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Abstract. The statement in the title concerning free energy is proved for a
version of mean field approximation with previously fixed temporal gauge.

1. Introduction

Mean field theory yields a useful qualitative insight into a phase structure of
lattice gauge theories and it is believed to be reliable for sufficiently high dimensions
of spacetime [1]. Indeed, some of its predictions were confirmed by Monte Carlo
experiments [2]. On the other side the use of mean field theory for lattice gauge
models remains to be rather suspicious: the gauge invariance is broken in its
very formulation—an order parameter is introduced that is known to vanish in a
lattice gauge theory [3].

Though believed to be accurate in the limit of infinite dimensions, the exactness
of a mean field approximation in this limit has, to the author's knowledge, never
been proved*. Here we address a similar problem, but we investigate a many com-
ponent limit instead. Namely, we consider a g-state Potts lattice gauge model
[4, 5] in the limit q -» oo and show that the mean field calculation of its free energy
becomes exact. A similar result was proved recently for the conventional Potts
model by Pearce and Griffith [6]. The remarkable feature of the gauge generaliza-
tion of the Potts model is that a mean field approximation is exact in the limit
q -> GO only when formulated in a variant that amounts to fixing timelike vari-
ables and applying mean field only to remaining links. To the contrary when
mean field is applied directly to all links, without previous gauge fixing, one gets
a strictly larger free energy and a mean field approximation fails to be exact. Thus,
contrary to the case of the infinite dimensions limit [1], the differences between
these two formulations of a mean field theory are not washed out in the limit
q-^ co. The situation is in accordance with a feeling that a (gauge noninvariant)
mean field approximation should match only a model with a previously broken
gauge symmetry.

A gauge Potts model as well as corresponding mean field theories will be
introduced in detail in the next section. Here we only state our main result:

* See Note added in proof
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Theorem. Let /(/?, q) be a free energy at an inverse temperature β of q-state Potts
lattice gauge model on d-dimensional spacetίme lattice,d^2. Then

Here fMF is a free energy of the fixed temporal gauge formulation of mean field
theory.

Note that the limiting free energy /°° has a corner in its dependence on in-

verse temperature β. This suggests a first-order phase transition at β ~-logqί.
c d

Let us stress, however, that the above theorem does not prove that a first-order
transition really occurs for any finite q. In fact one may easily imagine a sequence
of smooth functions tending to /°°. After all, the theorem holds also in two dimen-
sions where the phase transition certainly does not occur. The actual existence
of a first-order transition for finite large q and d ^ 3 was proved recently using
more involved techniques [7].

The Theorem will be proved by establishing upper and lower bounds on the
free energy of the model that coincide in the limit q -> oo and yield thus the exact
leading behaviour. An easy part is the upper bound by mean field theory. We
obtain this in Sect. 2. Section 3 is devoted to the derivation of a more difficult and
rather technical lower bound. This bound will be proved for each q ^ 2 and may
thus be of some interest in itself. That's why we state it here as a separate statement:

Lemma 1. f(β, q)^-^j- ψ^γ^loS(^ + 42/α)

2. Mean Field Upper Bound

The Potts lattice gauge model was introduced by Kogut [4] who investigated

the - expansion in its continuous time (Hamiltonian) version. Here we treat
Q

its Lagrangian form, the large q expansion of which was studied recently by

Ginsparg et al. [5].
We consider a d-dimensional (spacetime) hypercubic lattice. Following the

convenient notation of [8] we label unit coordinate vectors by (μ, μ = 0,1, ... d — 1.
We pick 0 as a vertical (temporal) direction. Whenever ieZd is a lattice site we
denote a (nonoriented) link connecting sites i and i + μ by a pair (ΐ, μ) and a pla-
quette bordered by links (i, μ), (i + μ, v), (i + v, μ) and (/, v) by a triple (i, μ, v), μ < v.
Occasionally (when the exact position is not important) we shall denote links
(respectively plaquettes) by / (respectively P). To introduce the model one attaches
to each link / a spin σ€ taking values in Tq = {0,1, . . . q — 1}. Given a configuration
σ = {σj one introduces a plaquette variable σp in the usual way: if P = (f, μ, v)
then σp = σ(. μ ) + σ{i+M - °{i+%μ) - σ{iv) (mod q). Consider a hypercube A con-
sisting of \A\ lattice sites. A free energy fΛ(β, q) is introduced by

1 Such asymptotic behaviour of βL is in agreement with the value βc = log (1 + y/q) that is in the case

d — 4 suggested by selfduality [5]
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exp( - β\Λ\fΛ(β, q)) = ZΛ(β, q) = £exp( - βHΛ(σΛ)).

The sum is over all configurations in A and the energy (i.e. euclidean lattice action)
of the Potts gauge model is2

PnΛψ0

To compute variables σp for plaquettes that reach out of A one extends a configura-
tion σΛ by an arbitrarily a priori chosen boundary configuration on the outside
of A. It is known that a free energy f(β, q) in the thermodynamic limit of expand-
ing volume A exists and does not depend on the choice of boundary condition [10].

A mean field approximation yields an upper bound on the free energy/. In
fact an easy consequence of the Jensen inequality is the Gibbs' variational inequa-
lity asserting that for each probability measure ωΛ on the space of all configurations
in A

( H \ 1

•—γ I is a specific energy in state ωΛ and sΛ(ωΛ) = —
Λ )log coΛ{σΛ) is its specific entropy. In particular choosing a probability ωΛ{σΛ) =

Y[ cύ^(σ^) that treats each spin σ, independently, one gets a mean field approxima-

tion. Next we choose the measures ω (̂σ )̂ that prefer oe — 0 with probability
pe<0,1> and distribute remaining values of σ̂  uniformly with probability

-. The probability that a plaquette in A is nonfrustrated (σp = 0) under this

/ (\ _ p)2\2 1 / (1 — p) 2 V
measure equals p2 + -~ + -( 1 - p 2 — . This follows when

observing that the event σ(. μ v ) = 0 is the same as the event σ{ίμ) + σ(. + A>v) =
σa + v,μ) +

 σa,v) ( m o d ^) a n d t h e variable σ(. μ ) + σ(i + j M ) (mod q) (as well as σ{i+ -'μ) +

σ(. v ) (mod q)) equals 0 with probability p2 H — with the remaining q — 1

values distributed uniformly. Using this we evaluate the right hand side of (1)

taking into account that to each lattice site i there corresponds — - — plaquettes

(ι, μ, v), μ < v and d links (/, μ). After minimizing with respect to p we obtain in
the thermodynamic limit

2 Note that one gets the Potts gauge model directly from a Zg-model [9] when replacing cos I 2π—

by δσ 0 , i.e. introducing the energy that favours more decidedly configurations with nonfrustrated
plaquettes (σp = 0) and suppresses a spinwave phase of the Z^-models
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For large q the mean field entropy increases as log q and to get a nontrivial large
q behaviour one has to rescale the inverse temperature β by log q [6]. Eventually
we get

Γ°[β) = lim/(log β j8, q) S lim fMF{\ogq-β, q)fMF(
q-^ co q-> oo

p e<o,i>

The last equality is a consequence of concavity of the function

It turns out that the right hand side of (2) is not the best estimate
of /°°(jβ). In fact the value on the right hand side will decrease if we introduce
another version of a mean field approximation. To do that we use the gauge invari-
ance of the model to change each configuration σ into a configuration σ of
the same energy but with zero link variable on all vertical links. Namely we rewrite
the partition function as ZΛ(β,q) = qlAle0(ldAl)^e-pHMaA) = qlΛle°{ldΛl)ZΛ(β,ql

where the sum is restricted over all configurations that are zero on all vertical
links (we shall mark such configurations by a tilde—σΛ). The number of elements
in the gauge group comes out as ^ and an error 0(|<3/l|) proportional to the
area of boundary δΛ emerges as a consequence of the restoring of an original
boundary condition that may have been spoiled by a gauge transformation. By
denoting the sum as ZΛ(β, q) we indicate that one may introduce a new model that
differs from the previous one only by having a restricted space of configurations
—i.e. by having the gauge fixed. Denoting /(j8, q) a free energy of this new model
we get

f(β,q)=~l-\ogq+f(β,q).

Now/(j8, q) may be estimated by a mean field approximation similar to the way
it was done before forf(β, q). The only difference is that this time our trial measure
ώΛ lives on the restricted configuration space and we choose ώΛ(σΛ) =

Y[ ωβ{βe\ This eventually leads to an inequality
/horizont;

= \im f (log q-β,q)S inf j - (<* ^ V - {d - l)p2 - ^ A l - p)

Taking into account the equality (3), we get for/°°(j8) a bound

which is for small temperatures clearly stronger than the previous one (2).
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Actually it turns out that this bound is exact. This will be proved in the next
Section.

3. A Lower Bound

A needed lower bound follows immediately from the following Lemma (which is
equivalent to that stated in the Introduction).

Lemma 1. f(β, q)^- ί f c ^ l o g ( ^ + q^\
β 2

Proof. Let us evaluate the partition function ZΛ collecting the terms that have the
same sets 0* of nonfrustrated plaquettes and summing over all subsets 0> of the
set of all plaquettes that intersect A. Denoting by | { } | the number of elements of
a set described in brackets and 5£ the set of all horizontal links in A we have

δ =\}\^e^\{σ

where 3?{0*) is any set of horizontal links such that
i) for each configuration on ^\S(0>) there is at most one (restricted) con-

figuration σΛ on A such that δ~ 0 = 1 whenever Pe0).
Moreover, for each 0> we shall find quite a large set 2(0>) fulfilling i). Namely

2{0>) such that

2

with some constant k independent of 0>? Once we have such set ^(0>) we estimate

Ύ
Λ\ (

q y I
\&\=o \

_ qk\dA\ ίeβ _|_ 2ld\\Λ\d(d-

with IAI (d(d — 1 )/2) + k! \ dA | the number of plaquettes intersecting A. The state-
ment of the Lemma then follows immediately.

What remains is to find an algorithm for the construction of <g(0>).
Let us imagine we have constructed it already and we want to verify the

condition i). We are thus given a configuration outside of Sf(0>) that is to be
extended onto £(0>). To do it we order the set of lattice sites in A lexicographically:

3 The case of 0> the set of all plaquettes in A shows that the inequality ii) is the best possible as far as
leading terms in | A | are concerned. Indeed, in this case j ^ ( ^ ) = if since the configuration is determined
everywhere solely from the knowledge of a boundary condition and up to terms proportional to \dA\

d(d - 1 )
the numbers | <£{&)\ and 10>\ equal (d - 1)| A\ and \A\, respectively
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d - l

i ^ j whenever j = i + ]Γ / μ and the first nonvanishing Zμ is negative. Then we
μ = 0

shall determine the configuration inductively, extending it onto JS?\&) =
{(i, μ)e5 ? (^)} at one step. Namely, let the configuration be known already on
(J 3?\gP) and on the links outside /t (in the first step only the boundary condition

is given). We want to prescribe its extension onto J2?1 (^). We proceed by another
induction link by link using the fact that a link variable on the link treated at one
time can be computed from the condition σp = 0 if this link belongs to a plaquette
Pe& such that the configuration on all remaining three links of P has already
been determined.4 A feature of the construction of 3?X&) for each i should be the
existence of such a plaquette at each step. To ensure this one should not only
choose which links of «£?* = {(/, μ)ei?} to incorporate into 3?χgP) but also order
the chosen links in an appropriate way. Both we shall do now.

First of all we may safely include into S\^) the set S\ {&) = {(i, μ) | (z, 0, μ)e0>]
ordered arbitrarily since when extending our configuration each plaquette (ί, 0, μ)
shall have already determined the three link variables <?(ίϊ0)( = 0), <?(i + i M ) )( = 0)
and σ(i + ό μ ). Next the set S\ψ) of those links (i, μ)φ&\(&\ioτ which there exists
a link (/, v)e2\(0)) with corresponding plaquette (i, min(μ, v), max(μ, v))belonging
to 0>, may also be included. (Again (i, v), (i + μ, v) and (i + v, μ) are the links on
which the configuration will have been already determined.) To decide what
additional links from &)>(&) = &i{0>)\{Sί'i1(&>)v&i

2{0>)) to include into &'ι(0>)
and how to order them, it is convenient to consider the following graph Gι. The
set ££ι {0*) is taken to be the set of its vertices, and two vertices (i, μ), (i, v), μ < v
are joined by an edge whenever (i, μ, v)e&*. We shall use a simple graph-theoretical

Lemma 2. Let G be a graph (without loops or multiple edges) having r vertices and
p edges. Then there exists a subset V ofk of its vertices and a linear ordering of V such
that a) each vertex veV is joined by at least one edge with a vertex w such that either
wφV or w < v,

b) r-k^2p.

Proof Let G have/connected components. In each component we choose a path
going through all vertices of the component. We omit the first vertex on the path,
and the remaining vertices of the component we include into V, ordering them in
the order we meet them for the first time on the path. The order of vertices from
different components is given by an arbitrarily chosen ordering of components.
The condition a) obviously holds. To verify b) observe that the number of edges
of G does not exceed the largest possible number of edges of a graph with r vertices
minus/— 1 edges for each vertex that would join it with/— 1 remaining compo-

r(r - 1) r(f- 1)
nents: p ^ — — - — . The condition b) then follows since k = r —/ by

/ * •*—

construction.

4 Let us note that any overdetermination does not bother us. We may fail to extend the configuration

when two different plaquettes from & determine different values of a link variable on the same link,

but this means only that the considered configuration cannot be extended. Actually, what we are looking

for is the set S£i$P) such that at most one extension exists
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To finish the proof of Lemma 1 we apply the above Lemma to the graph Gι:
we choose S\ ψ>) c <£ι

3 (0>) and order it in such a way that
a) each link (i, μ)eSfi

3(&>) is connected by a least one plaquette from 0> with
a link (i, v) that either does not belong to S\ ψ>) or it is placed before (ΐ, μ) in the
order of 3>\(&).

Using this we easily see that we will be able to finish by induction the extension
of our configuration onto

To verify ii) we show that for each lattice site ί that does not lie at the boundary
of A it holds d\Si(0))\^2\0>i\, where &>* = {(ΐ, μ, v)e0>}. Let us decompose
disjointly (P1 = S>\ u ^ ι

2 u ^ ι

3 with &\ = {(i, 0, μ ) e ^ j , ^ 3 = {(j, μ; v)e0>\(i, μ)φ
&\ O n (i, v ) ^ \ (^)} and 0>\ = 0>\{0>\ u ^ 3 ) . Clearly j 5 ^ ( ^ ) [ = | »\ |. Since each
plaquette (i, μ, v)e^ ι

2 has both links (U μ) and (i, v) in i f \ (^) u i f 2 (^) while each of
them belongs to at most d — 2 (horizontal) plaquettes from ^ 2 we have (d — 2).

Q?i (Φ\κ ) OP* (Φ\\ > ?l Φ* and aς a rnn<;pπiipnre ή\ φi (Φ\\. ) ^Pι (Φ\\ > ? I ^ ' v) ^ I

To finish the proof we observe that from the condition b) of the Lemma 2 applied
to the graph Gι and from the fact that \se\(&)\ <d\t follows that d|jS? ι

3(^)| ^
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Note added in proof: For the conventional Ising model, the exactness of the mean field theory in the

limit of infinite dimensions was proven by Thompson [11]. (I thank Barry Simon for bringing this

result to my attention.)
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