
Communications in
Commun. Math. Phys. 83, 43-48 (1982) Mathematical

Physics
© Springer-Verlag 1982

On Cantoni's Generalized Transition Probability
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Abstract. We obtain simple expressions of the "generalized transition pro-
bability" proposed by V. Cantoni, for both classical and quantum mechanics.
We compare the result with the ordinary quantum mechanical transition
probability.

I. Introduction

Using Mackey's axiomatization of physical theories ([1], p. 63), V. Cantoni
introduced a function T(α, β) defined on pairs of states α, β. When the physical
theory in question is quantum mechanics and for the special case of pure states,
Cantoni proved that T(a, β) equals the "transition probability" |(α, β)|2. In that
sense, he named the function T "generalized transition probability."

Our main purpose in this work is to give~simpler expressions of T for both
classical and quantum theories since Cantoni's definition is quite involved. We
shall prove furthermore that in the quantum case, T(α, β) equals the quantum
mechanical "transition probability" between the states α and β, each time that
this concept has an unambiguous sense.

We now recall that in Mackey's system, one considers a set Θ of observables
and a set £f of states. For each AeΘ and α e ^ , and for any Borel subset E of the
real line IR, one denotes by p(A9 α, E) the probability that a measurement of A
performed on a system in the state α will yield a result lying in E. Accordingly,
ccA(E) = p{A, α, E) is a probability measure on U. Mackey then imposes some axioms
involving Θ, Sf and the probability p. We shall make use only of the first three,
which trivially hold in all known physical theories.

Cantoni's definition now runs as follows: for any pair of states α, β and any
observable A, define the expression TA(oc, β) by

where σ is any measure with respect to which both aA and βA are absolutely continu-
ous. It is easy to see that TA is independent of σ. Finally define

,jB). (2)

This is Cantoni's "generalized transition probability" [2, 3,4].
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II. The Main Theorem

Let us recall that in Mackey's formalism, the spectrum of an observable A can
be defined, roughly, as the set of all possible values of A (for a rigorous definition
see [1], p. 69). Our main result, from which all others follow, is that in (2) we can
take the infimum over the observables with purely discrete spectrum only. The
proof is based on two simple lemmas from measure theory:

Lemma 1. Let (X, ^ , μ) be a measure space and JS?2(X, μ) the Hubert space of
all square integrable real-valued functions on X. Then for any positive element
feJ£2 (X,μ) and any ε > 0, there exists a partition Zλ, i = 1,2, ... n of X such that,
for any partition BjJ — 1,2, ... m finer than Zλ, one has

μ(Bj)ψO V Bj y/μ(Bj)

where χB is the characteristic function of By

Proof Since the step functions are dense in J^2(X, μ), for any ε > 0 and/e J^ 2 (Z, μ),
there exists a partition Zλ, i = 1,2,... n, and numbers a. such that

z y/2
dμ) < ε. (3)

We recall that, by the usual definition of step functions ([5], p. 231), μ(D.) = oo
implies a. = 0.

If in addi t ion/^ 0, then we can take a{ ̂  0. For any partition B. finer than
Zλ, define the numbers b. by b. = α. iff B. ̂  D.. Then relation (3) implies

Setting

we find

and also

< ε. (4)

II/-ΛN

= Σ
μ(Bj)ψ 0,oo

(5)

l / 2

KB)

(6)

C o m b i n i n g (4), (5), (6) w e d e d u c e t h a t \\f-f1\\^ 2ε .
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Lemma 2. Iffge^2(X,μ) and f^O, # ^ 0 , then Vε>.0 there exists a partition
1 2 h hBj,j= 1,2, ...msuch that

Pro6>/. By Lemma-1, for every ε > 0 we can find partitions Bp B'p such that | | / -
fγ [| <*ε,\\g — gx || ^ ε, where / χ was defined in the preceding proof and g 1 is
defined analogously. In addition, we can suppose that the two partitions are
identical. (If not, consider the partition B. n B'.). One has

lfgdμ-1
X X

<ει

Obviously

((jf2dμ)(jg2dμ
X μiB^fooWBj / \Bj

while Lemma 1 again shows that for this partition B., one has

Σ \f2dμ<ε\ Σ \g2dμ<s\

1/2

(7)

(8)

which imply

Σ (9)

A combination of (7), (8) and (9) entails Lemma 2. •
We now turn to the statement and proof of the main theorem. Let us denote

by Θf the set of all observables the spectrum of which consists of a finite number
of points.

Theorem L In any physical theory obeying axioms /, //, /// ofMackey's axiomatics,
T(α, β) is also given by the formula

T{a,β)=MTA{a,β). (10)
Ae&f

Proof. For any pair of states α, β and for any observable A, let σ be a measure with
respect to which both OLA and βA are absolutely continuous. Since aA and βA are

probability measures on and belong to i?2([R, σ). Accordingly,
da \j dσ

Lemma 2 and relation (1) imply that for any ε > 0 there exists a partition Bk, k = 1,
2, ... n of IR such that

(11)

Define now the function h(x) = ^ kχB (x) and the observable A' = h(A) (see
k=ί
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Mackey's axiom III, [1], p. 63). It is easy to see that (a) the spectrum of A' is discrete,

consisting of the points fc = 1,2,... n, (b) one has oiA,({k}) = aA(Bk) and Tj/2(α, β) =

Σ K ( β * ) ^ ( β * ) ) 1 / 2 Substitution in (11) gives

It is now trivial that (12) and (2) imply (10). •

III. The Classical and the Quantal Case

Let us see what the forgoing theorem implies when the physical theory in question
is classical statistical or quantum mechanics. In the first case, a physical system
is described by its phase space Ω. The invariant Liouville measure μ is defined on
the Borel subsets of Ω. States are probability densities on Ω, i.e. non-negative
functions p such that \pdμ = 1 (see [1], p. 48) while the observables are measurable

Ω

real valued functions / on Ω (i.e. random variables). The probability measure
/?(/, p, E) = pf(E) is given by

pf(E)= j pdμ. (13)
f~HE)

The value of T(pγ, p2) can be easily found by applying Theorem 1:

Proposition 1. In the case of classical statistical mechanics the value of T(pv p2)
is given by the formula

Proof Let the random variable/represent an observable whose spectrum consists
of the points λvλ2,... λn. This means simply t h a t / takes on only the values λi9

so that/ ~ 1 (λ.), i = 1, 2,... n is a partition of Ω. Consequently, (1) and (13) yield

/ \l/2

7>1 / 2(P1,P2) = Σ ί Pidμ' ί P2dμ) (14)
ί \f'Hλi) f-Hλi) /

Since/can be chosen freely, so can the partit ion/" 1(λ.). Accordingly (14) and
Theorem 1 entail

( 1 l 2 ) (15)
j \Bj

the infimum being taken over all partitions. On the other hand, one has by the
Schwartz inequality

which together with (15) and Lemma 2 imply the proposition. •
We come now to quantum theory. The states of a quantal system are represented

by density operators W(i.o. positive operators of unit trace) in a Hubert space
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Jf, while the observables are represented by self-adjoint operators A. The measure
p(A9 W, E) is given by

where F^ is the projection-valued measure which corresponds to the spectral
decomposition of A. We now give for T(α, β) a much simpler expression than
that given by its definition (1) -f- (2), holding in the quantum case.

Proposition 2. In the case of Quantum Mechanics, Cantonΐs "generalized transition
probability" between two states represented by the density operators Wv W2 is
given by

W2) = inf Σ((V î? WiΆiXΨ j ^ 2 ^ ))1/2? (17)

the infimum being taken over all bases {Φι}ίeN of the Hubert space 2tf.

Proof Theorem 1 shows that for any ε > 0, there exists an operator A with purely
discrete spectrum λϊ,λ2,... such that 0 < T j / 2 — T1/2 < ε5 or equivalently

0 ̂  ΣiMWjf^TriW.FfJ)1'2 - T1'2 < ε. (18)
k

Let {xk }fc.e7 , be a basis of the subspace onto which F^λ } projects.

Then (J {xkι}k.eIk is a basis of J f and
k l/2

On the other hand, if B is any self-adjoint operator having a purely discrete
nondegenerate spectrum and all xk as eigenvectors, we deduce from (1) and (2)

ΣΣ((**,> WiXkMs W2χ

k))m = TB/2(W19 W2) ^ τ"\w19 w2y (20)
k Ik

The proposition follows by combining (18), (19) and (20). •
The result of the forgoing proposition is considerably simplified if one of the

two states is pure, i.e. represented by a unit vector g or, equivalently, by the pro-
jector Pg on g.

Proposition 3. Cantonΐs "generalized transition probability between a pure state
Pg and a state Wequals (g, Wg).

Proof For any two states W19 W2 and any basis {fn}neN, one has

) 2. WJM, w2fn))112) = Σ((/». wjn){fm, wjm)(fn, wjn\fm,
/ n,m

Σ(wjn,fj(fm,w2fn)
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Combining this result with Proposition 2, we deduce that

\/W1,W2 :T(Wί9 W2) ̂  Tr(W\ W2). (21)

For W1 = W,W2 = Pg, we obtain from (21)

T{W,Pg)^te,Wg). (22)

On the other hand, it can be easily verified that

(g,Wg)= TPg(W,Pg)2:T(W9Pg) (23)

which, together with (22), proves the proposition. •
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