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Abstract. We prove in a rigorous way the statement of the title.

I. Introduction

At least since a paper by Dyson [1], the perturbation expansion for field theories
like Φ 4 or Q.E.D. is commonly believed to be a divergent series. However it has
been periodically noticed [2] [3] [4] that this statement is rigorously proved only
for the simplest models, i.e. [P(Φ)]2 [5].

In the case of euclidean Φ4, we know the results of constructive field theory
[6] and the Borel summability of the perturbation expansion [7]. Yet there is no
proof that this series is not actually convergent. The difficulty which prevents
Jaffe's method [5] from working for Φ 4 is the change in the signs of some
amplitudes, due to the renormalization, which could produce cancellations at each
order. We solve this problem by rewriting the usual perturbation expansion in
terms of convergent positive amplitudes involving a "dressed" propagator. This
method is an iteration of the procedure used by Hepp [3] for the regularized
version of the model.

More generally, the control of signs in renormalized perturbation series could
allow one to go beyond the recent results on the Borel transformed series for Φ 4

theories [8] [9]. Extensions of our method might then provide rigorous results
on the presence—or absence—of singularities on the real axis of the Borel plane
("instantons" or "renormalons" [10]).

II. Proof

We consider massive scalar bosons (the mass-scale is fixed by taking m = 1)

self-interacting via the lagrangian density i f ι = — — : Φ 4 : in an euclidean space-

time with three dimensions. The formal series in λ defining a given JV-points

connected Schwinger function SN is given in terms of Feynman graphs G (with N(G)

external lines, n(G) vertices) by:

SN(p,λ)= Σ AR

G[p,λ), (1)
G

N(G) = I
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where AR

G(p,λ) = ( — λ)n{G)IR

G(p) is the renormalized amplitude corresponding to
G, and p — [pu..., pN} is the set of external euclidean momenta.

As in [7] we use Zimmermann's scheme to renormalize by subtracting at
vanishing external momenta [11]. (Actually our proof does not depend on the
subtraction point.) Now the only renormalization to be performed corresponds
to the graph (or subgraph) in Fig. 1, which we call the "blob" in the rest of the
paper. The bare propagator is:

1
(2)

and the blob renormalized amplitude is given by:

1
(3)

We introduce an operation £f on the graphs G:£^(G) is the graph obtained by
replacing in G every maximal chain of blobs by a single line (see an example in
Fig. 2). In order to add the amplitudes of the graphs G which have the same y (G),
we define inductively dressed propagators P. and amplitudes B{ by:

1
(4)

- Σ BjiP'

k')Pt{p + k')

(5)

Fig. 1

Fig. 2
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B^p.λ) is the sum of the amplitudes built from a blob with Pi_1 propagators by
inserting an arbitrary number of B(_ ι on its three internal lines, the total number
of insertions being not zero.

Next we associate to any graph G an amplitude ΛG(p,λ) in the following way.
Let G be the graph obtained by reducing every blob in G to a two-line vertex.
Then AG(p,λ) is the amplitude corresponding to G with a propagator Pt for each
line, a factor Bt for each reduction vertex and a factor (— λ) for each ordinary
four-line vertex (in particular A°G(p,λ) = AR

G(p,λ)). With these definitions we
obtain:

(6)
G'

Equation (6) is trivial from definition (4) if G contains no blob {<9"{G) = G), and
takes into account definition (5) if G contains blobs (^(G) φ G).

Lemma 1. There exist three positive constants M1,pί and ε(ε < 1) such that, for
\λ\ < p 1 ? Bt(p,λ) is analytic in λ, and:

VίS O, \Bi(p,λ)\<(p2 + iγ-(js)
i+ι-2M1\λ2\. (7)

Proof. Inequality (7) is well-known for Bo. Let us assume it is true for Bp Vj g i - 1.
Then:

V f c g i - 1 , Σ Bj(p,

if we take

Therefore

:2Mι

(8)

(9)

2/3

and

We write equation (5) as

(10)

(11)

3t=jSi(Pi-Pi-i){Pi-Pi-ί){p,-pt-1)-'ip,p,-ΛPi-Pι-in, 02)

and we find

] 2 2 8 | A 2 | / 1 V
i U-,

d3kd3k'
(13)

The integral in (13) is known to be bounded by a constant M 2 . Choosing
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F r o m L e m m a 1, t h e infinite s u m in (6) is absolute ly c o n v e r g e n t for \λ\<pί.
F u r t h e r m o r e :

t - * oo

For \λ\ <pι,Pao(p,λ) is analytic in λ9 real positive for λ real, and satisfies:

1x - r ^ l t Λ | P o ( P ) ^ l ^ c o ( P ^ ) l ^ 1 , M μ 2 [

P o ( P ) - ( 1 5)

Let G be a graph without blob (Sfiβ) = G). We call Γr(G) the set of graphs G'
such that yr(G') = G,r being the smallest such integer. Then we have from (6):

X (16)
G'eΓ,{G)

and from (14) and (16), with.Γ(G) = ( j Γr(G):
r = 0

X A°.(p,λ) = AS(p,λ), (17)
G'eΓ(G)

where A^ is defined by replacing each propagator in G by P^. Again the sum
(17) is absolutely convergent.

Remark. The same work can be done with the modulus of the amplitudes.
Definitions (4) and (5) can be replaced by:

& = ^ i , (18)

.7 = 0

i Q ί - β ί _ 1 β i _ 1 ρ i _ 1 ] , v i ^ i . (19)

Inequality (7) is also valid for the C,'s and we find similarly:

Σ \A°G.(p,λ)\=F%(p,λ), (20)
G'eΓ{G)

where FQ is defined by using a factor |Λ| for each vertex, and a propagator Q^
for each line of G, which satisfies for \λ\ < pγ:

Lemma 2. There exists a positive K, depending only on the external momenta
p 1 ? . . . ,pN, such that for any graph G without blob and any negative value of λ, with
— pγ < λ < 0 , we have:

\ (22)
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Proof. The proof follows the same lines as in [5]. In the Schwinger parametric
representation (with the notations of [9]):

(23)

U (respectively V) is a sum of monomials in the α's corresponding to the one-trees
(respectively two-trees) of G. The number of one-trees is bounded by 2AG) where
the number ί(G) of internal lines of G is:

N(G)
(24)

Any two-tree is obtained by removing a line from some one-tree. Therefore it is easy
y

to see that for 0 ̂  αf ̂  1, Vi, we have U~3/2 > 2~3/2 ' and — > (n - 1)M2, where M2

is a bound on the invariants built from the external momenta. Lemma 2 follows,
w i t h K = | e x p ( - 2 - M 2 ) .

Theorem. The expansion (1), as a power series in λ, has a vanishing radius of

convergence.

Proof. If the expansion (1) has a non-vanishing radius of convergence p2, then
there exists a positive constant M3 such that, for \λ\^^p2, the partial sums of
the expansion are uniformly bounded by M3, that is:

g§p2, \sNq\ = Σ
G

N(G)=Ϊ

(25)

However for λ real negative, the ,4£'s are real positive. From (17) we have for

By (15) we have:

G G'
G'eΓ(G)
n(G')>q

^ Σ Ao- Σ
G'

G'eΓ(G)
G^{)^q

G' φ G

and by (20) and (21):

G'eΓ(G)
G'fG

I yio

Since by (24) /(G) ̂  2n(G), we find:

IS l > Y Aθ\( 1 V"< G ) \( l
2π(G)

- 1

(26)

(27)

(28)

(29)
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It is easy to verify that there exists a constant M 4 ,0 < M 4 <Inf(p 1 , |p 2 ) s u c n

that, for λ = — M4q~112, we have

1 \2n(G) Γ/ 1 \2n(G)

\ \ i \ . . . . . . . . . . ( 3 0 )

Now by an easy adaptation of the argument in [5] there are at least I n I!

graphs with n vertices and Sf(G) = G. Therefore we get, using Lemma 2:

κ \ > y ^ - > y ^ ° >
* , | = L 2 = L 2 = 2q9'2

ί n(G)=q

which obviously contradicts (25) for q large enough.
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