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Monotonicity of the Free Energy
in the Stochastic Heisenberg Model*

William D. Wick**
Mathematics Department, University of Washington, Seattle, WA 98195, USA

Abstract. The specific free energy of the state at time ¢ of the stochastic
Heisenberg model is shown to be non-increasing with ¢, and to strictly decrease
whenever this state is not a Gibbs state of the Hamiltonian. The initial state is
assumed to be translation invariant and suitably smooth. For such states a
convergence theorem is obtained.

I. Introduction

The classical Heisenberg model is one of a class of lattice spin models in which the
range of a single spin is a sphere S”, n> 1, rather than the two-point set §°, as in the
Ising model. The Hamiltonian for these models is given (formally) by:

H=—3 Y} &x)-&0, (1)

x,yeL
Ix=y=1
where £(x)e S" is the spin at site x, L is a d-dimensional lattice, and the “-” denotes
dot product in R""!, Special cases include the planerotor models (n=1) and the
classical Heisenberg model (n=2, and usually d=3).

For these models with continuous symmetry groups invariance of phase is
expected if d=2 and phase-transition with associated continuous symmetry
breaking if d=3. These facts were established in [1,2].

The stochastic Heisenberg model, a probabilistic model for the dynamics of the
classical Heisenberg model, was introduced by Faris in [3]. This is a Markovian
model with infinitesimal generator

Q=A—pVH-d. )

In this equation the first term is the infinite-dimensional Laplace operator and
generates a Brownian motion of the individual spins. The second term is the inverse
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temperature (f) times the gradient of (— H), forming a vector field X which
generates a deterministic drift. The Markovian diffusion process generated by Q
has the Gibbs states associated with H as invariant, or equilibrium, measures.
More precisely the Gibbs states of H form the set of reversible states for this
process.

The existence of this Markov process was established in [3], and a high-
temperature uniqueness theorem for the equilibrium state was proved in [4]. In
[5] the process was shown to converge, at an exponential rate, to the (unique)
equilibrium state at high temperatures. ([5] also contains a discussion of reversible
states and of the global Markov property.) These developments parallel earlier
work on the stochastic Ising model.

It is not presently known whether uniqueness of the Gibbs state (absence of
phase transition) implies convergence to equilibrium of the Markov process. (To
the author’s knowledge it is not even known whether non-Gibbs invariant states
exist for either the stochastic Ising or Heisenberg models.) However if we impose
additional symmetry and regularity conditions on the initial state, we can prove
convergence to equilibrium whenever the Gibbs state is unique. If non-uniqueness
holds, convergence occurs to the set of Gibbs states. We will exploit the properties
of a functional on the set of states called the specific free energy (or free energy per
spin). This functional plays the role of a Liapunov function: it is monotonically
decreasing in time and reaches a minimum on the Gibbs states.

We will work in the same generality as [5]. We take the spin space M to be a
compact, orientable C* Riemannian manifold with metric tensor g and volume
measure ¢ (normalized to be a probability measure). It will be conveniant to
assume that L=(Z+1%), the lattice of points in R? obtained by translating the
integer lattice Z by the vector (4, ..., 3). The state space of our Markov process is
Z=M". The Hamiltonian will be given (formally) by

H=— ) J(F), 3)

FcL

where {J(F):F CL, F finite} forms a family of potential functions satisfying:
(i) Smoothness: J(F) is a C* function of &(x), xeF.
(ii) Translation invariance: t J(F)=J(t,F) for all xeZ% where
1. f(&)=f(r; '&) for a function f on E, and 1,&(y)=&(y— x) is the induced action
on E of translation by x.
(i) Finite-range condition: J(F)=0 if diam F>r, where r (the range of the
interaction) is a fixed positive number, and the distance on L is given by: dist

(x,y)= Z Ix;— yil-
Although (3) does not define H as a function on Z, the expression

VH-d=Y VH-d,= Y d.H-g~'-d

xeL xeL

x

[where d, is the differential with respect to &(x)] yields a well-defined differential
operator with domain the C® functions of finitely many manifolds. Equation (2)
then defines Q on this domain.
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From (ii) and (iii) it is easily seen that there exist finite constants K, and K,
with
WHI=K, [V HI=K,,

for all x and y in L, where we use V, also for the covariant derivative with respect
to &(x), and the norms are supremums over = of the magnitudes of the tensors.
Assuming these bounds and the finite-range condition, Faris in [3] proved that
the closure of 2 generates a Markov semigroup on C(Z). (We denote the closure of
Q again by Q— a convention we adopt throughout the paper for closable
operators. Dissipative operators are automatically closable.) Condition (ii) implies
additionally that S(f) commutes with t_ for all >0 and xe Z*.

We now define the free energy functional. Let v be a state (probability measure)
on Z. We define the energy inside a finite set ACL by:

Hy,=— Y J(F),

FcA

and the average energy inside A of v by: v(H )= [ H ,dv. We define the entropy
inside A of v (with respect to the product measure o) by:

— [ ®(d(v|A)/do)do, if vlA<old;
S4v)= :

— 00, otherwise.
Here v|A denotes v restricted to the g-algebra generated by &(x) for xe A, and
@(t)=tlogt—t+1 for t>0 and &(0)=1. (For future reference, note that @ is non-
negative and continuous for 0=t < co and differentiable with derivative logt for
t>0.)

The free energy F ,(v) of v inside A is defined to be:

F (v)=v(H )— TS 4(v)

(T=pB"1). The specific free energy of v is then defined as
-1 -1
JO)=lim sup |47 F 4(v), 4)

where the limit is taken along a sequence of finite boxes A which increase to L “in
the sense of van Hove” [7]; that is, | A|— co in such a way that |A]| |42 — 1 for any
positive number r. (Here |A4| denotes the cardinality of A and A is the “r-interior”
of A;i.e. the set {xe A:dist(x,04)>r}.) If H has finite-range potentials and both H
and v are translation invariant [v is translation invariant if v(t,.f)=v(f) for all
feC(E)and xe Z*]it can be shown that the superior limit in (4) is actually a limit. In
this case we have also an infinite-volume version of the Gibbs Variational
Principle: If u is translation invariant and f(u)= inf f(v), the infimum being over
the translation invariant states, then p is a Gibbs state of H. For discussion of these
ideas see [7], especially Chap. 7.

For the stochastic Ising model Holley in [8] proved that the specific free
energy of the state at time ¢ is non-increasing with ¢, and if the initial state was
translation invariant, strictly decreases whenever the state in not a Gibbs state of
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H. It follows in the translation invariant case that the state at time ¢ approaches
the set of Gibbs states as t—o00. Thus uniqueness of the Gibbs state gives a
convergence theorem. Holley’s theorem was generalized to include long-range
interactions by Higuchi and Shiga [9] and to more general jump processes by
Sullivan [10]. Using an improved expression for the time-derivative of the free
energy due to Moulin Ollagnier and Pinchon [11], Holley and Stroock in [12]
proved that for d=<2 every equilibrium state of the stochastic Ising model is a
Gibbs state.

Our approach will be almost identical to Holley’s. The single essential
difference is that we have to restrict further the class of initial states. We shall call a
state v locally smooth if

(i) v|4<o|A for all finite ACL;

(i) g,=d(v|A)/da is a C*, positive function and there exists a constant C such
that

[IV.asldo=C

for all x and A.

The class of locally smooth states is fairly large. For instance, it includes all
Gibbs states of Hamiltonians H for which V H is uniformly bounded. We restrict
all initial states to be locally smooth. The purpose of the theorems in Sect. II is
essentially to allow us to prove that this class is invariant under the time evolution.

The following theorems will be proved.

I.1. Theorem. Let v be a locally smooth initial state and v(t)=vS(t) the state at time
t. Then the specific free energy f(¥(t)) is non-increasing with t. If in addition v is
translation invariant, then f((t)) strictly decreases over a time interval [t, t, +¢) for
some e¢>0 whenever V(t,) is not a Gibbs state of the Hamiltonian H.

Corollary. The only locally smooth and translation invariant equilibrium states are
Gibbs states.

1.2. Theorem. Let v be a translation invariant, locally smooth initial state with
J)<oo. If wis a weak limit point of {v(s):s 2t} for each t 20, then v is a Gibbs state
of H.

Corollary. If v is as above and the Gibbs state p of H is unique, then w(t)— u weakly as
t—00.

Remark. As another corollary of Theorem 12 we obtain the variational principle
mentioned previously for locally smooth states.

The proof of these theorems has been divided into several sections. In Sect.IT a
smoothness-preserving property of the time evolution operator is established. In
Sect. I1I a formula for the rate of decrease of the specific free energy is derived. As a
guide to the reader we list the essential steps in this derivation.

Steps (1) and (2): The infinite-volume time evolution is replaced by a limit of
finite-volume evolutions. Translation-invariance is restored by imposing periodic
boundary conditions on the potentials.

Steps (3) through (6): The time derivative of the free energy in a box A is
computed for the time evolution in a box I',D A. Boundary terms are shown to be
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of order |0,42], where for FCL, 0,F ={ye L\A:dist(y, F)<r}. The remaining terms
are non-positive. Taking the limits I, 7L, then ATL, the boundary terms drop out
and we obtain a bound on the time-derivative of f(v(t)).
Steps (7) and (8) : Imposing translation invariance on the initial state, the bound
on the time-derivative of the free energy in A is shown to be monotonic in A. This
yields an improved formula for the rate of decrease of f(v(t)).
In Sect. IV we prove the theorems with the aid of a proposition characterizing
the Gibbs states of the Hamiltonian by a set of partial differential equations.
After completing this manuscript the author received paper [14], in which the
authors obtain analytically better results for the planerotor models. They prove a
smoothness-improving property of the time evolution and are thus able to drop the
local smoothness assumption on the initial state as well as the condition f(v) < c0.

II. Smoothness-Preserving Properties of the Time Evolution

In this section we employ methods similar to those used by Faris in [3] to prove
that the semigroup associated with our diffusion process preserves certain classes
of smooth functions on the configuration space. We shall work on finite-
dimensional manifolds, but the bounds proved will be independent of the
dimension of the manifold. The theory elaborated herein may be regarded as an
addendum to Faris’ existence theorem [3].

Let (N, g) be a finite-dimensional, C* Riemannian manifold. We will use an
index notation for the values of tensors on N with upper indices representing
contravariant values and lower indices, covariant ones. Thus X is a vector, u, is a
one-form, etc. Indices are raised or lowered with the metric tensor g and repeated
indices imply contraction. The covariant derivative will be written as V. [Note:
on scalar functions f, V. f =d_ f will denote the differential of f (a one-form); the
gradient of f will be written V“f =g“’V, f.] The magnitude of a tensor T at a point
of N will be calculated with the metric and written: |T|. Thus e.g. |[X|=(X“X)'/? for
a vectorfield X.

Let H be a smooth function on N, X*= — fV'*H, and Q= A +X -d with domain
C™(N). The semigroup {S(t):t=0} generated by the closure of Q has a unique
reversible measure u=Z"'exp(— BH) cf. [ 5, Sect. V]. We shall be interested in the
Banach space LY(N, T*, u) of measurable one-forms on N with norm

lfully = § luldy.
N

We shall need in addition the operator Q with domain C®(N,T"), the space of
smooth one-forms on N, defined by:

(Qu), = V"V, +X"V,u,.

Faris proved in [3] that the closure of Q generates a co-contraction semigroup on
C(N, T"), the space of continuous one-forms on N. (¢, means strongly continuous
in t.) This process had been discussed originally by Ito [6].
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IL1. Theorem. Q generates a cy-contraction semigroup on L*(N, T*, w).

Remark. Defining LP(N, T*; ) similarly with norm

Iluilp=(£|ul"du)”",

one can extend this theorem to L* for 1 Sp<co.
I1.2. Theorem. Let fe C*(N). There is a bound, for ail t =20:
IS f1l, <e“lldf 1l

with C a positive constant equal to |R|| + B|VVH|, where R is the Ricci tensor on N,
and the norms are the supremums over N of the norms of the linear transformations
RY and V,VPH. ( Alternatively one could take the magnitudes of the tensors.)

When N is a product of Riemannian manifolds, N=M* with A a finite set, it
will be convenient for the developments in the next chapter to consider a different
Banach space of one-forms. For this purpose and for clarity of exposition we
introduce projections 7., xe A which project tensor indices in the direction of the
tangent or contangent space to the manifold M. Thus if X is a vector field on N,
n X is the vector field on N obtained from X by projecting X () into the tangent
space to M at &(x) (and similarly for one-forms and tensor fields). We then define
LY(M*, T, p) to be the Banach space of measurable one-forms with norm

lull, ,=max {|muldu.
xeA N

I1.3. Theorem. Q generates a c,-contraction semigroup on LY(M4, T, ).

IL4. Theorem. If fis in C*(M*) there is a bound, for all t=0:
1dS@ fIly o= e“Ndf g 4

where C=||R|| + maxz Bln Vr VHI, R is the Ricci tensor on M, and the norms are
the supremums of the magnltudes of the tensors.

Proof of Theorem I1.1. Clearly Q is densely defined and, by Faris’ theorem and the
density of C(N, T") in L', I— xQ has dense range for all x>0. Thus we need only
show that Q is dissipative. For the proof of this we need the following criterion : If
A is an operator on a Banach space B, then 4 is dissipative if for every u in D(A)
there exists a normalized tangent functional u™* to u (that is, an element u*e B*, the
dual of B, of norm one with {u* u)>=|ul) such that {u*, Au) <0. In fact then
(I = kAl = <u*, (I — kA)up 2 |ul.

Let ueC*®(N,TY) and define a measurable vector field on N by setting

=|u|” 'u® on the set E where u doesn’t vanish, and set Y =0 outside E. Define a

11near functional on L* by: (Y, up = | Y*u,du. It is easily checked _that this defines a
normalized tangent functional to u and we will show that (Y, Qu) <0.

We have

Y, Quy = [ YQu,du= [ lul~ L Qudy
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(where the integral is restricted to E). Since pu=go with ¢ smooth we have, by an
application of the Leibniz rule,
[l ™ uQu du = doolul ™ 'u{V*V, + X*V,}u,
={do{Vo(olul ™ 'u*Vyu,) + lul " uVu,(— V' + 0X?)
—oV(ul~ ' u) - Vyu,} - (1)

The second term on the right side of (1) vanishes since — Vg +¢X =0. For the third
term note that on the set E where u doesn’t vanish,

Vo(ul™ ) Vo, = Vo(ul ™ ) Pyl ™, - Jul)
=V (ul™ @)l ful + 37 (ul ™ ul ™ )
=V (ju| " 'u)|* - |u|+0.
Thus the third term makes a negative contribution to the integrand.

This leaves the first term, to which we apply the divergence theorem, as follows :
First shrink E to E,={Ju|=¢} for e>0. Note that

[ doV*(elul ™ uVu) = | doV*(olul ™ Vylul?)
E.

&

=y

ey

doV*(oVlul),

o]

&

so that by the divergence theorem the latter equals

[ dseVijul-n,

OE,

where n is the unit outward normal vector to 0E, and ds is the surface measure on
OE,. Since V,lu| points inward, the integrand is non-positive. Letting e—0 we obtain
the first term in (1) which thus also makes a non-positive contribution to the
integral. Therefore Q is dissipative. []

Proof of Theorem I1.2. We begin with the equation intertwining Q, Q, and the
differential operator d used by Faris in proving his existence theorem:

4,01 =0d, f +(R0+V.X")dyf ,

valid for any feC®(N). Here R is the Ricci tensor of (N,g). We rewrite this
equations as
dQf =(Q+ P)df . )

The closure of Q generates a c,-contraction semigroup by Theorem 11.1. P
represents a bounded perturbation:

IPully = [ IR+ VX)uldp
<(IRI+ VX )fluldu,
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where the norms on the tensors represent supremums over N of the operator
norms. (Alternatively one may take the magnitudes of the tensors calculated with
the metric g-these represent the Hilbert-Schmidt norms of the linear transfor-
mations and so are larger than the operator norms.)

We shall need the following well-known proposition from semigroup theory.

Proposition 1. Let (the closure of) Q be the generator of a c,-contraction semigroup
on the Banach space B, and let P be a bounded perturbation. Then the closure of
Q+P generates a cy-semigroup {S(1):t =0} and there is a bound, for all ueB:

IS(e)ul < elPul).

[Proof. 1t is easily checked that the closure of Q+P— HPHI generates a ¢q-
contraction semigroup {S()} and that S(¢) is related to S(r) by: S(t)=e!"I115(¢).]
Since (I —xQ)~!:C*(N)—C*(N) (by elliptic regularity) we obtain from (2):

A —KQ) "1 f =(I— ) tdf (3)

for all k=0 and fe C*(N), where I is the closure of Q+ P. Iterating (3) n times
with k=t/n and letting n— co, we obtain from the Hille-Yosida theorem

ds(e)f = S(e)df.
where {S(t)} is generated by I'. Now the proposition applies. []

Proof of Theorem 11.3. Again we need only prove that Q is dissipative on LY. Let
ue C*(M, T*) and define a measurable vector field as follows. Let x,€/ be the
element for which

§ Imuldp = max |z uldu

and define 7, Y*=|r, u|~'n, u® or zero and 7, Y*=0 for X Xo. Again it is easily
checked that YNdefmes a normahzed tangent functional in (L})*. Since 7,
commutes with © we have

Y, Quy = [ Im ul ™t u® m, Qu,du

= [Imul ™ tru® Qn u.du.

xoa

Thus the proof of Theorem IL.1 applies with u, replaced by n_ u, and we obtain
(Y, Quy 0. Thus Q is dissipative. []

Proof of Theorem II1.4. The proof of Theorem IL.2 applies but with a different
bound on the perturbation term. We have

I1Pully ,=max | |n Puldy

<max ¥ (I Ra | + Bl Vn,V H)-f fn,uldy.

Since m, Rm,=0 if x= y we obtain the constant used in the theorem on the right-
hand side. []
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III. Rate of Decrease of the Free Energy

Step 1. Let ACL be a finite set. The free energy F  (v) inside A is a lower
semicontinuous function of v in the weak topology:

lim inf F 4(v,) 2 F 4(v) - (1)

if v,—v weakly. The proof of this assertion follows from the fact that H, is
assumed to be continuous, and from the following lemma (stated in somewhat
greater generality in [10]).

Lemma. Let {g,,....g,,} be a finite partition of unity on M* consisting of Borel
functions, and define a state v* by:

dvids= 3 (g9 gdn) g,

Then S ,(v¥)2 S 4(v). Furthermore if o is any real number with o.> S ,(v), there exists a
partition of unity {g,,....g,.} consisting of continuous functions on M* for which
o>S ,(v¥).

Step 2. In this step we introduce finite-volume evolution operators approximating
S(¢). Let I',=[—n,n]*nL for n>3r. (r is the range of the potentials.) In order to
preserve translation invariance we impose periodic boundary conditions on the
potentials, as follows. Let {J (F):FCI',} be the uniquely defined set of potentials
which are invariant under translations (mod—2n) of I, and satisfy: J (F)=J(F) if

FC(I,)2. Define H,=— Y. J(F). By pulling back along the canonical projection:

FcrI,

Z—M"™ we may regard functions on M’ as being defined on & and define
Q,=A—pVH, d Q, generates a Markov semigroup {S,(t)} on C(Z) leaving the
space C(MF) invariant and commuting with translations (mod-2n) of this space.

The space D of C* functions of finitely many spins is a common core of all £,
and Q, and Q,—Q on D. [Note that V. H,=V_H if xe(I',)?.] By the Trotter-Kurtz
theorem [13], S, (t)—S(t) as n—oo strongly on C(5). Hence vS,(1)=v,(t)—wt)
weakly. We then have from Step 1, for any finite ACL:

F (D)= F ((v) S liminf (F ,(v,(£) = F 4(v))
< limsup (F4(v,(£) = F4(v)). 2
Step 3. If n is sufficiently large [such that AC(I",)’] we have
F v, ()= F 4(v)= i G4 (D)t 3)

with
GA,n(t) = j‘ Qn(HA + T . 1qu/1, n(t))dvn(t) s (4)
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where
44, ()=d(v, () A)/do. (5)

To establish this formula we prove that F (v,(t)) is differentiable for t>0 with
derivative G, ,(t) and continuous at t=0. Let g be a C? function on M“. Since
q4,(0)(&) is a C* function of (, &)e(0, o0) x M* we have

[ gd/dtq, (Ddo=d/dt|gq, (Ddo
=d/dt [ S,()gdv
=[Q,gdv,(1).

The derivative of the energy term in the free energy is therefore
djdt § g, (0H ,do=[QH dv,(1),
and the derivative of the entropy term is

djdeT [ D(q, (0)do=T [@'(q, (0)d/dtq, (O)do
=T[Q,logq, (t)dv,1).

To prove the continuity assertion, let g,(t)=d(v,(0)|I",)/do. 1t is readily shown
that g,(¢) is the solution of the “forward equation”

d/dig,()(-)=2,4,()(-)

with initial condition g,(0)=d(v|I",)/do. Since ! is the formal adjoint of Q with
respect to o, it is the sum of first and second order terms (which generate a
contraction semigroup on C(M'")) and a zeroth order term (representing a
bounded perturbation). Hence its closure generates a c,-semigroup on C(M'™).
Thus ¢,(t)—¢,(0) uniformly as ¢—0. Since g, ,(t) is obtained from ¢,(t) by
integrating out spins with product measure, g, (t)—q, ,(0) as well. This gives the
continuity of F ,(v,(¢)) at t=0.

Step 4. Define
G4,(0)=[Q(H .+ Tlogq, (1)dv,(t), (6)

where Q,=A4—fVH ,-d. In this step we show that
G, (0)=G . ,(0)+ C(1)/0, A (7)

with C(t) bounded independently of n and A.

To prove this we need uniform L'-bounds on the differential of ¢, ,(z). We
appeal to Theorem I1.4 of Sect. II. Let u, = 9,0 be the unique reversible measure for
{S,(0)}, cf. [5]. [0, is a constant times exp(— fH,).] Writing p,(t)=d(v,O)II",)/du, it
is easily seen (using the reversibility of u,) that p,(t)=S,(t)p,(0). Since g,(t)=p,(t)0,
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we have
sup [1d,q,(t)ldo = sup [ |d (p,(t)e,)ldo

<lldp®)ll1,r,+ sup [ |Bd H,ldv,(¢)

<e“||dp,(0)l, 1, +BK,
=esup [ d.(q,(0)e, ldp, + BK,

= [sup 140, (O)da + K )+ K. (8)

[Theorem I1.4 was used in the third line with C=||R|| + (2r + 1)*K,.] Since v was
assumed to be locally smooth this last bound is independent of n. The same bound
holds with g, (f) replacing q,(t), since the former is obtained from the latter by
integrating out spins. _

The difference between G4 () and G4 ,(¢) is a term equal to

- Z ﬁ j. (VxHA - VxH) : dx(HA + T : logQA,n(t))dvn(t) .

xe0,A2

This term is bounded by
2ﬁK1 ( Z j |dx(HA + T ’ loqu,n(t)NqA,n(t)do-) H
x€0,A2

which in turn is less than

2ﬂK1< 2 (K +T] ldqu,n(t)ldG))- ©)

xe0, A%

Combining the bounds (8) and (9) we obtain Eq. (7).

Step 5. Applying the divergence theorem to the integral in the definition of G (D)
yields

G nt)=[qu(0(4—BVH -d)(H ,+T -logq, (1)do
= Z I(VxQA,n(t) +ﬂqA,n(t)VxHA) 'dx(HA + T : lOgQA,n(t))dU

xed

= Z TjQA,n(t)~ lleqA,n(t)+ﬁqA,n(t)VxHA[2dJ' (10)

xeA

Step 6. Define
GA(t) = lirrlsup GA’ WD)

Applying Fatou’s inequality [note that G 4..t)=0 by Eq.(10)] and the results of
the previous steps we see that

FA00)— FA0) = ] Gy(o)de-+ G0, A2
0
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Dividing by |4], letting ATL in the sense of van Hove, and applying Fatou again
we obtain:

fO)—fn= g §(vde, (11)

where

g(t)=limsup |A| "1 G ,(1). (12)
A1S

Step 7. We assume from now on that v is translation invariant. Our aim now is to
obtain improved versions of formulas (10)-(12) by exploiting translation in-
variance. Let A4, =[—2",2"]nL and define for each integer m and sufficiently
large n [such that A, C(I",)7],

Hm,n(t): - Z quAm,n(t)— IIVxQAm,n(t)+Bqu,n(t)‘7lezda (13)

xe(Am)R
and
I1,,(t)=limsup I1,, ,(t). (14)

From Step 5 we see that IT,(t) represents the rate at which the free energy in 4,, is
decreasing due to the evolution of the spins in (4,,)¢. In this step we establish the
inequality :

0,0 <21, (). (15)
Since |4,,)=2*14 it follows that the infinite-volume limit
()= lim |A,]" 1,0 =inf |4,]~11,,(0)

exists.
To prove inequality (15) let A% _,, for i=1,...,2% be the decomposition of 4,,
into disjoint boxes all of which are translates of A4,,_,. We have

1, ()= —

”M:’

Tj Au DY Y W O+Bas, (W HPde.  (16)

xe(Ap - 1)

We employ the following inequality, valid for measurable functions fand g >0 on
a measure space (X, Z, u) by Holder’s inequality :

Vot frau=( fdw?( gdw . (17)

Integrating in the i term on the right side of (16) first over the variables &(x) for x
in the complement of A _, and using inequality (17),

1, ()= Z — 1),
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where IT},_, (1) is defined similarly to IT,,_, ,(t) but with A _, replacing A4,,_,

Since S,(t) commutes with translations (mod—2n) of I', and v is translation
invariant it is easily shown that

qA + x, n(t) = quA, n(t) k]

provided that both 4 and A+x are in I',. Applying this fact to the integral
defining IT;, _, (1), we conclude that IT;, _, n(t)zﬂm_ 1,(t) for each i.

Step 8. Applying Fatou’s inequality again we obtain

FOE)— f0) £ [ (e, (18)
where 0
H(f>=,,!@30|Am"1(ﬁr,gsgp{— Y Tiqu,. IIVqu,n(t)+ﬁq4m,n(t)VxH|2da}>.
Xe(Am)R
(19)

This is the required expression.

IV. Proof of the Theorems in Sect. I

The proof of the first claim in Theorem I.1 was completed in Step 6. For the proof
of the second statement we need the following proposition and Lemma.

Proposition 2. Let H have potentials of range r, and let u be a state on . Then p is a
Gibbs state of H if and only if it is locally absolutely continuous with respect to
product measure ¢ and for every finite ACL the Radon-Nikodym derivative
q,=d(uA)/do satisfies

Veda+PBa.V . H=0 (1)
for all xe A°.

Remarks. (1) This proposition is closely connected with the characterization of the
Gibbs states by their quasi-invariance under rotation of finitely-many spins. (2)
For plane-rotor models (M =S?) it is easily seen that (1) is equivilent to the
equations (in the notation of the appendix to [5]):

n(x)i(n) + B Y, m(x)H(m)fz(n— m)=0
holding for all multiindices n, where ji(n) is the Fourier coefficient

= [ Vadpt.

Proof of Proposition 2. Let u be Gibbs and ACL finite. Let g, ,(+) be the density
with respect to o of the conditional Gibbs state u, , (with boundary condition
{e M"\*) defined in [5, Sect. V]. ¢, , is the unique solution of the equations

Vot By Vol =0
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for xeA. Let u be any smooth one-form on M“. By pulling back u along the
canonical projection: M*—M*, we may regard u as a one-form on Z. Using the
divergence theorem we have, for all boundary conditions ¢,
O:j(VQA!C—I-ﬁQA,ZVHA,{)-udG
={o =V -u+pVH, ., udo.

Integrating over { with 4 and using the DLR equations we obtain

0=[(=V-u+pBVH- -udu. ()

Now assume that u,=7u is non-zero only if xe A2 Then VH -u= ) V.H-u,
xeAR

is independent of { and so (2) may be written
0=[q,(=V-u+pVH- udo
= [ (Vg ,+ Bg,VH) uds.

Since u was arbitrary we obtain (1).

Conversely assume that (1) is satisfied. Let u=gv with g a smooth function of
n(x) for xe d,1° and v the pull-back of a one-form on M** Then (2) holds for this u.
If u(+10,42)(n) is a regular conditional expectation for u given the configuration 5
on 0,47 we obtain from (2):

0= { dp(m)g(n) § dp(E10, A7) () (= V- 0(&) + Po(&) VH 4p,,(£))-

Letting g and v range over suitable countable dense subsets we conclude that
u(-10,49)(n) is, for p-a.e. n, a weak solution of the first order system

Vqu+ ﬁQanHA‘,Z,n:O

for xe A%. Uniqueness and regularity theorems for first order linear PDE.’s then
give

o, () =du(-10, A7) m/do =0 ("),
for p-a.e. n. Thus u satisfies the DLR equations with A° replacing A. []

Lemma. Suppose that p is not a Gibbs state of the Hamiltonian H. Then there exist
positive numbers e and 6 and a neighborhood U of u in the weak topology such that if
v is locally smooth, translation invariant and contained in U then

JO)—fv)=—té
for 0=t=e.

Proof of the Lemma. If p is not Gibbs, then by the preceding proposition there
exists a smooth one-form u (the pull-back of a one-form on M“ for some finite A)
and ¢, >0 such that

T(f (= V-u+BVH -wdu)*>> 3, | lul*du. (3)
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Define U, to be the set of states for which (3) holds. U, is open in the weak
topology and contains u. By the continuity of the map (v, t)—v(t) we can find ¢>0
and a possibly smaller neighborhood U of usuch that w(1)e U, if ve U and 0=t <e.

Now let v be locally smooth, translation invariant and contained in U.
Defining q, (t) as in Step three we obtain (by an application of Holder’s
inequality):

U u '(VqA,n(t) + ﬂ‘JA,n(t)VH)dO'I
S ul?q 4, (0do) ([ g4, Vg 0O+ Pg 4 )V H|*do) /2.

After an application of the divergence theorem and making several obvious
substitutions we obtain

- Z quA,n(t)_ lleqA,n(t)_'_ﬂqA,n(t)Vlezdo-

xeA

< —T([ (= V-u+BVH-wdv,)*/([ lul*dv,(2)). 4)

Since v, (t)—=v(t) as n— o0, v,(t) is eventually in U. Let m, be so large that
AcC(4,,,);. We conclude from Sect. I11, (13), (14) and Sect. 1V, (4) that

11, (1)< 3,

for 0=r<e. Defining 6=0,|4,,| ' and remembering that |4, | '1,(t) decreases as
m— oo we see from Sect. I1I, (19) that

HH<-o6

for 0=t=<e. The lemma now follows from the formula of Step eight. []

Returning to the proof of the theorems, we note that the second assertion of
Theorem I.1 is an immediate consequence of the lemma. Theorem 1.2 follows
immediately from the lemma and the observation that the free energy functional is
bounded below. [The entropy makes a non-positive contribution to the free
energy, and there exists a constant C < + oo with H,(-)= —C|4].] O
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