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Abstract. We calculate the equation of state and the barometric formula for
a d-dimensional free boson gas in a weak external field of power form. We
find that the condensate has a complicated structure in two dimensions.

1. Introduction

In this paper we investigate the phenomenon of condensation in a non-interacting
boson gas in the presence of an external field, confined in a region of d-dimensional
Euclidean space by a container with hard walls. It is well known that, in the absence
of an external field, condensation cannot occur unless the dimension d is greater
than two. The result that an external field can induce condensation in one dimen-
sion was announced in [1]. Here we prove that if the external field comes from a
scaled potential which is a positive power α of one coordinate, then the critical
properties are determined by an effective dimension d + 2/oc; using this rule, the
critical properties can be read-off from the list given for an ideal boson gas in
arbitrary dimension by Ziff, Uhlenbeck and Kac [2].

The use of a scaled potential requires some explanation. It has been known
for about fifty years that, in order to display a phase transition in a sharp way
mathematically, it is necessary to pass to the thermodynamic limit. In the case
of a free boson gas in a cubical container Ca with side of length a9 this is the limit
in which a increases without bound in comparison with the thermal wave-length
λ while the density remains fixed. On the other hand, since we are interested in the
way in which the condensation phenomenon is modified by the presence of an
external field, we must ensure that the effect of the potential V(y) is not so great
as to destroy the thermodynamic behaviour. This suggests that we should investi-
gate the case in which V(y) varies slowly as y ranges over the container Ca to
express this mathematically, we write V(y) as a function φ of y/a and require that
φ satisfies some local condition of slow variation. But the thermodynamic limit
has to be taken, so the local condition on φ must be replaced by a global condition
of slow variation. We expect results in the thermodynamic limit (under these
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conditions) to be a good approximation to those for a finite system in a container
a

Ca if both - > 1 and βv(a) <ζ 1, where β is the inverse temperature and v(a) is some
A

measure of the variation in the potential over Ca.

In this paper we consider a potential V(y) = c( — } applied to a gas of non-

interacting bosons, each of mass m, in a cube [0, a]d in ^-dimensional Euclidean
space. The single-particle hamiltonian Ha is given by

with Dirichlet boundary conditions on the cube [0, ά]d. We put L = a(h2β/m)~ 1 / 2 ,
xί = y$1βl™)~~1/2 and y = βc; then βHa is equivalent to

with Dirichlet boundary conditions on [0, L]d. Notice that two dimension-free
parameters occur in (1.2): L and γ. In this paper, the behaviour of the spectrum of HL

as L increases without bound is of crucial importance, but we do not discuss its
dependence on y. The order of the phase transition depends on α and d, but not on y.
The magnitudes of y and L would become important if we were to estimate the
error which would arise if the results obtained in the thermodynamic limit were
applied to a finite system. We do not make this estimate here (except to show that
for fixed y the error vanishes as L increases without bound). In the mathematical
sections of this paper we suppress the y-dependences and put y = 1, and we work
throughout with dimension-free variables as in (1.2). For the reader's convenience
we state here the main results with the dimensions restored. Let gr (z) be the function
defined on [0,1) (and on [0,1] for r > 1) by

define a critical density pc by

λdp = < o U d / 2 * 2 α
I , . (1-4)
loo, otherwise.

Here λ is the thermal wave-length: λ = (2πh2β/m)112. When the mean density
p is greater than p c, the grand canonical pressure p is independent of p and is
given by

o

when p is less than p c , p is determined parametrically as a function of p by the pair
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of equations

(1.6)

< = Sdugdl2{ζe-βa*).
0

Following standard rules, the thermodynamic functions are obtained from
the expression for the pressure in terms of ζ and β which is constructed from the
corresponding one of the free gas, by use of the following rule: replace gr(ζ) by

\du gr(ζe~βcu0C); we may regard this as an averaging over a local chemical potential.
o

There are two main strategies for the rigorous investigation of boson condensa-
tion : the first is to estimate the uncondensed fraction and to derive the equation of
state. The second is to estimate the condensed fraction by investigating the asymp-
totic behaviour of the fractional occupation of the low-lying levels as the thermo-
dynamic limit is approached; this is technically more difficult, but gives more
information (for instance, a proof of the barometric formula). The first strategy
was used by Davies [3] and by Landau and Wilde [4]. The second was outlined by
Kac in unpublished lecture notes, worked out in detail in a variety of cases in
[5-7], [8] and eventually published in [2]. In this paper we adopt the second
strategy we are thus able to investigate the complicated structure of the condensate
which is possible in the two-dimensional case in the presence of an external field.
Above the critical density there is macroscopic occupation of the ground-state
in dimensions one, three, four,... in dimension two there is macroscopic occupa-
tion of an infinite number of low-lying levels. This is discussed in detail in Sect. 2.
In each of Sects. 2, 3 and 4, we state a mathematical result, discuss its physical
consequences and give a sketch of the proof. The details of the proofs are reserved
for Sect. 6.

2. The Occupation Numbers

Let ε[ < z\ < ... be the eigenvalues of

with Dirichlet boundary conditions on [0, L], where α is a positive real number;
Let Φ\, Φ\,... be the corresponding normalized eigenfunctions. Denote by k the
multi-index (fc15... ,fcd), and let {E^} be the eigenvalues of the single-particle
hamiltonian
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with Dirichlet boundary conditions on the cube

BL = {xeUd\ 0<Lxί ^ L , . . . , 0 ^ x d ^ L } ;

«£ = < + *?? Σ*ί>
Z j L m = 2

and the corresponding eigenfunction Ψk is given by

m = 2

/ 2 \ /
n W = *£(*i) Π 7 sin(πkmxm/L). (2.4)

In the grand canonical ensemble for non-interacting bosons in the cube BL,
the mean occupation number (nk}L of the single-particle level with multi-index
k is given by (see [2], for example)

k L \ (2.5)

where

ni = EL

k-EL

t, (2.6)

E\ denotes the eigenvalue with multi-index (1,1, . . . , 1), and ζ(L) is determined by
the condition that the mean number < N >L of bosons is given by

Σ (2.7)

The thermodynamic limit consists in letting L increase without bound while
the mean density p = L~d(N}L is kept fixed. Let pc be the critical density defined
by

l \
o λ α (2.8)

co , otherwise.

The following result is crucial:

Theorem 1. The limit ζ = lim ζ(L) exists for all values of p; for p < ρc it is the
L->oo

unique root of the equation

] (2.9)

while for p^. pcwe have ζ = 1.
Furthermore, for p > pcwe have

1 - _ „, d = 1,3,4,...

(2.10)
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where A is the unique positive root of the equation

At this point we note the following immediate consequence: above the critical
density there is macroscopic occupation of the ground state in case d = 1, 3,4,...
while for d = 2 there is macroscopic occupation of an infinite number of low-lying
levels. In detail, we have (for P > pc)

l i m L - ^ ^ M p - p Λ d= 1,3,4,... (2.12)
L-» oo

( 2 1 3 )
L->oo

where A is the unique positive root of Eq. (2.11). The density of each of the other
levels tends to zero. For p less than pc we have ζ(L) strictly less than one, so that

l i m L - d < ^ > L = 0, d = 1,2,3,..., (2.14)

for every multi-index k.
The proof of Theorem 1 is given in Sect. 6; we sketch the idea here. We expand

p = <JV>LL~d as a power-series in ((L); by expanding each <πfc>L with kιφ\
(we isolate the (nk}L with kx = 1 because they may become singular as ζ(L)
approaches one)

1 CO

— — V (
• T d £-J ^ k

U {k:kι = l} « = 1

where

s'Liή = λd Σ β - <

The asymptotic properties of S[ (t) for small t depend on those of r\\ for large | k \
and can be got from the Feyman-Kac formula (see [11]). If we are careful, we can
trade-off the decrease of ηk with L against the increase of n to prove that, for p < pc,

oo 1

L-+ oo « = 1 0

where ζ is the root of Eq. (2.9). Hence L~d £ < nk >L tends to zero (and so does

L~d(nk}L for arbitrary fe, since the convergence of the series implies that S'L(ή)
00

tends to zero). Similarly, we can show that, for p > pc, lim Σ ζ(L)nS'L(n) = ρc

L-> co n= 1

so that L~d Σ <CΠ/C)L t e n ds to p — pc and ζ(L) tends to one. The asymptotic be-

haviour of the occupation numbers follows from the explicit dependence of ηk

on L in Lemma 1 of Sect. 6 we prove that, for large L,
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where A. is the jth eigenvalue of

h= -W + u« (2.16)
2 du2 v ;

with Dirichlet boundary conditions on [0, oo). Hence

m = 2

3. The Equation of State

In the grand canonical ensemble for non-interacting bosons in the cube BL, the
pressure pL is given by (see [2], for example)

" * ) , (3.1)
k

where ζ(L) is determined by condition (2.7). We have the following result:

Theorem 2. The limit p = lim pL exists and is given by
L-> oo

//•> \~d/2 f J /^ — «α\ C\ 0\

0

w/zβre ζ is given in the statement of Theorem 1.
From this we can deduce the properties of the pressure p as a function of the

density p. Above the critical density p c, the pressure is independent of the density
and is given by

• )• ( 3 3 )

o

Below the critical density it is determined parametrically by the pair of equations

1

(3.4)

Since the critical behaviour of the thermodynamic functions is determined
by the asymptotic properties for large n of the coefficient of ζn in their
power-series expansion, it is readily seen that the critical behaviour in dimension d

in the presence of a potential I ~~ I is the same as the critical behaviour of the
\ ^ /

2
free boson gas in dimension d + - . Using this effective dimension, we may read-off
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the critical behaviour of the thermodynamic functions in the presence of an external
field from the list in [2].

4. The Barometric Formula

In this section we investigate the spatial distribution of the boson gas in the thermo-
dynamic limit. For reasons which should become clear in the discussion, we
introduce a scaled local density v\(u) defined, for u in [0, l ] d , by

v\(u) = <N(Lu)>L = Σ - Ί F ^ ~ 7 τ ( ^ ( ^ ) ) 2 . (4.1)
e ^L)

Theorem 3. The limit vχ (u) = Lim v\{u) exists (in the sense of the weak convergence
L->oo

of distribution functions) and is given, for p < pc,by

ί>-'ΐ), d = 1,2,3,.... (4.2)

For p ^ pc we have:

d=l:v1(u) = (p-pc)δ(uι) + (2πΓ1!2gι/2(e-«η (4.3.1)

^ 2 sin2 πju2

Lu ^ 2 1 V _ i _ r θ / τ r \ - i Λ r Λ - « ? \ (4 3 2)

d ^ 3 : vt (M) = (p - Pc)δ(Ul )2d~x Π sin2 num + (2π)-^2gd/2(e-u"). (4.3.3)
m = 2

Here (5(ι/1) is the Dirac measure supported on the hyperplane u1 = 0.
In a similar fashion, a scaled hydrostatic pressure pL(u) can be defined by

p\u) = - X log(l - £(L)e-^)(^(Lw))2 (4.4)
k

for u in [0, l ] d . We state without proof

Theorem 4. The limit p(u) ~ lim pL(u) exists for each u in [0, l ] d am/ zs gfii en by
L-»oo

We note that the mean density p is the average of the scaled local density V^M):

p = j v^ujdu, (4.6)
[0,1]^

and the grand canonical pressure p is the average of the hydrostatic pressure p(u):

p= j p(u)du. (4.7)
[0,l] r f
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To understand the choice of scaling in the definition of v1? it is useful to note
the following additional results (which we state without proof): For fixed x in [0, L]d

the unsealed local density coincides, in the thermodynamic limit, with that for the
free boson gas:

lim<iV(x)>L= lim<N(x)>°, (4.8)
L-> oo L-+ oo

where < >? denotes the grand canonical average in the absence of an external
fx\a

potential. For x fixed, the potential I — J becomes small as x increases and its
\ W

effect on the distribution disappears. To see the barometric distribution of the
normal fluid we have to look at the density at a point which moves out as L in-
creases. We do this when we compute V^M). However, on this scale the condensate
is concentrated on the hyperplaneu1 = Oand described there by a global wave-
function.

If we are interested in the spatial distribution of the condensate we have to
choose another scaling: define v2

L{u)foru = (ul9..., ud)in[0,L2/(α+2)] x [0, I ] * " 1

by v2

L(u) = L~2/(α+ 2 ) < N{L«/ia+2)ui, Lu2,..., Lud) > L then v2(u) = lim v2

L(u) exists
L->oo

and is given, for p 7t p c, by

(P " Pc)l2M)2d-1 Π sin2™m, d = 1, 3,4,

where χχ is the ground-state wave-function of — - y~2 + w°[ with Dirichlet

boundary conditions on [0, oo]. For p < pc, we have v2{u) = 0. In this scaling the
normal fluid has disappeared while the condensate distribution is described by
macroscopic wave-functions.

The results stated in this section are proved using a modification of the tech-
nique described in Sect. 3. We use the Feynman-Kac formula to get the asymptotic
properties of

and make use of the scaling properties of the eigenfunctions Ψ% as well as those of
the eigenvalues.

5. The Kac Density

In order to discuss the fluctuations in those levels which become macroscopically
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occupied, it is convenient to calculate

483

in the thermodynamic limit. The result is given in

Theorem 5. The following limit exists

e zp, P<PC, d= 1,2,3,...

e'zpe

lim (e
L-* oo

-zNjL*\ _

- pc)
P>PC, d =

e~zpi2z - π2 + 2/A)ι/2 άnh(2/A - %2)- 7Γ2W2

(2/A-π2

p> pc, d = 2, (5.1)

where A and pc are as in Theorem 1.
We will not prove Theorem 5 in this paper since the proof is along the same lines
as in [2]; however, a discussion of its consequences is justified in the two-
dimensional case, in which a set of low-lying levels becomes macroscopically
occupied. If we expand both sides of (5.1) in powers of z we obtain for ρ> ρc

L->oo \ \ / I L

So we have in particular for d = 2

3(p-pc-l/3)

2/A - π2 '
d = 2. (5.2)

L^oo

The behaviour of lim -jj-Pc

(p - ρc)
2, ρ>ρc

-py, p>pc-

(5.3)

for d = 2 can be qualitatively understood

as follows: For p much larger than ρc it follows from the estimates in Theorem
1 that ( n u ) L ^ > < n 1 j}L for j = 2, 3,... and L large, so the main fluctuation
occurs in one energy level; therefore it should behave like the cases d= 1, 3,....
But for p — pc small and positive < nγ t > is of the same order as < nί . >, j = 2,...,
so the total fluctuation is reduced. The Kac density v(x, p) is related to
lim (e~zN/Ld}L as follows

(5.4)
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Inverting (5.4) we obtain:

ρ<ρc: v(x,p) = δ(x -ρ);ρ> ρc,x<pc: v(x,p) = 0

p>pc,x>pc, d=l,3,4,. . . :v(x,p) = - < * - P ) / ( P - p )
9-pc

ρ>ρc, x>ρc, d = 2\
2 sinh illΛ — π2)112 °°

1 'P j~ (2M-π2)1/2 £ / j

In principle, the expression (5.5) can be used to decompose any grand canonical
average lim (F}L into the corresponding canonical average at a fixed density x.

6. The Promised Proofs

In this section we give the promised proofs. To do so we require estimates on the
lowest two eigenvalues of hL : these will be presented in Lemma 1. In Lemma 2 we
recall some estimates on the asymptotic behaviour of the eigenvalues and eigen-
functions of the one-particle hamiltonian. We will not prove this lemma since the
proofs can be found elsewhere [9]. Lemma 3 is a consequence of Lemmas 1 and
2. To prove Lemma 4 we will use again the estimates on the lowest two eigenvalues
(Lemma 1) and Lemma 3. Theorem 1 follows from Lemma 4 after a few steps.

Lemma 1. There exist three positive constants at,a2 and a3 such that

εi=aιL I (6.1)
a £-2α/(α+2) < gL _ gL < Q £~2α/(α+2)J V '

Id2 ( x V
where ε\ < ε2 < ... are the eigenvalues of hL= — - —-̂  + ( — I on [0, L] with

Zι dx \ JL /

Dirichlet boundary conditions on [0, L].

Proof of Lemma 1. We substitute χ = La/{a+2)y in the eigenvalue equation
hLΦL

}{x) = ήΦ^x). So we obtain the equation

ld2ΦL,
— - — ^ - + yaΦ = A Φ (6.2)

2 dy J J J

with Dirichlet boundary conditions on [0, L 2 / ( α + 2 ) ] and with Af = L2a/(a+2)εf,
so AL. < AL/ if L < L. So in particular we choose α t = A\ for L > L = 1 and
α3 = A\ + A\ for L > 1. Furthermore for L large enough we may choose a2 = \

Lemma 2. Let V(x) be a non-negative Borel measurable function defined on a finite
region B cz Rd and let V(x) satisfy a Lipschitz condition of the form
I V(x) — V(x')\ < M\x — x'\a for some 0 < α ̂  1 and for almost all pairs x c B and

x' c: B, and let {Ej} denote the spectrum of f- V(x) with a corresponding
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orthonormal set of eigenfunctions {Φj} with Dirichlet conditions on the boundary
dB of B, then if the boundary dB of B is regular we have for all t > 0 the following :

Ξ {2ntf2 ί e-' (6.3)

• \2de-2dilάt •

CO

e~tEjΦ2{

e-tV(x)

'J^tf2

0 ι ueB

t

\dτ \ du{V(u)-
0 ueB

1 ίdτ , ,

l2
J e~tV

1 (2πt)dl2

9-t\x-u\2l2τ{t-τ)

xeB

t

2πτ(t - τ)

t

, (6.4)

2nr(t-r)

all

, (6.5)

(2πtf2

)dτ I du{V(u) - V(x))
0 ueB 2πτ(t - τ)

d/2

σ-t\x-u\2/2τ(t~τ)

2πτ{t-τ)

d/2
t(V(x)-V(u))-t\x-uμ/2τ(t-τ)

where dx= inf | y — x \.
yedB

Before Lemma 3 we give some definitions:
Definitions. Let

(6.6)

and let T(L) be an integer such that for some r1 > 1

(6.7)

(6.8)

Lemma 3. There exists a set of constants r2 > 1, r3 > 0, r 4 > 1 eίe. swc/z ί/ẑ ί /or
all t < T(L)

(6.9)

where α 4 , α 5,... are finite positive constants.
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Proof. We have the following estimate:

\SL(t)-G(t)\ =

1 , ^

{k}

{k}

(6.10)

Moreover by the inequality ex - 1 S *ex and by (6.3) and by (6.1) we have

~ 1)% 1 \

G(t) S Γ[ 1 + - jί~d/2~1/α. We require r 2 + 1 - d/2 - 1/α > 0 in order to write

r2α/(α+2)
(6.12)

Furthermore, in order to satisfy the lemma we require also r 2 > 1 and — d/2 —
1/α + r2 < 0. These three requirements can be satisfied for some r2 if d/2 + 1/α > 1.
To estimate the remaining term we use (6.4) so

1

{k}

= (2πt)d/2JBι

-τ)\υ«-u«\ ( t l }

= (in)4/2

0 0

1/2

K2πτ(t - τ)j

w h e r e B 1 = { M : 0 ^ M 1 ^ l , . . . , 0 ^ M d ^ l } a n d d M f l = inf | M - W | . S i n c e

J

(6.13)

(2πί)*1/2

:(2πt)d

:(2πt)d

r

ί

S — sup ί
* ίe[O,αo)
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-l/2 < a5 τr4-d/2-l/oc , β 6 T - 1/2 fr6-d/2 (6.14)

In order to satisfy the lemma we have the requirements r 4 > 1, d/2 + 1/α > r 4 for

the first term and r 6 > 1, r 6 — d/2 > 0, (r6 — d/2) < -for the second term.
α i z* z*

These requirements can be satisfied for d/2 + 1/α > 1. Finally we have

1 1 1 ί / tτ2 \l/2
1 r j _ j ^ α ί » , p , _ f f 21... .. I2/T~/V_ «-\ I l J U

0 0 0

9-ίL2|tn-ui|2/2τ(t-τ)

2πτ(ί - τ)
1/2 1

If we substitute v1=pu1 and if we use \pa - 11 g 2α |
|p - 1 |α S 2a\p - 11 for 0 ̂  p ̂  2 we have

r .?α 1 r 2

) a u i e u ι ) ) a P \P ι\ e

- 1 |α for

(6.15)

^ 2 and

= t(d-l)/2

2

L 2α

Γ1 ί

(6.16)

In the same way as before we see that for d/2 + 1/α > 1 and ί < T(L) suitable
constants r8,.:.9rίί can be found.

Lemma 4. For ze[0,1]

(6.17)

Proof. We have the following estimate:

oo Γ(L)

« = 1 « = 1

T(L) T(L)

ί Σ\SL(n)-G(n)\+ Σ\S'L(n)-SL(n)\
n=1 n = l

00 00

+ sup nnSf

L(n) ^ n"Γ 1 +
« = i ^

G(n)
« = Γ(L) + 1 n = Γ(L) + 1

(6.18)
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By Lemma 3 we have

Furthermore for L > 1
T(L) 1 T(L) i Γ(L) (

ΣK(n)-SL(n)\ = -dΣ Σ e-"-^-Σ
n = l ^ n=l{k:k1 = ί) ^n=l

(d ^ 2), (6.20)

where we have used the fact that for d = 1, ηi = 0 and for d ^ 2 the sum is the parti-
tion function for a (d— l)-dimensional cube with volume lί~ι. We have used

the upperbound from Lemma 2. Because T(L) ~ L 2 α / ( α + 2 ) ,- + - > 1, this term

approaches zero as L—>oo. Now we estimate sup nriS'L(n). Since nrie~nη is
n ̂  Γ(L) + 1

monotonically decreasing as a function of n for n> r1/η9 the sum nnS'L(n) is a
decreasing function of n for

/
inf j

Since L

 1

 L ^ T(L) H-1 for large L we have

sup wπ^(n) = (Γ(L) + l)riS'L(T(L) + 1) ^ (T(L) + l) r i,
n ̂  T(L) + 1

^ (Γ(L) + l)r iSL(T(L)) S {T{L) + l) r i{|^L(T(L)) - G(T{L))\

If we use Lemma 3 and G(T(L)) S {T(L))~d/2-1/aΓ{l + 1/α) and choose

r t = inf< r 2 , r 4 , . . . , r 1 0 , - + - + — >, Lemma 4 follows since the fourth term

in the estimate is trivial. •

Lemma 4 enables us to prove Theorem 1 if d/2 + 1/α > 1. So we will consider
only those cases in which pc < oo.
Proof of Theorem 1. We write the equation for ζ(L) in the following way

1 oo oo

Σ e""-=p. (6.22)

Consider first the case 1: p < pc. Then there exists an ε > 0 such that p + ε < ρc and
by Lemma 3 an L0(ε) such that for L > L0(ε)
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1 1
v^Λdϊϊ)du 0d/2^(L)e "") < fML)) + s<p + ε<ρc

Let ζε be the unique solution of

1
>]dugd/2{ζεe "α) =

ther). ζ(L) <ζε<l. Let ζ be the unique solution of

489

(6.23)

(6.24)

(6.25)

then

ά i 2 dθ
9e[0,l] 0

L l-ζ(L)

-id-1 r

where we have used (6.3) and Lemma 3.
Consider the case p ^ ρc: Given an ε > 0 and choose a δ such that

2δ

then there exists an L o such that for L> LQ

(6.26)

Σ e~"*<δ,

and by Lemma 3

δ,

(6.27)

(6.28)

(6.29)

So

1

n = l {fc fci = 1}

•25



490 M. Van den Berg and J. T. Lewis

<Pc^P = γit(^)r Σ e—*+fL(ζ(L)). (6.30)
U n=l {k:kί = ί}

Moreover

1 QO

Σ z » Σ e-"*+ft(z)
U n = l {k:k! = l}

is monotonically increasing as a function of z, so 1 — ε < C(L) < 1 for all L> Lo

so C(X) —• 1. Hence by Lemma 3 we have

i f](«L)) Σ e-°*-+p-pe. (6.31)
n = l {)c:(ci = l j

So in one dimension we have

1 ζ(L)

L 1 - ζ{L)

In three or more dimensions we write

•P-Pc, (rf=l) (6.32)

Σ e-^-^p~pc. (6.33)
Mi i)}

The terms, with one or more fc. = 1 (i = 2,..., d) can easily be shown to vanish as
L -• oo. The sum of the remaining terms we estimate as follows. We obtain, using
(2.17)

i-3

Σ e~(π2"/2

\k=2 / \k=2

1 °° / °° °° 2 2 \ / °° \d~3

L n=ι V 2 2 / \k=l

i oo / r2

2ππ

(6.34)

where we have used the first bound of Lemma 2 for a (d — 3)-dimensional cube
with volume Ld~3. So for d ̂  3 as L -» oo

and for rf = 2

1 £ ί(L)

SO
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where A is the unique solution of

1

kt! (k2 - l)π2/2 + I/A
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(6.38)

Proof of Theorem 2. We have

1 i
- jd72ί^^d + 2)/2(

/ 0

- i/α\

(d+2)/2V

Σ (6.39)

The first term tends to zero as L tends to infinity because of Lemma 3 the second
1

term tends to zero because ζ(L)->ζ and f dug(d + 2)/2(ze~"α) is a continuous,
o

bounded function for ze[0, 1]. Finally the third term is majorized by
2d-i

log(l — ζ(L)). This tends to zero as L tends to infinity.

Before proving Theorem 3 we give some definitions and two lemmas:

Definitions.

Q'L(t,u)=
{k:kιψl}

Π (6.40)

where Φ. (Lu ) is defined in Sect. 2.

Lemma 5. For all uι> u0, Φ^(LM 1) is bounded by

Π(^) - < ) " ^ ( 6. 4 1 )

where u0 — (ε^)1/α.

Proo/. The proof can be extracted from [10].

Lemma 6. For all dul > L~δ and ε > 0 there exists an L0(ε) such that for L >L0(ε)

Σ (C(L)rρ^, u) - Σ C"τf^d72 < ε (6.42)
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Proof of lemma 6. We have the following estimate:

Σ(ζ(L)TQ'L{n,u)-

T(L) p -

T(L) d oo
2 ( W Π Σ

+

 n = r5,+ 1 (2πn)d/:

(6.43)

We estimate term by term

T(L)

Γ(L) -nu?

y

2πn)

1 V2πτ(n-τ)/

n=l k

1/2

- τ

τ(π-τ)_ i
1

l /2

= VI + VΠ + V I Π + IX, (6.44)

where we have used (6.5) and (6.6). Furthermore we have enlarged the integration
over the cube Bx to a larger domain D = {x :0 ?ζχί ^ 1, — oo < x2 < oo ...,
— GO < xd < oo} and du 2 = inf {w1,1 — wj . We will not treat all the four terms but
we will treat as an example the second one:

T(L) -mif n

Y f -xa

0 0

T{L) -nut n 1

r2 \l/2

I SUD
P

t

0 0

L2n Y?2

ι\2πτ{n-'

Γ(L) ^,-««?
1

n=ln 0

We have estimated this integral before in (6.16). So

T(L) -nu%

M(d-1)/2 J

(6.45)
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T(L)

n

1 c π r % ΊΛtt^ n "Mi I ± c n n ΊΛΠ ^ ^

n = l n ^u\ mι?e[0,oo) n ^ ne[O,oo)

( 6 4 6 )

We are able to find a constant sx such that {d - l)/2 + Sj > 1 and (T(L))S1 (Lwj)"1 ->
0 for MX > L~δ with <5 > 0 if d/2 + 1/α > 1. A similar argument holds for the second
term.

We are able to treat all the other terms in a similar way. For instance, term III
will be split up like in Lemma 4 and in term IV we use the convergence of ζ(L)
to ζ for large L (Theorem 1). In term V we have to use Lemma 5 to estimate Φ\{Lux).

Proof of Theorem 3. We first consider d= 1. In this case we have to show that

(ζ{L)γΦ\{LUλ) - (p - pc)δ(Uί). (6.47)
n=ί

This is obvious since - -—y-— -> p — pc and LΨ^LuJ is a normalized function
LI ζ(L)

of ux on [0,1]. Furthermore we have by Lemma 5 that LΦl(Lu\) -> 0 for all ux > u0.
Since u0 -• 0 for L -• oo, LΦl(Lut) tends to the ^-distribution in the weak sense.
Consider d ̂  3. By a similar estimate as in the proof of Theorem 1 we show that

Σ (CO-))" Π Σ e-^2"'2L2^-»- sin2 πkmum - 0 (6.48)
n = l m = 2 k w ^ 2 ^

for all M2> M3 ... wd. So the density distribution function of the condensate part is
given by

{p-pc)δ{Ul)Y\2ύn2πkmum. (6.49)
m = 2

Consider d — 2. As in Theorem 1 it can be seen that all the terms k2 = 1, 2,...
contribute to the one-particle distribution function of the condensate since the
η^ with k1 = 1 scale with the volume. Thus with Theorem 1 we have
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