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Abstract. We show that there is a one-to-one correspondence between the
graded representations of osp(l,2rc) and the non-spinorial representations of
o(2n + 1). The Clebsch-Gordan series for osp(l, 2ή) reduce to the correspond-
ing series for o{2n 4- 1) and the properly defined Casimir operators of order at
least up to four have the same eigenvalues.

1. Introduction

In the present work we would like to draw the reader's attention to a fact which
to us came somewhat as a surprise: there exists a rather close connection between
the representations of the Lie superalgebra osp(l,2π) and those of the orthogonal
Lie algebra o(2n + 1). More precisely, we show that there is a one-to-one
correspondence between the graded representations of osp(l,2w) and the non-
spinorial representations of o(2rc+ 1). The Clebsch-Gordan series for osp(l,2n)
reduce to the corresponding series for o(2n + 1) and, most remarkably, the properly
defined quadratic and quartic Casimir operators have the same eigenvalues. We
conjecture that the latter also holds for the higher order Casimir operators. To
appreciate these observations, recall that the Lie algebra contained in osp(l,2w)
is isomorphic to the symplectic Lie algebra sp(2rc) and that osp(l, 2ή) and o(2n + 1)
even have different dimensions. [For a detailed exposition of the theory of Lie
superalgebras see [1] and [2].]

Let us describe some of the background which finally led to the conjecture
that a relationship of this type might exist. Recall that the algebras osp(l,2n) [a
subfamily of the orthosymplectic Lie superalgebras osp(m, 2n)~] play a special role
among the simple Lie superalgebras. They were among the first algebras to be
discovered when the classification problem for simple Lie superalgebras was tackled
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[3] and soon turned out to have many properties in common with simple Lie
algebras. For example, they are the only simple Lie superalgebras which have all
their (graded finite-dimensional) representations completely reducible [4]. More-
over, a representation theory for these algebras has been developed which is
completely analogous to that for semi-simple Lie algebras [5,6], see also [1,7]. The
root system of osρ(l,2n) is the unique non-reduced irreducible root system of rank
n (i.e., is of the type BCn) and it has been speculated that this fact might be the
deeper reason for the similarities mentioned above.

The smallest among the algebras osp(l,2n) is the so-called di-spin algebra
osp(l,2). Its Lie algebra is sp(2) and the corresponding representation of sp(2) in
the odd subspace is just the elementary two-dimensional representation. This
algebra has always been a "playground" for making educated guesses about the
properties of simple Lie superalgebras and, in particular, of the algebras osp(l,2n).
The representations of this algebra are easy to construct and are fully understood
[3,8,9]. The irreducible representations are characterized by a sole number q
which takes the values 0,1/2,1,3/2,.... When restricted to sp(2) ^ sl(2), the q
representation with q ;> 1/2 splits into two sp(2)-multiplets corresponding to spin
q and spin q—l/2, respectively, and thus has dimension Aq + 1. (Of course, the 0
representation is the trivial one-dimensional representation.) More precisely, the
weights of the q representation are just the numbers ±q, ±{q — 1/2), + (q — 1),... ,0,
and all these weights have multiplicity one. All this is very similar to the spin 2q
representation of sl(2); the dimensions coincide, and apart from a rescaling by a
factor of two, the weights and their multiplicities agree as well. But even more is
true: the eigenvalue of the (suitably normalized) quadratic Casimir operator in the
q representation of osp(l,2) is equal to 2q(2q + 1)... !

Once these well-known facts are considered to be sufficient evidence for a
general relationship between the representations of the Lie superalgebra osp(l,2n)
and those of some (semi-) simple Lie algebra, one has to find the candidate for
the latter [recall that sl(2) ~ sp(2) ~ o(3)]. This is easily done: the weight system of
the adjoint representation of osp(l,2w) (i.e., the root system of osp(l,2w) enlarged
by the zero weight with multiplicity n) is just the weight system of the representation
of o{2n + 1) on the traceless symmetric tensors of rank two. Note that this
coincidence is still another hint in favour of our conjecture.

We are thus led to compare the representations of the algebras osp(l,2w) and
o(2n + 1) with respect to their dimensions and weights. In view of the existing
literature this is an easy task: we simply compare the character formulae and
obtain a one-to-one correspondence between the representations of osp(l,2w) and
the non-spinorial representations of o(2n -f- 1) respecting the weight systems as well
as the multiplicities of the weights. All this will be discussed in Sect. 2. An application
of this result to the Clebsch-Gordan series for the tensor products of representa-
tions is also included.

There remains the problem of whether the correspondence extends to the
eigenvalues of the Casimir operators. For the quadratic Casimir operators this is
evident from the known formulae. We have shown that the agreement holds for
the quartic Casimir operators as well. This will be the subject of Sect. 3.

Our paper closes with a short discussion in Sect. 4.
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2. The Weights of the Representations of the Algebras osp(l? 2ή) and o(2n + 1)

The base field for all algebras and representations will be any algebraically closed
field of characteristic zero. All representations are supposed to be finite-dimensional
and, in the case of Lie superalgebras, also graded.

Our discussion will be completely in terms of the roots and weights of the
algebras and their representations (with respect to some Cartan subalgebra). As
is well-known, we may therefore restrict our attention to the corresponding real
root and weight systems.

Thus let V be an n-dimensional Euclidean vector space and let (|) denote its
(positive definite) scalar product. We choose an orthonormal basis ε1 ?ε2,...,εn of
V and construct the roots and weights of the algebras under consideration.

2.1. Roots and Weights for osp(l, 2ή)

The root system A of the algebra osp(l,2w) falls into the two subsets of even and
odd roots. The set ΔQ of even roots consists of the vectors

± ε I ± ε J ; 1 ^i<j^n,
(2.1)

±2ε ί ; l ^ f ^ n .

The set A γ of odd roots has the elements

±6,-; l ^ i ^ n . (2.2)

Note that zl0 is the root system of the Lie algebra sp(2rc) and that Ax is the weight
system of the 2n-dimensional elementary representation of sp(2n).

We choose a basis α l 5 α 2,. . . ,απ of A by defining

(2.3)
α n = fin-

Then the positive even roots are

(2.4)

and the positive odd roots are

ε. ; l g i ^ n (2.5)

The corresponding fundamental weights ω 1 > ω 2 , . . . ,ω n are defined through the
equation

'yi"^~)- = 8n; ISUiύn. (2.6)
(α, |α, )

They are easily found to be

ωt = εί + ε2

(2.7)
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Note that α 1 ,α 2 , . . . ,α π _ 1 ,2α n is a basis of Δo and that ω 1 ?ω 2,...,ωM_ 1,2ωM is the
corresponding system of fundamental weights for sp(2n).

Let ρ0 and px denote half the sum of the positive even, respectively odd, roots.
It is well-known that p0 is also the sum of the fundamental weights for sp(2n).
Thus we have

p0 = ω1 + ω2 + . + ωn _ { + 2ωn,

(2.8)

P i = ω w .

We set

P = Po~Pι (2.9)
and obtain

p = ω1 + ω 2 + ... + ω π . (2.10)

It is known [1,5,6] that the irreducible (finite-dimensional) representations of
osp(l,2n) are uniquely fixed by their highest weight, the latter taking the form

A = PJLCU! + p 2 ω 2 + ... + pnωn, (2.11)

with integers p. ^ 0 and pπ et en. We remark that the last condition simply means
that A is the highest weight of a finite-dimensional irreducible representation of
sp(2π), a condition which is obviously necessary.

Now let P be the weight lattice of sp(2n). By definition, P is the additive
subgroup of V generated by the weights ω 1,ω 2,...,ω l l_ 1,2ω r j, hence also the
additive subgroup of V generated by ε l 5 ε2,... ,eπ. The elements of P are the possible
weights of the finite-dimensional representations of sp(2«). In particular, all the
weights of a finite-dimensional representation of osp(l,2π) are in P.

Let (eλ)λeP be the canonical basis of the group algebra of P. Suppose we
are given a finite-dimensional representation g of osp(l,2π). For every λeP, let
mg(λ) denote the multiplicity of the weight λ in g. Then the character of g is defined
to be

λeP

The crucial point is now that the character can be calculated in the following
manner. Let W be the Weyl group of osp(l,2n), i.e., the Weyl group of sp(2w). By
definition, Ψ is the (finite) group of orthogonal transformations in V generated
by the reflections on the hyperplanes orthogonal to the roots of sp(2n). Now let
A be the highest weight of an irreducible representation of osp(l,2n) and let chΛ

denote its character. Then we have [5,7]

/
chΛ = [ Σ dQt{w)ew{Λ+p)){ X det(w)ewp I , (2.13)

with p given by Eq. (2.10). The meaning of the formula is that, in the group algebra
of P, the nominator on the right-hand side is divisible by the denominator and
that the quotient is equal to chΛ.

2.2. Roots and Weights for o(2n + 1)

The discussion for o(2n + 1) is completely analogous to the one for osp(l,2n) and
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can be given in terms of the definitions introduced above. The root system 2 of
o(2n + 1) consists of the vectors

±ε{ ±£j\ 1 S i <j S n,
(2.14)

±fif; l ^ i ^ w .

The vectors αf, l r g ί ^ n [see Eq. (2.3)] form a basis of 2, the corresponding
fundamental weights of o(2n + 1) are just the vectors ω t , 1 ̂  i S n, as given in Eq.
(2.7), and the half-sum of the positive roots [with respect to the basis (α, )] is equal
to p [see Eq. (2.10)]. The weight lattice of o(2rc -f 1) is equal to Pu(ω t t -f P) and
the highest weights of the irreducible representations of o(2n + 1) take the form
(2.11) with arbitrary integers p f ^ 0 . Recall that the weights of an irreducible
representation are either all contained in P or else all contained in ωn + P; in the
former, respectively latter, case the representation is said to be non-spinorial,
respectively spinoήal.

The characters are again defined by Eq. (2.12) with P replaced by Pu(ωn -f- P).
Obviously, the Weyl groups of sp(2n) and o(2n + 1) coincide. Finally, formula (2.13)
is still valid (this is the famous character formula by H. Weyl). Comparing the
above results for osp(l,2w) and o(2n + 1), we obtain the following theorem.

Theorem. The highest weights of both the graded irreducible representations of
osp(l,2n) and the non-spinorial irreducible representations of o(2n -f 1) are exactly

n

the vectors £ p.ω( with integers pt ^ 0 and pn even. If a graded irreducible
i = 1

representation o/osp(l, 2ή) and a non-spinorial irreducible representation of o(2n + 1)
have the same highest weight, then the multiplicity of any weight is the same for
both representations, in particular, the dimensions of both representations coincide.

Let us give a simple application of the theorem. For any weight A of the type
(2.11) (with p^O and pn even) let MΛ (respectively M'Λ) denote the irreducible
osp(l,2n)-module [respectively o(2n + l)-module] with highest weight A. Suppose
we are given three such weights Aί9A2,A. Then the multiplicity of MΛ in
MΛι®MΛi is the same as the multiplicity of M'A in M'Λχ®M'Λ^ i.e., the
(generalized) Clebsch-Gordan series for MΛi®MΛi and M'Λι®M'Λl "coincide."
In fact, since the modules M y l i(χ)M / l 2 and M'Λi®M'Λ2 are completely reducible
[4], their Clebsch-Gordan series can be obtained by counting the multiplicities
of their weights.

3. Eigenvalues of the Casimir Operators

Let L be a Lie superalgebra and let U(L) denote its enveloping algebra. Any even
element C of U(L) which commutes with all elements of L [hence with all elements
of ί/(L)] will be called a (generalized) Casimir element of L. There exist various
standard procedures to construct such elements [see, for example, [2,10 and 11]].

Now let g be a representation of L. For simplicity, the canonical extension of
g to U(L) will also be denoted by g. Then the Casimir operator g(C) commutes
with g(X\ for all XeL. Suppose now that g is irreducible. According to Schur's
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lemma g(C) is then a scalar multiple of the identity. It is these scalar factors that
we are interested in.

3.1. The Quadratic Casimir Operators

Suppose that the Killing form φ of L is non-degenerate. Then the standard

procedure to construct a quadratic Casimir element goes as follows. Choose a basis

(£ί) 1 < / < 5 of L whose elements are homogeneous (i.e., even or odd). Define a second

basis CFj){< <S of L through the condition

ΦiFpE^δij; ί^ij^s. (3.1)
Then

is an even Casimir element, which does not depend on the choice of the basis (Et).
In the following we shall restrict our attention to the cases where L is equal

to osp(l, 2ή) or o(2n + 1). Note that the construction above applies to both of these
algebras; we denote the corresponding Casimir elements by Cκ and C'κ, respecti-
vely. Let g be the irreducible representation of L with highest weight A. Then the
eigenvalue CK(Λ) of g(CR) [respectively C'K(Λ) of g(C'κ)'] is equal to (A\A + 2p)κ,
where p is the vector specified in Eq. (2.10) and (|) is the scalar product on V induced
from the Killing form of osp(l, 2ή) [respectively o(2n + 1)] [1]. It is well-known that
(\)κ is proportional to (|); we obtain

^ 2p)9 (3.3)

2p). (3.3)'

Apart from normalization these expressions coincide for all A.

3.2. The Quartic Casimir Operators

For the construction of higher order Casimir elements we prefer to use a different
procedure [10]. The following exposition is taken from a forthcoming paper by
one of the authors [11]. We use the terminology introduced in [2] and consider
all orthosymplectic Lie superalgebras (including the orthogonal and symplectic Lie
algebras) simultaneously.

Let W = WQ © W\ be a Z2-graded vector space with

dim W-o = m, dim W-γ = 2n, (3.4)

where m,n are non-negative integers. Choose an even supersymmetric non-
degenerate bilinear form b on W. The Lie superalgebra of all linear mappings of
W into itself is denoted by pl(W). Let osp(b) be the (graded) subalgebra of pl(W)
consisting of those elements which leave b invariant; the algebra osp(fr) is
isomorphic to osp(m, 2ή).

Define a bilinear map

t:W x W-^osp{b) (3.5a)
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through the equation

ί(x, y)z = b(y, z)x-(- ψb(x, z)y (3.5b)

for all xeWξ,yeWη,zeW;ξ,ηeZ2. The map t is osp(/?)-invariant and its image
generates osρ(b) considered as a vector space. We remark that

φc, y) = - ( - l)^ί(y? x) for all xe ̂ , ye Wη9 (3.6)

Choose any basis eί,e2,...,em + 2n of Ŵ  consisting of homogeneous elements and
let r\[eZ2 be the degree olev Introduce the corresponding dual basis / l 5 / 2 , . . . Jm + 2n

through the equation

biβiJ^δij; l£ij£m + 2n (3.7)

(the element /̂  is homogeneous of degree ηj). Now define for any integer r ̂  1

with

σ(/) = (~ 1)>/J f o r 1 ̂  ^ m + 2 ^ (3.8b)

Then Cr is an (even) rιh order Casimir element of osp(5) and does not depend on
the choice of the basis (e.). Note that in Eq. (3.8a) there is no sign factor σ(jr).

Obviously, we have C1 = 0. More generally, it can be shown [10] that, for any
integer p ̂  0, the element C2p+1 can be written as a linear combination of products
of the form C2qx C2qi... C2qt where the q{ are positive integers with J^q^p. In

I

particular, we have

C 3 = 4 ( m - 2 n - 2 ) C 2 . (3.9)

Consequently, it is sufficient to consider the Cr with r even.
After these general remarks we restrict our attention to the algebras osp(l,2n)

and o(2/7 + 1) and denote the Casimir element (3.8) by Cr and C;, respectively.
Again let g be the irreducible representation of osp(l,2π) [respectively o(2π + 1)]
with highest weight A and let Cr(Λ) [respectively Cr(Λ)~\ denote the eigenvalue of
g(Cr) [respectively g(C'r)~]. We write A in the form

Λ= Σ ma, (3.10)
ί = 1

and set

rt = n + ̂ -i ϊoϊlSίSn. (3.11)

Using techniques to be described in [11] we obtain

C2(A)=-2 £ (K + r.)2 - ,f), (3.12)

+ r,.)2 - r,?). (3.12)'
i = 1

These results agree with [10], where the eigenvalues of C2 are given for all
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orthosymplectic algebras. The formula for C'2(Λ) is also contained in [12]. Actually,
the Eqs. (3.12) and (3.12)' can be derived from subsection 3.1, for it is not difficult
to see that

C 2 = - ( 8 n + 4)Cx, (3.13)

q , = ( 8 n - 4 ) Q . (3.13)'

Thus the case r — 4 is the first which is really new. We find

CM) ~ (» + 2)C2(Λ) = - 2 £ ((m; + r;)
4 - rf), (3.14)

; = l

which is to be compared with the formula taken from [12]

CM) + (n - i)C2(Λ) = 2 X ( K + rf)
4 - ή). (3.14)'

Visibly, there is no normalization of C4 and Q which would make their eigenvalues
coincide for all Λ. However, we recall that the quartic Casimir elements are not
uniquely (up to normalization) defined anyhow. Quite generally, if two rth order
Casimir elements differ only by a linear combination of (strictly) lower order Casimir
elements, none of the two is a priori "better" than the other. (Of course, there
might exist special additional conventions to make the choice unique.) Con-
sequently, the Eqs. (3.14) and (3.14)' show that the fourth order Casimir elements
-CA-\r{n + ̂ )C2 and C^ + (n — j)C2 of osρ(l,2n) and o(2n+l) respectively,
have the same eigenvalues in corresponding irreducible representations. We
conjecture that an analogous result holds for the higher order Casimir elements
as well.

4. Discussion

In the preceding sections we have established a one-to-one connection between
the graded representations of the Lie superalgebra osp(l,2n) and the non-spinorial
representations of the Lie algebra o(2n -f ί). Corresponding representations have
the same weights with the same multiplicities. Consequently, the Clebsch-Gordan
series are also the same in both cases. Quite remarkably, the correspondence
extends even to the eigenvalues of the Casimir operators in corresponding
irreducible representations, at least in second and fourth order.

At present we do not know of a deeper reason why all this should happen.
What is missing is some link between the algebras osp(l,2w) and o(2n + 1) which
would enable us to predict a priori that our results should hold and which, in
particular, would yield the correspondence between the eigenvalues of the Casimir
operators without having to calculate them explicitly.

We close with the remark that osp(l,4) is among the algebras to which our
correspondence applies. As is well-known, this algebra is via contraction related
to the algebra of ordinary supersymmetry. It would be interesting to see how much
of the above correspondence shows up in physical applications.
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Note added in proof. The general correspondence between the Casimir elements of osp(l,2/z)

and o(2n + 1), as conjectured in subsection 3.2, can be established as follows. Let L denote one of the

algebras osρ(l,2n) or o(2n + 1) and let ί) be a Cartan subalgebra oί L, furthermore, let U(L) be the

enveloping algebra of L and let S(t)) be the symmetric algebra of the vector space ί). Then there exists an

isomorphism (the so-called Harish-Chandra isomorphism) of the center Z{L) of U(L) onto the subalgebra

S(l))l4/ί of .S(ί)) consisting of the elements which are invariant under the Weyl group. This is classical for

o(2/7 + 1) and follows from [7] for osp(l, In). We have seen in Sect. 2 that the Cartan subalgebras of

osp(l, 2«)and o(2n -f 1) can be identified such that both the Weyl groups and the vectors p coincide. This

implies that the above isomorphisms yield an isomorphism of the algebra Z(osp(l, In)) onto the algebra

Z(o(2/7 + 1)) such that corresponding elements have the same eigenvalue under irreducible representa-

tions with the same highest weight. We are grateful to V. G. Kac for a comment on this point.

Regrettably, the above correspondence between the two centers is far from explicit. In the meantime, we

have extended the results of Sect. 3 up to sixth order (see [11]).






