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Abstract. We consider two dimensional boson field theories with an interaction
potential i^(φ). We show how to define a cut-off, renormalised Hamiltonian
for a certain class of non-polynomial i^(φ\ which are defined via an integral
transform. We formulate precisely a variational argument devised by Coleman,
obtaining a constraint on the coupling constant of the theory with general i^(φ\
and illustrate the argument with several examples.

1. Introduction

In this note we will consider boson field theories obtained by quantising the
classical system with Lagrangian density

for a range of potentials i^ . The Hamiltonian density corresponding to J? is

with

where π is the field conjugate to φ. We will allow only two space-time dimensions.
Our aims are two-fold, namely:

(1) to define a cut-off, renormalised Hamiltonian for a range of non-polynomial
interactions i^;

(2) to reformulate within the framework of constructive field theory a varia-
tional argument due to Coleman [1], which places constraints on the various
parameters appearing in 1^.

Let us begin by reviewing the argument which Coleman applied to the sine-
Gordon model, defined by the potential

fc(l-cosψ), fc>0.
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(1) Coleman adopted an unspecified representation of the canonical commuta-
tion relations (CCR), defined

ψ± = ±(φ + iA- M, π± = - \ (π ± iAφ\

where

A2 = - V2 + α2,

and regarded (/>^ and πA as creation operators for a free field of mass α, and </>^
and π~ as the corresponding annihilation operators. To any function of φ and
π, such as Jf, there corresponds a normally ordered form, denoted by :J^:A,
obtained by inserting

into the expression for Jjf and arranging the annihilation operators to the right
of the creation operators. The normally ordered forms obtained with different
choices for the mass parameter are related by the reordering formulae,

in which

A2 = - V2 + α2, B2 = - V2 + β2,

and the constants are correct to leading order in Λ9 the momentum cut-off.
(2) Because there is only one space dimension, the Hamiltonian density can

be renormalised simply by writing it in normally ordered form, so Coleman chose
: ffl \ A, normally ordered with respect to a fixed mass α, as the Hamiltonian density
of the sine-Gordon model.

(3) According to the Rayleigh-Ritz variational principle, the infimum of
the spectrum of : 3C :A is bounded above by

for all v in the domain of :J^f :A. Coleman chose for the trial vector the vacuum
vector for particles of mass /?, defined as the vector VB annihilated by φ~ and π~ ,

B2 = - V2 + β2,

and used the reordering formulae to compute

(υa, :^:AVB)/(VB, VB) = (β2 - α2)/8π - kλ~2(β2/a2)λ^". (1.1)

Coleman observed that the right hand side of (1.1) is only bounded below as a
function of β if λ2 ^ 8π, and concluded that this constraint is necessary if the energy
is to be bounded below and the theory is to have physical content.

Coleman's argument is particularly useful, because it is non-perturbative and
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provides a priori bounds on the coupling constant, so we attempted to extend it
to a wider class of potentials. Now the key to the argument is the ability to evaluate

and

(VB, :r ^B)/(vB, VB) = ^p

This is a simple step for the sine-Gordon model because if is an exponential
function, so the obvious extensions are to potentials which have a finite Fourier
series,

Σake~ίs^ (1.2)
z πfe=ι

and to potentials which have a Fourier integral representation,

More generally, we can allow potentials which have an integral representation
with an exponential kernel,

nΦ) = ̂ Se-»+r(s)ds9 (1.4)

where Γ denotes a closed contour in the complex plane. Indeed, both (1.2) and
(1.3) are special cases of (1.4). For such potentials,

<£f/l>£ i-

λ~2 ,

so we find that
\s2λ2/8π

(VB,VB) 8π 2πi

If the right hand side of (1.5) is not bounded below as a function of β for some value
of A, then we can conclude that the value of λ is inadmissible.

Unfortunately there is a gap in Coleman's argument because the mass β
vacuum state is not contained in the representation space of the CCR chosen
by Coleman. What then is the meaning of (VB,:<^?:AVB)/(VB,VB), and how does
the familiar Rayleigh-Ritz variational argument apply? Again, is the bound
obtained by Coleman dependent upon the representation he chose for the CCR?
Our aim is to answer these questions and to show that a careful modification of
Coleman's argument does provide a priori bounds on the coupling constant for a
range of potentials.
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In our reformulation of Coleman's argument, three operators will keep appear-
ing,

A2 = - V2 + α2,

B2 = - V2 -I- β\

C2 = - V2 + f.

(1) We adopt the C-representation of the CCR, corresponding to a free field
φ and its conjugate π with mass y. We impose a momentum cut-off A on φ and
π, thereby producing new fields φΛ and π^, and construct

and

*Λ*H*S(*) + ̂ M
From the Hamiltonian density we construct the Hamiltonian with a box cut-off L,

-L

-L

and

We emphasise that we have included both cut-offs, A and L, in the free Hamiltonian
as well as the interaction term, contrary to the usual practice in constructive
field theory of applying the cut-offs only to the interaction.

(2) Next we construct the mass α annihilation and creation operators,

ΦAA = RΦA + M ~ XI ΦΛ = ΦAA + ΦΛA >
πAA = - 2 Ki ± iAΦAl -*A = πAA + πAA '

and normally order both ffl Λ and HΛL by arranging the ̂ -annihilation operators
to the right of the ̂ 4-creation operators, to produce: Jί?A :A and 'ΉΛL :A.

(3) We assume that :HΛL :A is essentially self adjoint on the domain G defined
in Sect. 2. (This assumption is necessary for step (4).) For results relevant to this
see [8].

(4) Lastly, we prove that there is a sequence of vectors v(£* in the domain of
' HAL:A (the closure of 'ΉAL:A) which approximates the mass β vacuum and
satisfies

(n) Ή

If we can now prove that the right hand side of (1.6) is unbounded below for certain
choices of λ, then we can conclude that :HAL :A is unbounded below for any fixed
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box cut-off L and all sufficiently large momentum cut-offs Λ. This reproduces
Coleman's argument.

Whether this proves that the Hamiltonian (without cut-offs) cannot be bounded
below is contentious. Firstly, the existence of a Wightman field theory with dyna-
mics corresponding to the classical Hamiltonian is unproven (except for the
polynomial and sine-Gordon interactions). Secondly, even if the Hamiltonian
exists, as the generator of time translations in the Wightman field theory, it is
not clear that it can be obtained by removing the cut-offs from :HAL :A. Indeed,
if we naively lift the momentum cut-off, so that φΛ and nΛ become local, then the
results of Epstein, Glaser and Jaffe [2] might be applicable, which show that 3tf*
cannot be positive definite and suggest (but do not prove) that both 3tf ° and HQ

L

might be unbounded below and that H^ might have continuous spectrum. How-
ever, Coleman's argument only requires that the Hamiltonian should be unbounded
below whenever :HΛL :A is unbounded below. This point is possibly not difficult
to check in a particular model, given the existence of the Hamiltonian, but we
do not intend to pursue it here.

At first sight our argument may appear unnecessarily complicated, for we
have used three operators A, B, C, when the usual procedure is to set A = C.
However, this specialisation does not simplify the calculations, so we will carry
through the argument for general A.

Finally, we remark that there may be other ways of recovering Coleman's
conclusions, using different cut-offs or an alternative approach, but the setting
which seemed clearest to us was the configuration space representation of the
canonical commutation relations, described by Glimm and Jaffe [3]. In the first
section of the paper we collect some elementary properties of this representation.
This done, we introduce the class of potentials to which our argument will apply.
Then comes the variational argument, which we conclude with some examples.

We note that Chodos and Klein [4] have also applied Coleman's argument
to the potential eφ*φ. For general discussion of non-polynomial interaction see
H^egh-Krohn [8] and for rigorous results on sine-Gordon see Frohlich [9].

2. Notation and Preliminaries

We let S denote the space of real-valued test functions on R of fast decrease and
write M, v ->• < u, v > for the Euclidean inner product of elements u, veS. The dual
of S we denote by Q, and the pairing between Q and S by < q, u >, qeQ, ueS.

To each ueS, there corresponds a coordinate function on Q, u:q-+ <#, w>e(R,
which we also denote by u. Given coordinates w 1 ? . . . ,MM on Q and any complex
valued function / in n variables, then we form the cylinder function/ :q -^f(u^(q),
u2(ql.. , un(q)) on Q with base U = span [uί, u2,..., un}.

If / is a differentiable cylinder function then we write for its derivative with
respect to a coordinate v,

(dj)(q) = Σ <», « t>0fc/ )(«ι(ί). u2(q),..., «„(«)).
k=l

The set of cylinder functions is an algebra over C in which addition and multiplica-
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tion are defined pointwise. We let P denote the subalgebra consisting of the poly-
nomial functions on Q, and G denote the cylinder functions with exponential
growth of order 2 and minimal type. This latter is defined to be the set of C00

cylinder functions / which satisfy

for any ε > 0 and coordinates ι?19 1?2, ... ,vm. The constant C may depend upon
s and the coordinates. It is straightforward to verify that G is also an algebra.

Given any real, symmetric, positive-definite operator C on 5 we define

<w, vyc = <M, C"1!;) and ||tι||c = <M,w>^/ 2 .

We let vc denote the corresponding Gaussian measure on β[5] whose Fourier
transform is

Q

Finally, we note that P and G are densely embedded subalgebras of L2(Q, vc) for all
C. More details on the above may be found in [5].

We will later need certain integration formulae which are summarised in the
following lemma.

Lemma 1. Suppose that:

(1) uί,u2,...,un are arbitrary elements of S, not necessarily linearly indepen-
dent;

(3) Mrs is a real, symmetric matrix, not necessarily positive definite;
(4) z^,... ,zn are parameters, not necessarily real.

Let

I = Jexp Σ ur(<ϊ)Mrsus(q) + 2 £ zrur(q) \dvc(q),
Q Lr,s=l r=l J

and

[ n n

r,s=l r = l

-where p is a polynomial in n variables. Then the integrals are convergent if and only
if N+ —M is positive definite on the orthogonal complement of the kernel of N,
where N+ denotes the Moore-Penrose generalised inverse ofN. When this condition
is satisfied,

I = der 1/2(1 - MJV)exp Σ *r[#ί1 ~ MΛ0~ Ί z \
L,s=l ΓS SJ

and



Bounds on the Coupling Constant 197

The proof is straightforward, so we omit it.
The condition for convergence of the integrals can be difficult to check when

the matrices are large, but one situation (which we will later encounter) is covered
by the following lemma.

Lemma 2. Suppose that w 1 , w 2 , . . . , w M are linearly independent, so that N>0.

if

Mrs = 0 whenever r > k or s > k,

then
N~1-M>0 if and only ifN~ 1 - Mk > 0,

where Mk and Nk denote M and N truncated to k rows and columns.

Proof. The Only if part of the lemma is obvious, and the 'if part is established
by induction on n. By hypothesis, the result is true when n = k. Suppose then
that N~1—Mj>Q for some £^k. The augmented matrix N^+1 is positive
because u19u2,...,Uf+1 are linearly independent, so if we write

[M, 0]

= [° oj
where

and

then it follows from Lemma 3 below that N~^ — Mf + ί > 0.

Lemma 3. Let P^ and Q^ be hermίtian matrices with Pf > 0 and R^ = P~l - Q^ > 0.
and Qj are augmented by the addition of a row and a column,

, 0

such that P,+, > 0, then R,+ ί = P^+\ -Q,+ ί> 0.
This is a simple verification so we omit the proof.

3. Integral Representation of Cylinder Functions in G

Let /eG have base U. The C-Fourier transform of/ is the map f:U^U where

/(M) = J exp (2i<q, u> + <u, u\)f(q)dvc(q).
Q

We parametrise U by assuming, without loss of generality, that uί,u2,...,un

are C-orthonormal, so that we can represent a general element of U in the form
M = Z U, where u = (w 1 ? ι/ 2 , . . . ,u n \z = (z1 ?z2,... ,zπ), and z.= <w,w ί> c. Then
/ can be regarded as a function of z and

exp( - |z|2)/(z) = π-"/2 J/(t)exp[2iz t - |t|2]Λ.
05"
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The function g(t) =/(t) exp ( -|t|2) belongs to the space S1/2 of Gelfand and Shilov
[2] because |0(k)(t)| ̂  Ckexρ(- α|t|2) with 0 < α < l . Moreover the Fourier
transform of S1/2 is S

1/2, consisting of entire functions of order 2, sof must also be
entire with order r ̂  2.

Every such function has a Borel transform [7]

/#(s) = JΓ Π zp ' exp ( - zp/s, Ί/(z1/s1 , z2/s2 ,..., zjsjdz,
o U = ι J

which is holomorphic for all sufficiently large s. Furthermore, if Γ denotes a simple,
closed contour which encloses the singularities of/^, then

r _ ί = 1

where Er is the Mittag-Leffler function,

Thus, we find that

in which
GO n / _

and Hm denotes the mth order Hermite polynomial,

\m f

ί=l

In particular,

so

where

We have shown that / has the integral representation

/(«) = τΛίίM<^«>^)/w(s)* (3.1)
\LTll) Γ

in which Γ is a simple, closed, bounded contour in Cn and the parameter r is the
order of growth of the Fourier transform / of/. In particular, when / is a function



Bounds on the Coupling Constant 199

of exponential type, so that r = 1, then (3.1) reduces to

/(«) = — ̂  ί exp ( - is < 4, u > )f(s)ds. (3.2)

4. Normal Ordering

We introduce the C-representation of the canonical commutation relations on
L2(Q, vc)[5]. For each weS, we let φu and πtt denote the operators

Φu 'f -> uf> *u :/-* - »./+ «Cιι)/, /6G.

These operators leave G invariant, are symmetric, and satisfy [</>M,πJ = ι<w,ι/>
onG.

If K is an operator on S, then we write Kφu = </>XM and KπM = πKu . So in parti-
cular with A2 = — V2 + α2 we may define

tf = ί l>. + ̂ ' lπ J. < = - iK ± W J
Given any polynomial p((/>M, πy) in 0M and πy, then we can write p = /?[</> + + φ~ ,
- πυ

+ - π~) and arrange the annihilation operators to the right of the creation
operators in the expansion of p. We call this the ^-normally ordered form of p
and denote it by :p :A .

In order to extend this procedure to non-polynomial functions of φu, we define
the normally ordered form for the exponential function on Q and then extend the
definition to those functions in G with Fourier transforms of exponential type.
Given coordinate functions u1 , u2 ..... unonQ and possibly complex s19s2,...,sn,
we define

I

U=ι

where s=(s19s29...9sl) and u = (î  , u2 , . . . , un). Note that

Q

If /eG has the representation (3.2) we may define

:exP( ~ zs u)

For polynomial functions this gives us two definitions of normal ordering but
we will see later that they coincide. Finally, if/ is a cylinder function in G, then
:/ :A also lies in G.

A similar definition of normal ordering for a more restrictive class of potentials
is given by H^egh-Krohn [8].

5. Formal Calculations

We now have the machinery to analyse the steps of the variational argument, but
before doing so we will sketch the underlying formal calculations.
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If we were to let the smearing function shrink to a δ function, then the fields
φ(x) and π(x) on Q space would become the operators

i-jβ + iCq(x)

with corresponding annihilation and creation operators,

= φ ) - B~1Cq(X) + fi-'

They act on the space of functions of q, equipped with the inner product,

Q

where

fe Cq) = f fl(*)[ί C(x - y)q(y)dy']dx,

and

C(x-y) = —j

is the kernel of C. The annihilation operators commute,

so it ought to be possible to find a simultaneous solution of the equations,

</>;(*)/(*) = o,
% (*)/(*) = o.

Indeed, the formal solution is

Furthermore,

= expf (4, (C -£)<?) (5.1)

will satisfy

for all x. The vector VB is the β-vacuum vector.
Our aim is to compute

(ΌB>:HAL:AVB)C/(»B>VB)C>
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and to investigate whether it is bounded below as a function of B. To do this we
introduce a momentum cut-off in the fields and also approximate VB by a finite
sum,

<β, w r> <β, (C - B)wr>,
r = l

where (wr}"= ί are linearly independent test functions in S. If the space spanned by
{wr}r°^ i is dense in the completion of S in both the B-norm and the C-norm, then
formally

v$ ~^ VB as n —> co.

This is the approximate J3-vacuum, mentioned in the introduction. The form of
υjj? is Gaussian and so the expectation value of the Hamiltonian :HΛL \A can easily
be computed. We will find an upper bound for

( ( « ) («h
• f

(„(«) «(πh
n Wβ 5 UB /C

which is independent of C and recovers Coleman's bound.

6. The Variational Argument

The steps of the variational argument run as follows.
(1) We denote by φA(x) and πA(x) the quantum field operators with momentum

cut-off A at the space point x, constructed in the C-representation of the CCR on
L2(β, vc). They are defined as follows. Choose a function u in S whose Fourierc

transform,

u(k)=

approximates the characteristic function for the interval [ - Λ9 A], and let ux

denote the function

ux(y) = u(x - y).

Then, regarded as operators on G c L2(β, vc), it follows that

and

Now define

a.χ -(Cux)
2 + (Vuxf + <ux,

and
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where

Note that we have departed here from the usual procedure in constructive
field theory, for we have defined the/ree Hamiltonian density as a function of the
cut-off fields. Consequently, '^A(x)'A is not local.

From the potential V we construct the cylinder function,

whose Fourier transform we assume is of exponential type. Consequently, both
i^Λ(x) and '^A(x) A lie in G and define multiplication operators on G, which we
denote by the same symbols. Note that we have included λ in the definition of Ύ* A .

Under the hypotheses above, all of the operators
:i^A :A , :34fΛ :A are defined on G and leave it invariant.

We now construct

-L

and the corresponding normally ordered forms, also with domain G.
(2) For the trial vector in the variational argument we choose

in which we assume, without loss of generality, that the test functions W j , w2 , . . . ,
wn are linearly independent. We want to compute the expectation value of
'.2tf Λ(x) :A for the state v(£\ and this we can do provided that we can calculate

%(n) = (v$\v$\,

^ = (ι#>, :exp - iλsux 'A\/(υ^\ ft,

and

In order to calculate 3?(n\ we must integrate over the space spanned by
w2, ... , ww. If we let

then Lemma 1 shows that

^"^det

and that the necessary and sufficient condition for ^<M> to be finite is

(6.1)
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(v(

R

n), exp Γ — isλuJlvW)^ = ί
v D 7 F \- Λ_l /} /C J

Q l_r,;

so the integration is over the space spanned by
to apply Lemma 1, we set

t , w2, ... , wn} and wx. In order

Γ<*,.*.>C <*,.".>c1

L<«x,ws>c <«;c,«je>cj'

and

From Lemma 2 we have that the integral is convergent, given that (6.1) is satisfied,
so

«>, exp [ - isλu >w)c = exp (0, - isλ/2)

where

Hence,

\~N
= [N '

= exp -
»«.»,>c[(1-M"N")"'M'α,<»',,»,>c

Lastly, we must calculate 2£(n) .

:^W:X)(«) = UΓ- Σ

= polynomial in q.v(£(q).
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Thus, the calculation involves an integration over the space spanned by

{wί, w 2 , . . . , wj, uχ9 Vuxand Cux,

so in the notation of Lemma 1, we now set

<>r,ws>c

<ux,wsyc

<vux,wsyc

_<Cux,wsyc

<wr,uxyc

<ux,uxyc

<Vux,uxyc

<cux,uxyc

<"V.V«»>C

<ux,vUχyc

<Vux,vUχyc

<cux,vUχyc

<wr,cUχyc

<.ux,cuxyc

<vUχ,cuxyc

<cUχ,cuxyc

M =

M11

0

0

p

0

0

0

0

0

0

0

0

0~

0

0

0_

Again, Lemma 2 assures us that the integral is finite, given that (6.1) is satisfied,
and Lemma 1 shows that

Z(«)= _ιΣ<Mχ,Wr>MrVKsVM,?/

1<w.,u ;

_i
2

where

After some manipulation and combination of terms, we obtain
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Since 3C(n\ <2/(n) and Jf (w) only involve the leading blocks of M and N9 we can
now dispense with the superscripts on M and N.

We now make a particular choice for M, namely,

M = N~ 1-L- 1,
where

Then condition (6.1) reduces to

or, equivalently, that B be a positive operator, which is certainly true. For this
choice of M,

If we now let PB and Pc denote the ̂ -orthogonal and C-orthogonal projections
onto the span of {w1 , w2 , . . . , wj, then we obtain

[ 1 ux L
2 - || Uχ ||/] + [ I u, I2 - II Pcux ||B

2 - II (l - PCK 1 c

2]],

(n) = ί [ I ft*, L2 + II v«Λ L
2 - 1 A., L2 - 1| vu

c

2 + || (l - P^VW, ||c
2 - || (l - p°)Bux \\B

2 -

We assume that the subspace spanned by {wr}^l 1 is dense in the completion
of S in the topologies of both the B-norm and the C-norm. Then both PB and Pc

will converge strongly to the identity in either topology. Thus,

and

JT(00) = lim

Note that ^(oo) and JT(oo) are independent of C. We will see presently that ^(00)

and ̂ (00) can be used to recover Coleman's bound.
(3) Now φΛ9nA and Ύ* A can be extended to the domain spanned by v(£ and

G, because φA, πA and Ί^^ act upon v(£* by multiplication by a function in G, and
functions in G grow sufficiently slowly. Furthermore, these extensions remain
symmetric, so \2tf A :A and : HAL :A are also symmetric on the extended domain
and

ΆB >C
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for all /eG. The left hand side is a continuous function of /, because :HAL :Av
(^

lies in L2(<2, vc), so we conclude that υ^ lies in the domain of :HΛL :̂ .
We now assume that :HΛL :A is essentially self-adjoint on G. Then v(£ will lie

in the domain of 'ΉΛL:A and so we compute

i A D 'C' ^ D D 7C

r., λ~2

and

F(

A

00)

2τπ jT , W / _J

L Γ oo ^~2 oo - 1~ _L

 x|_ 2πί s sJ
2nι

Finally, we observe that

inf-

Fίl

co) is independent of C.
(4) The parameter β appearing in B is free, so if JF1(

A

00) can be made less than any
prescribed bound as β is varied, then the operator '.HAL:A must necessarily be
unbounded below. As emphasised in the introduction, this still leaves the problem
of verifying, in any particular model, that every cut-off Hamiltonian formed from
i^ with this value of λ must also be unbounded below. This would imply that any
constructive approach to the model must fail, because a ground state could not
exist.

7. Examples and Applications

In applying the preceding theory, we recall that

A2 = — V2 + α2

B2= - V2 + β2,

in which α is fixed but β is a free parameter which we may vary. Then, choosing
u, the momentum cut-off, to be the characteristic function of the interval [ — Λ, A]9

we have

and
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Since we are only interested in large A, we will retain only the leading terms in
the asymptotic developments of these functions, so

0(ΛΓ 1),

8π

Thus, we finally obtain

[ / s2λ2/8π

which is the extension of Coleman's bound to general i^.

Example 1. Polynomial Potentials. We begin with this simple example in order
to show that the two definitions we have introduced for the normally ordered
form of a polynomial are consistent.

The real polynomial with even degree,

t
- Σ <**<<?> ">*, 0ke(R,
— * = 0

has the integral representation

in which Γ denotes a simple, anti-clockwise loop about the origin and

^(«)= Σ <y*fc!
fc = 0

According to the definition,

= _ f V Jk ^]J^i -ίλs<q,uxy+(λ2

J ^ fc+ιe

* k\( d V -iλs u ii 1= A 2 Σ α / Π - j - ) * ιλs<4'M*>+(λ2s2/4)<M~u*>^j

fc = 0 m=0

which agrees with the conventional definition.
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We find that

Γg2 2 [*/2] ΠϊV Ί

fT = 2L L?L + λ-2 Σ^ί-py^ + Oμ-1) I (7.2)
L δπ 7=0 ./• J

/I2

where p = - Iog(j32/α2). F^ is bounded below for all β.

Example 2. Trigonometric Potentials. Suppose that ̂  has the form

£

iT(q) = £ (ake~isk<q^ + άhe
+ίSk<q u>).

fc=l

If the numbers sk are real, then/ is a trigonometric polynomial, but we will admit
complex values for sk so that this class also includes exponential functions and
combinations of exponential and trigonometric polynomials. If

s* = σ* + ίτ*>

and

a - \a \eiθk
α/c~Ίαfcr '

then

nq) = Σ 2\ak\eτ«<«>»>cos(σk(q, u} - θk).
k = 0

Such functions can be represented in the form

2πi*

provided we let Γ be a simple anti-clockwise contour which encircles sk, — sk,
k = 0,..., *f, and choose

£

i^(s\= v
V / 2-J

This general form includes potentials such as eλφ for which we find that λ is
unrestricted; cos2λφ for which we must have λ2 ^ 2π; and ecλφcos2λφ for which
there is no restriction on λ provided c2 ^ 4, but otherwise we need (4 — c2)Λ,2 ^ 8π.
In general we obtain

where

If σ fcτk^ 0, we can choose values of β2, small or large, such that cos(2σkτkp 4- θk)
is negative. The behaviour of F^1

00) depends on the relative values of sk and ak.
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For example, if Ίf consists of a single term with:
(1) σ2 = τ2? then jtfoo) is bounded below;

(2) σ2 > τ2, then F™ is unbounded below unless λ2(σ2 - τ2) ^ 8π;
(3) σ% < τ2, then F^ is unbounded, below for all non-zero λ.
In genera], terms in jp^00) can be either positive or negative for large and small

β2, and the combined result depends on the explicit form for V.

Example 3. Combined Trigonometric and Polynomial Functions. It should be clear
that we can obtain any combination of polynomial, exponential and trigonometric
functions by choosing i^ to be meromorphic with a finite number of poles and Γ a
contour which encloses these poles. When we form potentials by adding poly-
nomials and trigonometric functions, we find that the behaviour of F(™} is governed
by the latter, since polynomials, according to (7.2), contribute terms merely
logarithmic in β2. Much the same is true if we form potentials by multiplying
trigonometric and polynomial functions. For example, a potential of the form
p(λφ) cos2 λφ9 where p is an even, non-negative polynomial, must satisfy λ2 <£ 2π if
p has degree 0, 2, 6, 10, . . ., but otherwise there is no restriction on λ.

Example 4. Rational Functions. If i^ is a rational function whose square is inte-
grable along the real line, then we find that the Fourier transform of if (considered
as a function on configuration space) is an entire function whose order of growth
exceeds one. Such a potential does not have an integral representation over a
bounded contour Γ with the exponential function as kernel. According to our
program, such a potential cannot be normally ordered and must be rejected.

We can arrive at this result in another way. We can write

where i^ is the usual Fourier transform, and perhaps define

i^(q) = ^- ] e-
is^-r (s)ds

and -«>

— oo

_/r2 "
"2^"-v

However, the Fourier transform Ϋ of a rational function generally will decay
like e~as, so the integral in (7.3) cannot converge. Again we must discard rational
potentials because they cannot be normally ordered.
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Note added in proof. B. S. Skagerstam [10, 11] has applied Coleman's trick in order to study quantum
corrections to classical confinement.




