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Almost Periodic Schrδdinger Operators

I. Limit Periodic Potentials*

Joseph Avron** and Barry Si

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Abstract. We study H= -d2/dx2 + V(x) with V(x) limit periodic, e.g. V(x)
= Σan cos(x/2") with Y}an\ < oo. We prove that for a generic V (and for generic
an in the explicit example), σ(H) is a Cantor (= nowhere dense, perfect) set. For
a dense set, the spectrum is both Cantor and purely absolutely continuous and
therefore purely recurrent absolutely continuous.

1. Introduction

This is the first of several papers on the spectral properties of operators
— d2/dx2 + V(x) (and its higher dimensional analogs) with V(x) an almost periodic
function. Two themes will recur throughout:

(1) There is a tendency for the spectrum to be a Cantor set ( = nowhere dense,
closed set with no isolated points), albeit one with positive Lebesgue measure.

(2) If V is multiplied by a suitably large constant, there are "mobility edges", in
the sense that the spectrum in certain intervals is pure point and otherwise is
absolutely continuous (however, if (1) holds the absolutely continuous spectrum
must be recurrent in the sense of [2] so that the states are not exactly "mobile"
since Cantor sets are locally uncountable, the point spectrum will be "thick" in the
sense of [2]).

We emphasize that while we believe both these phenomena occur for certain
almost periodic potentials, we have not yet proven this. In the present paper, we
prove (1) for generic limit periodic potentials. We recall

Definition. A function V(x) on (—00,00) is called limit periodic if there exist

continuous periodic functions Vn(x) of period Ln so that sup|Fn(x)— K(x)|-»0 as

Π - > Ό O .
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We review some of the basic facts about almost periodic functions in
Appendix 1 in particular, the Vn can always be chosen so that Ln_hl is an integral
multiple of Ln.

In fact, any limit periodic V can always be written

V(x)= JΓ Wj(x/n1...nj)ί (1.1)
7 = 1

oo

where £ ((Wj\\aD< oo, each Wj has the same period Lx and nj = Lj+ JL} is an integer

greater than or equal to 2. A typical example is

V(x)= 2 ajcos(x/y) (1.2)

with

We will let S£ be the set of all limit periodic functions with the metric induced
by II II a,. We let M be the set of all Ve Se of the form (1.2) with the norm induced
by (1.3). Jί is a Banach space. J27 is not a vector space but it is a complete metric
space. As such, it is a Baire space [5] and any countable intersection of dense open
sets is itself dense. Such dense G/s are called generic sets. Our two main theorems
are:

Theorem 1. For a generic element, V, of S£ (respectively M), the spectrum of
H=-d2/dx2 + V is a Cantor set.

Theorem 2. There is a dense set of V in JS? (respectively Jf), for which (i) the
spectrum of H is a Cantor set. (ii) The spectrum of H is purely absolutely continuous.
For the Jί casey the spectrum is moreover of uniform multiplicity 2.

We emphasize that the set in Theorem 2 is not claimed to be generic. Indeed,
our expectation (2) above says that we think the behavior will not be generic.
Theorem 2 says that the possibility of "recurrent absolutely continuous spectrum"
which we introduced in [2] occur for many simple looking differential operators.

In a recent preprint, Moser proved that for a dense set in if, the spectrum is a
nowhere dense set [17]. While our work is independent of Moser's, his work
predates ours by several months. In comparing Theorem 1 with the result of
Moser, note first that while Moser states and proves nowhere dense, the lack of
isolated points is a general property that is not difficult to prove (see Appendix 2).
Second, Moser only handled a dense set of V, but he remarks that genericity would
follow if the rotation number he discusses always exists. The existence has been
proven by Russell Johnson [13] and subsequently from a rather different point of
view ("integrated density of states") by us [3]. Moreover as we shall see shortly
(Lemma 1.1), it is very easy to prove directly that {V\-d2/dx2 + V(x) has a
nowhere dense spectrum} is a Gδ.

We emphasize that not only is our result in Theorem 1 close to Moser's, our
proof is related. The overall strategy is the same but the tactics are rather different
and we feel somewhat simpler. There is an interesting distinction in the approach.
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While the use of Floquet theory and discriminants is not unknown in the physics
literature, it is unusual - Bloch wave analysis over quasi-momentum space is the
usual tool because it extends to higher dimension. (This is particularly unfortunate
in studying the Kronig-Penny model where the Floquet theory approach is much
superior.) On the other hand, the mathematical theory tends to use almost
exclusively Floquet theory and discriminants. It's as if everyone insisted on
studying these problems with one hand tied behind their back but half chose their
right hand and half their left. While we primarily exploit the Bloch wave analysis,
certain estimates critical to Theorem 2 are proven using the discriminant. In
physicist's language we prove an upper bound on the widths of energy bands.
While Moser exploits manipulation of the differential equation or discriminant, we
exploit eigenvalue perturbation theory.

Moser uses mainly Floquet theory. However, by introducing the "rotation
number", α, as a function, of E, he is introducing a quasimomentum analysis in
disguised form. A main difference in his analysis and ours is that he tends to study
a as a function of E and we study £ as a function k (which is related to α). In the
fully a.p. case it is very useful to think of α as a function of E and this we do in a
future publication [3].

We should explain why the limit periodic potentials play a special role.
Because V can be approximated in uniform norm by periodic functions, H is a
limit in the norm resolvent sense of periodic Schrodinger operators while general
a.p. potentials only lead to H's which are limits in the strong resolvent sense of
periodic Schrodinger operators. Since spectrum can be lost in taking strong limits,
the difference is significant. Because of that fact, to prove Theorems 1 and 2, one
needs mainly detailed information about periodic operators. We do this in Sect. 2
the most interesting new result concerns control on the LP norms of spectral
densities and the density of states (p < 2). With this background, it is fairly easy to
prove Theorems 1 and 2 in Sect. 3. In Appendix 1, we present some of the basic
features of a.p. functions and in Appendix 2 some simple general features of the
a.p. case.

We want to note that Theorem 1 has various extensions. First there is nothing
sacred about 5£ and Jί Theorem 1 will hold for any complete metric space, f, of
limit periodic functions with metric ρ obeying:

(i) ρ dominates H ^ , i.e. Wf-gW^ύρif.g)-

(ii) Let 0>f denote the periodic functions of period L We suppose there is a

distinguished set, Sf, of reals so that for *?e «&*, &€c\Y φ 0 and (J ( ^ Π T Γ ) is dense

(iii) For a dense set in ^ n f , all gaps associated to period / (see Sect. 2) are
open.

(iv) For any / e ^ , there is me9* with m>f and m/ί integer.
For example, for any /c, we can take Y to be the limits in Ck norm of periodic

functions with ρ the Ck norm. Or we could consider the functions analytic in the
strip | I m z | ^ α with sup norm over the strip as norm.

In another direction, one can replace || || 00 by the norm

= sup f \V{x)\dx (1.4)
<<— oo



104 J. Avron and B. Simon

and prove Theorem 1 for JS?1, the space of limits of continuous periodic functions
in this norm, with metric induced by this norm. To see this one need only note that
the operator norm of V( — d2/dx2 +1)~* is dominated by a multiple of || || so the
various norm resolvent arguments are still applicable.

As a final remark in this introduction, we want to note that the set of F s
leading to nowhere dense spectrum is always a Gδ. Since σ( — d2/dx2 + V) is always
perfect (Corollary A.2.3), this reduces Theorem 1 to a density theorem.

Lemma 1.1. Let Y be a metric space of continuous (not necessarily almost periodic)
functions on IRV with metric ρ obeying QiVyW^WV—W]]^. Then
N = {Veir\ — Λ~\-V has nowhere dense spectrum] is a Gδ (countable intersection of
open sets).

Proof. For a,b fixed with α<6, let

(α>b) { K , ) s e t ( -

T h e n

N = Π Sto,6)
a,b rational, a<b

so it suffices to prove that S is open. Let VeSiatb). Then since resolvent-set ρ{H) is
open, there exists c, δ so that

(c-δ,c + δ)C(a,b)nresolvent set (-Δ + V).

By general principles if \\V~- W\\ao<δ, then c is contained in the resolvent set of
-A + W. [For \\(-A + V-cy1\\<δ~1 by the spectral theorem, so
1+{W~ V){-Δ + V-cΓ1 is invertible if \\V- W\\O0<δ.'] Q

2. Some Features of Periodic Potentials

The analysis of limit periodic potentials depends on having enough information
about periodic potentials. We develop this information in the present section
taking care to compare our results and methods with those of Moser [17], where
applicable. For additional background on periodic potentials see [26],
Sect. XIII.16 of [21] or the pretty book of Eastham [9].

We begin by briefly reviewing quasimomentum analysis to settle notation. In
analyzing potentials of period L, we introduce K = π/L and the Brilluoin zone
&$ = ( — K,K~]. For each k ( = quasimomentum) in ^ , we introduce a Hubert space,
jTfc, with orthonormal basis {Ψ{

n

O)(k)}™= _^ We regard Ψf\k) as the plane wave
L~1/2exp(ί[2nK-hk]x), either as a function all of (-oo, co) or only on [0,1/].
Viewing it in the former way, the Fourier transform gives us a realization of

. Explicitly, given φeC^(— oo, oo), weL2(~ oo, oo) as the direct integral J Jtfύ-—

define

M ) = { dxΨ(

n°\k;x)φ(x)
— oo

m (2.1)
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where φ is the conventional Fourier transform. The Plancherel theorem then reads

x. (2.2)
-K ι i = - o o

If we define a vector φ*(k) = £ φ(0)(n, k)Ψ{

n

0)(k) in ̂  (2.2) says that the map # is a

unitary form L2(— oo, oo) to the direct integral.
If we view the Ψ^ as functions on [0, L], they are the natural Fourier basis for

functions obeying the boundary condition:

(2.3)

where

(2.30

so that θ runs from — π to π as k runs through the Brilluoin zone.
The operator —d2/dx2 on L2(0,L) with boundary condition (2.3) is self-adjoint

with eigenfunctions Ψ^\k x) with eigenvalues (2nK + /c)2. Thus, we define oper-
ators H0(k) on jfx by

(2.4)

(2.4')

and —d2/dx2 on L2(— oo, oo) is just the direct integral of the H0(k).
If V is a continuous function of period L, we introduce an operator which we

call V on jΊfk with matrix elements

= f F(fe) exp[2iK(m- n)x]dx/L. (2.5)

Under the association of L2(0,L) with 3tfk given by the Ψ^(k) Fourier basis,
multiplication by V goes over to V. The operator

) = H0(k)+V (2.6)

is related to H= -d2/dx2 + V on L 2 ( - oo, oo) by

θ ΛU

H=ίH(k) — . (2.7)

The basis ^(fe) defines a natural association of Jfk with ^ 2, and the image of iί(k)
we will denote be Hb(k). It is somewhat pedantic to do this but useful because H(k)
viewed as an operator on L2(0, L) with boundary condition (2.3) has a k dependent
domain but Hb(k) has a /c-independent domain, i.e. those {an}eί2 with ^ n 4 α 2 < oo.
The k dependence oϊHb(k) [but not of the H(k) viewed as operators on L2(0, L)~\ is:

H\k) = Hb(Q) + AkKN + fc2, (2.8)

where {Na)n = nan.
H(k) is a bounded-operator perturbation of H0(k) which has compact resolvent

so H(k) has a compact resolvent and thus there is an orthonormal complete set
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Ψn(k) of eigenfunctions of H(k) with eigenvalues εn(/c). We can think of Ψn(k) as
functions on (—00,00). They will obey the boundary condition (2.3) and the
differential equation

(2.9)
dx

since Ψn obeys the same equation and a different boundary condition if /cφO,K
and since (2.9) has at most two independent solutions we see that εn(k) is a simple
eigenvalue of H(k) for /cφO,K and that

εn(-k) = εn(k). (2.10)

By the simplicity, εn(k) is analytic on (0,K) and by first order perturbation
("Feynman-Hellman" theorem) and (2.8):

since under the map from L2(0, L) to 2tfk and then to / 2 , τ — goes to 2KN + k. This
1 ax

is known as the velocity theorem in solid state [27] because it relates the

expectation of x = 2p with the group velocity —-.
dk

Notational Warning: Ψ^\k) were indexed by n running from — 00 to 00 but we will
index Ψn(k\ εn(k) from n = 0 to n= 00 so that εQ^rgε^/c)^ ... (strict inequality if
k + 0,K). For fe^O, the counting is that the labeling Ψf] ordered by
(0, - 1 , 1 , -2,2,.. .) go into (0,1,...) under the Ψn labeling.

Floquet theory depends on the discriminant, F(E\ defined to be the trace of the
2 x 2 matrix M(E) given by M(E){a, b) is the pair (c, d) with c = u{L), d = u'(L) where
u obeys

-u" + Vu = Eu (2.12)

with initial condition u(Q) = a, u'{0) = b. If E = εn(k), (2.9) plus the boundary
condition (2.3) says that M(E) has eigenvalue eiΘ. By complex symmetry it has a
second eigenvalue e~iθ, so

F(εn(k)) = 2cos(θ(k)). (2.13)

This argument can be turned around and implies that any solution of F(E)
= 2cos(θ(k)) is a value of εn(k). Further analysis of F (see e.g. [21]) shows that on
(0, K\ dεjdk > 0 for n = 0,2,... and dεjdk < 0 for n = 1,.... Thus the spectrum of H
which is the union of the spectrum of the H(k) is
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and the complement is a semi-infinite interval (— oo,ε0(0)) and a set of "gaps"
(perhaps empty). The nth gap (n=l,2,.. .) is given by

( V i W Λ M ) "Odd, (2.14)

(β»-i(0)>s»(0)) "even. (2.14')

Implicit in the above is a complete spectral decomposition of H as an operator
on L2(— oo, oo) (going back to GePfand [10]):

Define for keΆ, n = 0,1,...

φ(n;k)= ] dxΨJkίx)φ{x). (2.15)
— 00

Then by the direct integral decomposition:

Γ 00

ί Σ
U=o

2 ^ ιι v ii ? (2.16)

U=o
Σ \Φ(nΛ)\2Ur =(<P,g(H)φ). (2.17)

From this and the strict monotonicity of εn on (0, K\ we read off the fact that H has
purely absolutely continuous spectrum and that φ has a spectral measure

(2.18a)

(2.18b)

(2.18c)

where n and k are determined by

(2.18d)

[G = 0 if (2.18d) has no solution]. ρ(£) is called the density of states for reasons
described in [21] or [3].

We conclude our review of this material by noting that Moser's rotation
number [17], oc(E), is expressible in terms of (2.18d) by

n = 0,2,4,... (2.19a)

n = l , 3 , . . . , (2.19b)

so that

ΊE=m' ( 2 2 0 )

We do not claim that (2.19) is obvious but since we only require it for comparison
purposes we defer its proof to a later paper, where we systematically discuss α as
"an integrated density of states".

Having completed this review, we turn to the new results:
(a) Upper bound on dεjdk and bounds on band size.
(b) Upper bound on ρ(E) and LP properties of the spectral density Gφ.
(c) Bounds on total gap size.



108 J. Avron and B. Simon

Finally, we will recall the results on genericity of open gaps found in [22] and
which were rediscovered by Moser [17] in a slightly different form.

Theorem 2.1. Let a=- inf(F(x)). Then

dk

Proof. By (2.11) and the Schwarz inequality

Remarks. 1. One can compare this with Moser's result [17] that d<x2/dE^l. By
(2.19), in Moser's language, (2.21) reads

ψ-<2]/E + a. (2.22)
da ~ v

Since H{k)^H0(k) + b we have εn(fc)^b + εn(k V=0) [with b= sup V(x)] and since
L x J

(2.19) reads α(£)= \/εn(k;V=0), we have
2 (2.23)

so that
dE r-ϊ—
- j - ^ 2 }/oc2 + (a + b) (2.24)
da

to be compared with Moser's dE/doc^2oc. Pushed through to this form, Moser's
result is slightly stronger but on the other hand it is not clear how to get (2.22)
from his result. For the applications any of his results, (2.22) or (2.24) will suffice.

2. It is worth seeing that the perturbation theory result (2.11) is equivalent to
Dubrovin's result [8]

where D(x) = (2L)~ 1\w(x)\2 and w is the multiple of Ψ normalized by ww' - wvv' = 2i.
Let Ψ = aw. Then integrating by parts

i ax J 2 o

On the other hand

1 = (ψ9 ψ) = a2 j w2dx = 2La2 f D(x)dx,
o o

proving the equivalence.

Corollary 2.2. An individual band [£,£ ' ] {with E = εn(0\ E' = εn{K) (n = 0,2,4, . . J
or £ = εB(X), F-β n (0) Γn=l,3, . . J

V (2.25)

Proo/. Integrate dεjdk from 0 to K or # to 0. •
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The point of (2.25), is that it says that if all gaps are open, the connected
components of o(H) in some fixed energy range go to zero L-»oo.

As a preliminary to studying LP properties of spectral measures, we need to get
LP properties of ρ(E) and therefore to control dεjdk. We do this using the
discriminant :

Lemma 2.3. (i) |/(£)|^2exp(L[]/]£| + J/ITϊΠj) even for E complex

(ii) \f™(E)\^2m\exp(L[l + ]/\W\+ / P C ] ) -

Proof, (i) is standard; see e.g. Magnus and Winker [16, p. 20-21].
(ii) Follow from (1) and a Cauchy integral formula using a circle of radius 1. (If

one cares about large m, one should take a circle of radius m2/L to get a much
better bound.) •

We define

Qn(k) =
dε.

(2.26)
dk

so

ρ(E) = ρn(k) (2.27)

if E, n, k are related by (2.18d).

Theorem 2.4. (i) ρn(fe)^exp[L(l + \/\En(k)\+ γWLM\smθ{k)\L.
(ii) For any N, L, C and p<2, there is a D with

(2.28)
o

for any n<N, and all V of period L with WVW^^C.

Proof, (i) Using dθ/dk = L and taking derivatives with respect to k in (2.13) yields

F'(εn(k))d^=2sin(θ(k))L. (2.29)

Lemma 2.3 yields the required result.
(ii) (2.23) yields a bound on εn(k) depending only on n and KFH .̂

k

Since f |sinθ(k)Γ ( p~1 )ίίk< oo, (2.28) results. Q
o

Remarks. 1. Taking another derivative in (2.29) shows that at points with dεn/dk = 0
(necessarily at /c = 0 or K)

so that

^^L2exp(-L(ί + \/\φ)\+l/Wΐ) (2.30)
dk

(if dεjdk = 0). In physical terms this is an upper bound on an effective mass.



110 J. Avron and B. Simon

2. Integrating (2.29) shows that

\sn(k)-sn(k')\^C(k-k')2 (2.31)

yielding the Holder continuity of order \ of oc(E) which Moser mentions without
proof in [17]. (Actually, Moser quotes Holder continuity in Fbut this then follows
from the simple bound:

av(E-\\W~V\\J^aw(E)Soιv(E+\\W-V\\J,

which we will prove in [3].)

Theorem 2.5. (i) Let φe C${- oo, oo). Let (£', E) be the nth band. Then for any p<2,
there is a constant D depending only on φ, n, HFH ,̂ p, and L so that (Gφ given by
(2.18);

]\Gφ{EψdE^D. (2.32)
E'

(ii) (2.32) remains true for a D depending only on φ, £, \\ VW^, p, and L (even if
(E\E) is not a single band).

Proof, (i) Suppose φ is supported in an interval of length mL.
Then

f \Ψn(k,x)\2dk£m,
supp<p

since Ψ is normalized on an interval of length L. Thus, by the Schwarz inequality

Thus, by (2.18), (2.32) follows from

£

£'

But E = εn(k) on a single band and ρ(E) = 1 so this follows from (2.28).
dk

(ii) By (i), we only need a bound on the number of distinct bands that can occur.
This follows from

and the form of εn{k, V=0). D

Remarks. 1. All that was needed was φeL2 with suppφ bounded, not
2. Since dεJdk = 2Lsinθ(k)/f\εn(k))9 if dεjdk = θ at the edge of a band (and this

will happen if the gap is open) then f'(εn(k))ή=0 and thus §[dεjdkγ~1dk= oo if
p ^ 2 . For most φ's it follows that $\Gφ\

pdE= ao if p ^ 2 .
3. By the Hausdorff-Yang inequality, $\(φ,e~ίthφψdt<oo if q>2. The diver-

gence at q = 2 is a mirror of the t~112 falloff that will occur for most φ.
Next we want continuity of G in Lp norm as V is varied.
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Lemma 2.6. Let (Ω,dμ) by finite measure space. Let r>\ and let /„, feU with
sup | | / J r < o o . Suppose that fn(w)-*f(w) pointwise a.e. Then \\fn — f\\p-+0 for any

p<r.

Proof Without loss, take / = 0. Fix M and let gn(w) = fn(w) if \fn(w)\ ^ M and zero
otherwise. Then, | |#J p ->0 by the dominated convergence theorem and

\\fn-gn\\p

PS J \fH{w)\pdw£M*-r\\fX,
\fn\>M

so lim||/π — gn\\p can be made arbitrarily small. •

Theorem 2.7. Let Vn, V be continuous periodic functions with period L and let
Gv

φ,G
v

φ

n be the spectral densities for Hn= -d2/dx2 + Vn and H=-d2/dx2 + V.
Suppose that \\Vn— VW^-*0 as n~+oo. Then, for any fixed E and p<2,

j \Gv

φ"(E)-Gv

φ(E)\pdE^0.
— oo

Proof By the lemma and by Theorem 2.5, we need only prove pointwise
convergence a.e. (since the Hn are uniformly bounded below — oo can be replaced
by some Eo so that the integrals are over finite regions). If E is in a gap for V, it will
be in a gap for all large n (by the norm resolvent convergence), so G^n{E) = 0
= Gv

φ{E) for all large n. If E = εm(k) with 0 < k < X, the eigenvalue is simple and by a
perturbation argument, there exist kn-*k so s^m(kn) = E, the corresponding Ψ's
converge and by a Vitali theorem argument so does dεjdk. Thus Gv

φ

n(E) converges
to Gv

φ(E). The remaining points [i.e. £'s with E = εm(k) with fc = O or K] have
measure zero. •

We are next interested in results of the form:

Pseudo Theorem 2.8. Fix L and some normed space, X, of continuous functions of
period L. Then for any C, there is a sequence gn so that Σgn< oo and if VeX with

I ̂  C, then

where Λn{V) is the nth gap for ~d2/dx + V.

This inequality, the dominated convergence theorem for sums and the
continuity of Δn(V) in V (which follows from eigenvalue perturbation theory and
the fact that Δn is a difference of eigenvalues) shows that

Pseudo Corollary 2.9. // Fm, VeX with \\Vm- F H ^ O , then

We can prove the pseudo theorem or at least a bound on ^Δn in three cases:
(1) VeC3 with C 3 norm. The argument in Theorem 2.12 in [16] (essentially

due to Hochstadt [11]), shows that Δn(V) = 0(n~2) with errors only depending on
the first three derivatives of V [that theorem only supposes V is C2, but one needs
some uniform control on the Fourier coefficients of V" to get uniform control on
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(2) Deift [7] has remarked that the result holds for VeC1 with the C 1

topology by the following beautiful argument. Given VeC1, consider the class of
all Ws with the same gaps [25]. If the nth gap is (αn, βn\ then the eigenvalues μn of
-d2

2 + W(x) with w(0) = w(L) = 0 boundary conditions obey ocn^μnSβn and, there
(XX

is C(W) (the lowest periodic eigenvalue) so that

is independent of W and given as an integral of V and V (a KdV conserved
quantity) [25]. Among these W, there is one with μn = otn for all n [25], so since
C(W) can be bounded in terms of F, ]Γ (βn — αn) can be bounded in terms of V and

n

V. This gives a bound on YjΔn but not the uniform type needed to get the pseudo
n

corollary.
(3) We can handle a very general class of even periodic functions. For in that

case, we have proven in [1] that the perturbation series in λ for βn{λV) and an(λV)
converge for all large n and if an(λV) = Σ<λm'> A W = Σ W t h e n K l + I&il
<; Cmn (m υ where C only depends on || V\\ ^ It follows that to control Δn we need
only control b\ — a\ and bn

2 — an

2 and these have simple explicit formulas in terms of
the coefficients Vn0 (Fourier coefficients of V). \i gneίx andX is the set of even V
with sup(T^0/^)< oo, this argument proves the pseudo theorem in that case.

Finally, we want to recall a result from [22] and prove an analog for Ji:

Theorem 2.10. Fix a Banach space X of periodic potentials of period L. Suppose that
X is dense in //[O,!/] and that the norm onX dominates \\ H .̂ Then for each n, the
set of V for which Δn(V)φ0 is a dense open set.

The proof is simple: That the set is open is an easy consequence of the fact that
|| \\x dominates || H .̂ To prove density, suppose that Δn(V) = 0. Then either H(0)
or H(K) has a degenerate eigenvalue E (depending on whether n is even or odd) and
the gap opens for V+λW if the degeneracy of this eigenvalue is removed for λ
small. If u, w are the corresponding orthonormal eigenvectors for H(K), then by
degenerate perturbation theory [14] the degeneracy is removed to first order if
and only if the two-by-two matrix

(u,Wu) {u,Wb)

{v,Wu) (v,Wb)

has unequal eigenvalues. Thus, if W is not in the codimension 2 space (since X is
dense in L1) with

j dx[u2{x) - v2{x)~] W(x) - 0 = $u(x)v(x)W(x)dx,

the gap opens.
Moser [17] obtains the same condition but writes the codimension 2 space as

the span of a codimension 3 space and one dimensional space so his result looks
somewhat different. He uses discriminant theory in place of eigenvalue per-
turbation theory.
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We will also need:

Theorem 2.11. Fix N and let X be the N dimensional space of V of the form
N

YJancos(x/2n). Then for each ra, for a dense open set of X, themthgap associated to
1

L = 2N is open.

Proof The edges of the rath gap are Dirichlet and Neumann eigenvalues (at fc = 0)
with fixed index. These eigenvalues are real analytic functions of the α's, so the set
of F s with the rath gap closed is the zero set of a real analytic function. It is
therefore, either all of X or the complement of a dense open set. Since V(x)
= cos(x/2M) has all gaps open [21], it cannot be all of X. •

3. Limit Periodic Potentials

In this section we prove Theorem 1 and 2 and some related results. Given the
preliminary work in Sect. 2, the proofs are all easy.

Proof of Theorem 1. We consider the case M\ the case ££ is similar. By
Lemma 1.1, density of the Vs with Cantor spectrum implies genericity. Since the
periodic potentials in Jί are dense in Jt, it suffices to prove that given any ε0 and
periodic V, we can find We Jί with || V— W\\ S ε0

 s o t n a t ~ d2/dx2 + W has Cantor
N N + j

spectrum. Suppose V= ]Γ a(

n

0)cos(x/2n). We will construct S.= £ α^cos(x/2Λ)
M=0 n=0

so that

l|S;ll^o/2J" (3.1)

00

and take W=V+Σsr The Sk will be chosen so that
1

j
7 = 1

has all gaps associated to L = 2N+k open and so that all the gaps present for Wk_ 1

with energy in (— oo,fc) don't shrink very much. This latter fact will imply all
gaps persist in the fc->oo limit and then (2.25) will imply that the spectrum is
nowhere dense.

Here are the details. Suppose that Sv...,Sk_ί have been picked so that
Hk_1 = -d2/dx2 + Wk_ι has all 2N+(k~y gaps open so that in particular,
[by (2.25)] for any E, there is a number Eφσ(Hk_1) with

\E~E\^c(E)/2N+\ (3.2)

where c(E) is bounded as E runs through compact. σ(Hk_ x) has a finite number of
gaps in (— GO, h). Let ak be the minimum gap size among all this finite number of
gaps and let / ^ m i n ^ , ...5αfc) (constructed inductively). We will pick Sk so that

(i) (3.1) holds.
(ii) \\Sk\\S2-k^βkl

(iii) Hk has all 2N+k gaps open.
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Such a choice is possible since the set of potentials will all gaps open is dense by
Theorem 2.11.

Let W= lim Wk. Let (α-<5,α + <5)C(- co,fc) be a gap for Hk. We claim that H

has a gap, Δ, in its spectrum containing (a — δ'9a + δf) for some δ' with

δ'>δ/3; iδ-δ'lSso/^1- ( 3 3 )

For, by the construction of βk and (ii), \\W— Wk\\ ̂ δ, so

(this uses the elementary Eeσ(A) and \\A-B\\^δ implies σ[B)n\rE-δ,E + δ'] Φ0).
The second half of (3.3) follows the same argument and (3.1).

Given E and ε, first pick k0 so large that c(E)/2N+ko [given by (3.2)] is smaller

than ε/3. Then pick k1>k0 so large that any gap for Hk (k>k1) containing a

point in (E — ε/2, E + ε/2) must lie completely in (— oo,fc) /i.e. take fc1^

+ sup || P^.|| Λ. Finally, pick fc> /q so that εo/2fc~x ^ε/3. ^

By (3.2), we can find Eφσ(Hk) with |£ — JE|^β/3. Suppose £ is in a gap
{a-δ9a + δ) for Hk. By the above, we can find Eφσ(H) so that | £ - £ | ^ 2 ε / 3 < ε .
Thus (— oo, oo)\σ(H) is dense. Q

It is worth emphasizing the simple reason that these spectra are Cantor sets.
There is a tendency for gaps to open up about energies (πk/2n)2 and these points
are dense.

Proof of Theorem 2. Let p = 3/2 [any p in (1,2) will do]. Let {<pn}%L x be a countable
subset of Cg which is dense in L2. Let Gk

n(E) be the spectral density for Hk for
vector φn. In going through the above construction, pick Sk so that

sup
n<k

f \Gk

n-\E)-Gk

n(Er\ ^
l/P

This can be done by Theorem 2.7. Since each Gk

n{E) lies locally in U by

Theorem 2.5, we conclude that for each n, Eo, there is a number fe(n,£0)< oo, so
that

Γ Eo 11/p \

sup f \Gk(EψdE\ ^b(n,E0)).

Let ^ be a finite union of open sets. By general principles, if Pk are the spectral
projections for Hk,

since Hk-+H is norm resolvent sense (see [14]). Thus, for such A:

(3.4)

if Ac{— oo,£). Taking limits and using regularity of measures, (3.4) holds for any
A and thus the spectral measure for φn is absolutely continuous. Since the φn are
dense, H has purely absolutely continuous spectrum.
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By general results of Davies and Simon [6] any even bounded potential in one
dimension has absolutely continuous spectrum of even multiplicity. By general
results on eigenfunctions, and spectra [4,15,23], any spectra has multiplicity at
most 2. •

In [6], Davies and Simon show that for a large class of V, ^ f f l C = = ^ φ ^ f +
= 2tfe_ ®J^L where Jf+ as those vectors which as £->oo move to the left, etc. They
proved that periodic V are reflectionless in the sense that

jeί=jer

+. (3.5)

It seems to us likely that this holds for a.p. V. This may seem at variance with our
intuition that localized wave packets suffer many reflections accounting for the
anomalous long time behavior. (3.5) can only hold if the vectors in J f ί have very
slow falloff in x and are quite far from being of compact support. We think this
could well happen.

By the Pseudo Corollary 2.9 one concludes the following:

Theorem 3. Let Ve Jί be periodic. Then given any ε, we can find We Jί so that
(i) σ( — d2/dx2-\-W) is a Cantor set.

(iϊ) σ( — d2/dx2+ W) is purely absolutely continuous of multiplicity 2.
(in) \W-W\\^ε.
(iv) The Lebesgue measure of the symmetric difference of σ( — d2/dx2 + V) and

σ(-d2/dx2 + W) is less than ε.

Appendix 1. A Child's Garden of Almost Periodic Functions

In this appendix, we want to review some of the basic properties of almost periodic
functions. We use a definition equivalent to Bohr's original definition but more
suited for our purposes. Given / on Rv and t in Rv, ft is the function ft(x) = f(x — t).

Definition (Bochner). A bounded continuous function, /, on Rv is called almost
periodic (a.p.) if and only if {/t}ίeIRv is a precompact set in the || H^-norm. The
compact space obtained by taking the closure is called the hull of /, denoted Ωf.

Any a.p. function is uniformly continuous, for if not, there exist tni0 so that
Wftn~ f Woo =ε- But, by compactness of Ωf, the ftn have some uniform limit g. Since
ftrΓ*f pointwise, f = g so \\ftn — /Joo cannot be larger than ε. This contradiction
establishes the result.

Sums and products of a.p. functions are easily seen to be a.p. and periodic
functions are a.p. Thus, if / is a.p. and α is real, e~iaxf(x) is a.p.

Given any ge Ωf, g is a function on IRV, so we can define gt. We claim gteΩf, for
if ftn~>g, then ft+tn->gv Thus, we can define a flow Tt: g-*gt on Ωf. By the uniform
continuity of/, \\fj8-&{„ = \\TJ-f\\M goes to zero as ί |0 so the map (g,t)^Ttg
is jointly continuous and the Tt are isometries. The image of / under the Tt are
isometries, every orbit is dense.

Ωf also has a natural abelian group structure. To avoid confusion between this
structure and addition of functions, we will think of Ωf abstractly. The identity e
corresponds to the function / and if w = ft, wf =fs, then w*w' will correspond to
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ft+s. To see the group structure, let w,w' be the limit of fSn and ftn. By a simple
calculation

is Cauchy. We call the limit w*vv'. The uniqueness, group properties and
continuity are easy to check. The reals are a dense subgroup of the group under

Ωf as a compact topological group has a natural normalized Haar measure
dμj . Since Rv is a dense subgroup of Ωf, it is easy to see that Tt is an ergodic flow.
In particular, if G is continuous on Ωf and v = 1, then

\G{w')dμf{W)= lim i - } G(w + t)dt. (A.1.1)

For this holds for a.p. w by the ergodic theorem and then by the uniform
continuity of G and the denseness of the orbit {w*t}™=_aD, for all w. (A similar
formula is true on 1RV.)

We thus see that [taking G(g) = g(0J] every a.p. function has an average and
that this average is Haar measure on the hull. [Moreover, any continuous G on Ωf

defines an a.p. function by giG)(t) = G(t) which is a.p. since {giG)tS} lies in the image
oϊΩf under a continuous map the hull of ΩgG is naturally a quotient group of ΩΓ.]

The dual group, Ωf, of characters on Ωf is naturally a subgroup of IRΛ
Thinking of JRV as IRV under 0L\->3Ca given by &a(t) = eίιx'\ we obtain Ωf as a
subgroup of 1RV, called the frequency module of f Ωf is countable since Ωf has a
countable dense set. Since Ωf is a subgroup of Rv, given a,βeΩp and integers w,m,
we have that na + mβeΩp i.e. Ωf is a module over TL.

The Peter-Weyl theorem assures us that any / is a uniform limit of finite sums
n

of the form £ c^"'* with α^eί^. From this it follows that (taking v = l for
ί = l

simplicity).

Theorem A. 1.1. The frequency module, Ωp is the module generated by

lim 1 J e--xf(x)dx^θ\.

Thus, every countable module in TL is the frequency module of some a.p. /.
Two classes of a.p. functions on (— oo, oo) are of especial interest:

Definition. We say that / is limit periodic if and only if / is a uniform limit of
periodic functions. We say that / is quasiperiodic if and only if there exist numbers
α l 5 . . . ,α π and a function F o n Γ (the n-torus) with

with [[α fx]] the fractional part of ape (thinking of T as IR/Z).
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It is easy to see that both classes are a.p. Indeed, if the α. are rationally
independent, then Ωf is Tn under a bicontinuous homomorphism, i.e.
w = (θv ...,0n) is associated to F([[α x + θJ]). One can tell these special classes by
looking at the frequency module:

Theorem A. 1.2. Let f be a.p. Then f is quasiperiodic if and only if Ωf is finitely
generated.

ί n 1
Proof. If/ is quasiperiodic given by (A. 1.2), then Ωf= <2π £ mμ^ integral} is

generated by α l 5 . . . , α n . Conversely, let Ωf be finitely generated. If the discrete

topology is put on Ωf it is then just Zn for some n so Ωf = Ωf (by Pontryagin

duality) is just T1. Since IR is densely imbedded in Tn only as x-K[α,.x]) A. 1.2 holds.

(One can use Peter-Weyl in place of Pontryagin duality.) •

Theorem A. 1.3. Let f be a.p. Then f is limit periodic if and only if Ωf has the
property that any a,βeΩf have a common divisor in Ωf.

Proof. Let / be l.p. Pick oc,β with a= lim -^ ] dxe~ίaxf(x) and
«->oo Zn —n

1 n

b= lim — j e~ιβxf(x)dx both non-zero. Choose g periodic with \\f—g\\^
n^oo 2,n —n

^min(\al\b\). It follows that

lim {In) 'γ\dxe~ iyxg{x)dx + 0

for y = u,β and thus if g has period L, 2π/L divides both α and β. Similarly any

finite subset of the generating set <α|lim(2n) x j dxe iccxf(x)ή=0> have a common
I —n )

divisor so Ωf has the required property.
n

Conversely, if Ωf has the property any finite sum £ ap™** with otjeΩf is

periodic since the OL. have a common divisor. By the Peter-Weyl theorem, / is a
limit of periodic functions. •

Corollary A. 1.4. // / is both limit periodic and quasiperiodic, then f is periodic.

Proof. Any finite generated module with the divisor property is single
generated. •

Corollary A. 1.5. If f is limit periodic, there exist periodic functions Wj of fixed Lγ

and integers nx = \,n2,..., so that ll^lloo^2~(j~2)ll/lloo and

f(x)=ΣWjtx/n1...nJ).
j

Proof. By Peter-Weyl, find fp finite combinations of the {ei!XX}aBU with 11/^-/11^
^ - " - " H / I L with / 0 = 0. Then | | / 7 - / j + 1 I L ^ 2 - ^ - ^ | | / | | 0 0 and taking
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00

9j = fj+i—fp we see that / = Σgr By the divisor property for Ω/ ? each gj+ί is
1

periodic with a period which is a multiple of the period fr •
We will need the following in a later paper it is an immediate consequence of

the Peter-Weyl theorems on Ωf.

T h e o r e m A . 1 . 6 . L e t f b e a.p. F o r a n y ε , t h e r e is a q u a s ί p e r i o d i c g w i t h \\f — gW^ < ε
and Ω g c Ω f .

Appendix 2. Some General Features of Almost Periodic Schrodinger Operators

In this appendix, we will follow two simple theorems concerning — A + V(x) on
L2(RV) with V a.p.: (i) that the spectrum is constant over the hull (ii) that the
spectrum is purely essential. Virtually identical results (in one sense stronger) for
v = 1 were obtained by Johnson at the same time [12]. In any event, these results
are only mildly stronger than old results of the Russian group studying random
potentials (see e.g. Pastur [19]): a.p. potentials can be viewed as a special case of
random potentials determined by an ergodic process - thus e.g. it is known that
the spectrum is a.e. constant on the hull [19]. We prove pointwise constancy.

Theorem A.2.1. Let Ω be the hull of an a.p. function on 1RV and given weΩ, let Vw(x)
be the corresponding a.p. function. Then spec( — A + Vw) is independent of w.

Proof. Let w,wfeΩ. By symmetry, we need only show that £^spec( — Δ + Vw)
implies Eφspec( — Δ + Vw). Find xn so that Vw(x + xn)-+Vw,(x) uniformly. Then

— A -f Vw( + xn) converges to — A + Vw, in norm resolvent sense so that if Γ is an

open set in IR, Γn f] spec{ — A + Vw(- +xn)} = & implies Γnspec{ — A + VW,} is
n

empty by general principles [14, 20]. Since

spec{-zl + Vw(- +xn)} = s p e c ( - A + VJ

and the resolvent set is open, we are done. •

Theorem A.2.2. Let V be an a.p. function on Rv. Then the spectrum of — A + V is
purely essential, i.e. there are no isolated eigenvalues of finite multiplicity.

Proof. Let E be an isolated eigenvalue of finite multiplicity. Let P be the
corresponding spectral projection. Pick xπ-^oo so that V(x + xn)-+W(x) uniformly
in x. Let P(xn) be the spectral projection for {£} associated to - A + V( + xn) and
let P^ be the corresponding projection for —A + W. By the norm resolvent
converge P(xn)-^P00 in norm. But P(xn) = U~ 1P(O)L/n, where the Un go strongly to
zero. Since P(0) is compact, we conclude that P(xπ)-»0 strongly so P o o = 0 . This
contradicts the fact that sρec( — A + V) = spec( — A + W) by Theorem A.2.1. •

Corollary A.2.3. Let V be an a.p. function on (—00,00). Then the spectrum of
— d2/dx2 + V(x) has no isolated points.

Proof. Any isolated point is an eigenvalue of finite multiplicity. In one dimension
eigenvalues must have multiplicity one so there cannot be isolated points by
Theorem A.2.2. •
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Remarks. 1. In the v dimensional periodic case, it is known there are no eigenvalues
[24]. Is this true in the a.p. case in the sense that there are no isolated eigenvalue
even in case v > 1 ?

2. Our belief (2) in Sect. 1 says that even if v = l , there can be non-isolated
eigenvalues [but by the above, {w\ — d2/dx2 + Vw(t) has a fixed eigenvalue E} will
have measure 0]. In fact Johnson [13] and Moser [18] have constructed a.p.
functions F, so that — d2/dx2 + V(x) has at least one eigenvalue.

3. Johnson [12] proves a stronger version of Theorem A.2.1 in that for any
boundary condition at 0, the operator — d2/dx2 + V(x) on [0, oo) has essential
spectrum equal to that on the whole line. This is easy to prove, for one can always
find ίB-»oo so that ||F( + t I I ) - F ( )lloo-

>0 Given any sequence φ w e C J ( - o o , oo)
and E so that | | (H 0 +F—£)φ m | | o o ->0, we can find a subsequence tn(m) so that
supp [φw( + ίn(m))] C [m, oo). Then

\\(Ho + V-E)φm( +tn{m))\\-+0

so

Similarly

Ee σess( - d2/dx +V\L2(~oo, 0)).

Since σess(d2/dx2 + V) is the union of the two half line essential spectra the equality
of all three is true.
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