0 S t S ε. The lemma now follows from the formula of Step eight. •
Returning to the proof of the theorems, we note that the second assertion of

Theorem I.I is an immediate consequence of the lemma. Theorem 1.2 follows
immediately from the lemma and the observation that the free energy functional is
bounded below. [The entropy makes a non-positive contribution to the free
energy, and there exists a constant C< + oo with HΛ( ) ^ . — C|yl|.] Π
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