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Dependence of the Thomas-Fermi Energy
on the Nuclear Coordinates*

Rafael Benguria**

The Rockefeller University, New York, NY 10021, USA

Abstract. Let E(R\ respectively e(R\ denote the total energy, respectively
the electronic contribution to the energy, in the Thomas-Fermi theory for a
system of two fixed nuclei a distance R apart. We prove that e(R) and
— E(R) increase as R does. For the case of N fixed nuclei, we prove the
monotonicity of e and E under certain displacements of the coordinates of
the nuclei. The analogous result for the electronic contribution to the Born-
Oppenheimer energy is proved.

1. Introduction

The Thomas-Fermi (TF) theory is defined by the energy functional (in units in
which /z2(8m)~1(3/π)2/3 = l and |e| = l, where e and m are the electron charge
and mass)

, (1)
where

(2)

V(x)=^zJ\x-Rj\-1, (3)
j=ι

and

17= £ z^-.R.Γ1. (4)

Here z1 ? ...,z fc^0 are the charges of k fixed nuclei located at Rί9...,Rk. Jdx is
always a three-dimensional integral. ξ(p) is defined for electronic densities
p(x)^0 such that j'p and j p5 / 3 are finite. The TF energy for λ (not necessarily
an integer) electrons is defined by

A}. (5)
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k

It is known [1] that for λ^Z= ]£ z. there is a unique minimizing p for (5). It
J = l

is the unique solution to the TF equation

-φ0^) (6)

for some φ0^Q and with

0 ( χ ) Ξ F ( χ )_j p();)|χ_);rld3;. (7)

— φQ is the chemical potential, i.e.,

^(λ;{Λ£})=-00. (8)

For A^Z, <£(x)>0, all x. </>0 = 0 if and only if λ = Z. If λ>Z, there is no
minimizing p for (5), and E(λ\ {Ri}) = E(Z; {Rt}) in this case.

Let us denote by

^;{£J)EEE(1; {£J)- 17 (9)

the electronic contribution to the TF energy. In this article we study the
dependence of both E(λ;{RJ) and e(Λ,;{RJ) on the nuclear coordinates
Rl9...9Rk. We will start by indicating some of the previously obtained results
concerning this dependence:

(i) It was proven by Teller [2] that for fixed λ^Z the TF energy E(λ; {£J)
is greater than the TF energy for isolated atoms (i.e., the energy when the Rt

are infinitely far apart). A stronger result has been proven [3] for neutral
systems, i.e., for λ — Z, namely E(λ\{R$) decreases under dilation, R^tRi
(/>!), all l<; i<£fc. It has been conjectured [3], but not yet proven, that this
should also hold for the subneutral case (i.e., for λ<Z).

(ii) As for the electronic contribution to the energy, it is an elementary
consequence of the concavity of e(A;{ΛJ) on the nuclear charges zi that, for
fixed λ and zi9 l ^ i rg fc , e(l;{RJ) always takes its minimum value when all jR;
are equal ([1], Theorem V.4). (This property also holds for the electronic
contribution to the Born-Oppenheimer energy ([4], [5], Theorem 3)). Lieb and
Simon ([1], Theorem V.3) proved that e(A;{jRJ) is smaller than the corre-
sponding e when the Rf are infinitely apart. A stronger result has been
conjectured [3] namely, e(λ;{RJ) should increase under dilations R^ίR^
<?^1, all l^z^fc, for any fixed λ^Z.

There are other interesting results concerning the dependence of e and E
on the nuclear coordinates (see [3], [6]), but they are not relevant for our
discussion here. For a review see [7], (Sect. IV).

The main result of this article is

Theorem 1. Fix z f, all 1 ̂ z'^fc, and λ(^Z). Fix j (1 ̂ j^k) and assume that Rj is
such that

all iή=j
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for some fixed rceIR3. Define E(λ;oc) = E(λ;{R1,...,Rj_ί,Rj + an, Rj+ί9...,Rk})
and e(λ;cί) = e(λ; {Rί, ...,Rj_1, Rj + an, Rj+ί, ...,Rk}). Then

(i) E(λ; α) is a monotonic non-increasing function o/α^O,

(ii) e(λ a) is a monotonic non- deer easing function o/αg O,

(iii) for fixed α>0, E(λ; α) — E(λ;Q) is non-decreasing in λ,

(iv) for fixed α>0, e(Λ α) — β(λ O) is non-decreasing in λ. (Hereafter x y will
denote the usual inner product in 1R3.J

Remarks, (i) The essential content of this Theorem is the following. Let
#15 ...,Rk be given and let C be their convex hull. C has a surface S which is a
(possibly degenerate) polyhedron whose vertices are jR 1 ? J R 2 , ...,#„, say. Now
consider any displacement of jR 1 ? ...,Rn (and not the other R's) which has the
property that |RJ — K]|^|JR. — ̂ | for all ij then E decreases and e increases.
Furthermore, if λ1<λ2, then the decrease (increase in E(e) is smaller (larger)
for λ2 than for λγ. (Here R't denote the new coordinates of the nuclei after the
displacement.)

(ii) Note that Theorem 1, (i), (ii) hold for any λ^Z and not just for neutral
systems.

(iii) For certain nuclear configurations, it follows from Theorem 1, (ii) that
e(λ\ {R.}) is not decreased under dilations jR. -*£Ri, ̂  1, all i (as well as under
other displacements of the nuclei). This verifies the (still open) conjecture 4 of
[3] for these nuclear configurations.

(iv) In the Born-Oppenheimer approximation, in the case of one electron
and N nuclei, the electronic contribution to the energy is monotonic non-
decreasing under dilations Rt-^fRi9 (/^l), all i ([5], Theorem 2). We prove
below (Sect. 4) that the analog of Theorem 1 (ii) in the Born-Oppenheimer
approximation also holds.

In Sect. 2 we introduce, for technical reasons, a regularized TF model. In
Sect. 3 we prove Theorem 1 for this regularized TF, and using the convergence
of the regularized TF energy to the TF energy, we prove Theorem 1. Finally in
Sect. 4 we prove the analog of Theorem 1, (ii) for the Born-Oppenheimer
electronic energy.

2. A Regularized TF Theory

Let g be a non-negative real-valued function belonging to CJ(IR+) and having
the properties

(i) g(r) = 0 if r£l,
00

(ii) 4π j' g(r)r2dr=l,
o

(iii) g(r) is a decreasing function of r.
For α>0, let ga(x) = a~*g(\x\/a), xeIR3. For 0<α<min{|R i-R / | | l^i</^fc},
define

(g.*»0(χ), (io)
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(i.e., Va is the Coulomb potential corresponding to smeared nuclei; we have
imposed an upper bound on α so that the smeared nuclei do not overlap).
Since VGL\OC, FαeC°°(IR3).

Let us define a regularized TF theory by the functional

(11)
with

1. (12)

That is, the functional £ f l(p;{jRJ) is of exactly the same form as the TF
functional ξ(ρ\ given by (1), the only change being in that we have smeared
the singularities of V(x). (Note that we have also changed the constant term U
by Ua which represents the interaction between the smeared nuclei.)

The minimization problem associated with ξa(ρ) is contained in the family
of variational principles studied in Refs. [1] and [8]. We summarize below
those properties of this regularized TF theory that we will need in the sequel :

(i) The problem Min{^ f l(p)|peL1nL5 / 3, p(x)^0, $ρ(x)dx = λ}, has a unique
solution for O^l^Z. For λ>Z there is no solution. (That Z is the largest λ
for which there is a solution follows from [8], Theorem 3 (c), since

ί= 1

(ii) The unique minimizing pα satisfies the Euler equation

pβ

2'3(x) = max(ψβ(x)-00,0), (13)

for some </>0^0, where

yΓl. (14)

(iii) φa(x) and thus pa(x) are continuous everywhere and they go to zero at
infinity. (This follows from (14), since Va(x) is continuous everywhere and goes
to zero at infinity and so does p^M"1 (see [1], Theorem 11.25) because
pael?l3nl} and M^eL^ + L4.)

Let us define the total energy of the regularized TF theory by

and the corresponding electronic contribution by

We are interested in the dependence of Ea and ea on the nuclear coor-
dinates; in particular let us keep R2,...,Rk fixed and study the change on Ea

and ea under the shift R ί -» R ί + an, with a^O, neIR3. Denote by
Ea(λ ^ = Ea(λ',{R^an, R2,...,Rk}) and ea(λ^) = ea(λ',{R^^ Λ2,...,ΛJ).
Let Va be given by (3) with R1 replaced by R1 + an and Fα

αΞgα* Va. We have
the following
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Theorem 2. (A Feynman-Hellman theorem for regularized TFJ Let p" be the
unique minimizing p for £fl( {#Jα) with \ρ* = λ. (Here we have used {Rt}

a to
denote {Rl + ocn, R2,...,Rk}.) Then,

(i) The functions α—>£α(/ί;α) and α-»£α(/l;α) are continuously differentiable
and

= z1 j [n- Vga(y)~] \l/a(y + R1 + otn)dy, (16)

(iii) 6Ea/da= — zi j [n- Fgα(j>)] ΦΛ(y + Rι + &n)dy, (17)

where ψa = pa* \χ\ and φ* = V* — i/Λ

Proof. Let us first prove that the mapping α-> j' dV*/doc(x)pa(x)dx is con-
tinuous. We need only prove continuity at α = 0. Note that Fα

α->Fα in L5/2 + L4

(Lemma A.I), and therefore pα-»p° in L5/3 because of Theorem 11.15 in [1].
Since | |pα | |1^A, we also have pα—»p° in (weak) if, any l<p<5/3. Let
7αΞ^Ffl

α/5α, we have

The first term in the right side of (18) goes to zero as α|0 because 7α->y° in
L5/2 + L4 and pα is bounded in L5 / 3nL4 / 3. Also J 7°(pα-p0) ->0, as aj,05 because
Y°eL5 / 2 + L4 and pα-^p° in L5/3 and pα^p° in (weak) L4/3, hence
α-> j dV*/da(x) pa(x)dx is continuous.

Now, we prove differentiability of ea. Again we need only prove it at α = 0.
For α>0,

α~ 1 [ea(λ\ oc)-ea(λι 0)] ̂ α~1 {Kfl(ρ°; {Ri}
a)-Ua({Ri}

a)~]

(19)

by the minimization property of pα. By the minimization property of p°

α-1 [_ea(λ; α)-ee(A,0)] ̂  - j 'α~ 1 (Va*- Va)(x)pα(x)dx. (20)

Now, α-^F^-FJ ^δFα

α/5α|α:=0 in L5/2+L4 (see Lemma A.2 in the Appendix)
and p°eL5 / 3nL1 hence, by Holder's inequality, the right side of (19) converges
to — j' dVa/dθL\Λ=Q(x)p0(x)dx as α|0. Similarly, one can prove that the right side
of (20) converges to the same limit as αj,0 and, therefore,

(x)pQ(x)dx. (21)
α|0 ί^(

A similar argument controls lim. Thus ea(λ',a) is continuously differentiable in

α and its derivative is given by (15). In order to prove (16), we just compute
dV*/du(x) = z1 j ' g a ( y ) n Vy\x — y — R±— &n\~ldy, and after introducing this ex-
pression in (15), we integrate by parts. Finally, since Uα({.RJα) is continuously
differentiable with respect to α (see Lemma A.3), α->£Λ(A;α) is continuously
differentiable. Moreover,
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and adding the right sides of (16) and (22) we get the right side of (17). This
concludes the proof of the theorem. Π

3. Proof of Theorem 1

We will need some geometric preliminaries. For n, a unit vector in R3 and
d^O, let P(n,d) be the plane

and let P+(n,d) denote the open half-space

and p-(n,φ = R3\(P+(H,d)uP(n,d)). For any function/: IR3-+IR we define

/+ (*)=/(*)

for every xeP+(n,d)vP(n,d\ i.e., /~ is just the reflection o f / through the
plane P(n,d). In order to prove Theorem 1 we will need the following:

Lemma 3. Let n and d be such that JR eP+(n, d)uP(«,d) /or 0/ί l^ίg
choose a<mm{dist(Rj,P(n9d))\RjφP(n,d)}9 (this condition on a insures that the

j
smeared nuclei with RίeP+(n,d) are supported on P+(n,d)). Let pa(x) be the
unique solution to the regularized TF equation (13) and φa the corresponding
potential (14). Then

(i) ha(x) = φ: (x) - φ~ (x) > 0, αH x e P+ (n, d)

(ii) For each xeP+(n,d\ ha(x) strictly decreases when λ increases, and

(iiϊ) p^(x)-p-(x)^^ all

Proof, (i) Certainly ha(x) = 0 for xedP+(n,d) = P(n,d) and at infinity. Let
D = {xeP+ \ha(x)<0}. Since φa is continuous everywhere (see Sect, 2), D is open.
On D, —(4π)~iAha'£Lp-—pϊ >0 since, through Eq. (13), φ~>Φa implies
Pa>Pa Thus, ha is superharmonic on D, so D is empty. By the strong ma-
ximum principle, Λα(x)>0, in fact, for xEP+(rc,d). (ii) Let λ'<λ with corre-
sponding h'a and /zα. We want to prove that B = {xeP+ \ha(x) — h'a(x)>ΰ} is
empty. Since the fcα's are continuous, B is open and ha-hf

a = Q on P(n,d) and at
infinity. We have

with

By (i) ([1], Theorem V.9), b>c^q andb^p>q, for all xeP+. On £,
Thus r^O on B, whence ha(x) — h'a(x) is subharmonic on B and therefore
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is empty. Again, once can prove the stronger result that ha(x) — h'a(x)<0 for
xeP+. Trivially, (i) implies (iii) through the TF equation (13). Π

Remarks, (i) The proof of Lemma 3, (i) is analogous to the proof of Teller's
lemma ([1], Theorem V.8).

(ii) By the same argument once can prove the following two lemmas.

Lemma 4. Let n and d be such that RiGP+(n,d) for all l^ i^/c and let p(x) be
the unique solution to the TF equation (6). Then

ρ + (x)>p~(x\ all xeP+(n,d).

Lemma 5. Let n and d be as in Lemma 4. Let V be the Coulomb potential (3).
Then

V+(x)>V~(x\ all xeP+(n,d).

Remark. This property of V is exactly the one needed to prove Theorem 1 and
4 in [5] and Theorem 3.2 in [9].

We will now prove the analog of Theorem 1 for the regularized TF model :

Theorem 6. Fix zt all l^ i^/c and λ^Z. Fix j(i^j^k) and assume that Rj is
such that

RieP+fan R^vPfan Rj), all iή=j (23)

for some fixed unit vector nelR 3. Let Ea(λ9ά) = Ea(λ 9 {Rί, . . . , J R J _ 1 , jR,.-
Rj+l,...9Rk}) and ea(λ;κ) = ea(λ; {Ri9...9Rj_i9 l̂ . + αn, Rj+l,...,Rk}). Choose
a<mm{dist(Ri,P(n,n'Rj))\Ri φP(n,n Rj)}. Then,

i

(i) Eα(λ;α) is a monotonic non-increasing function o/α^O,

(ii) ea(λ;oc) is a monotonic non-decreasing function o/α^O,

(iii) for fixed α>0, Ea(λ;oc) — Ea(λ;0) is non-decreasing in λ,

(iv) for fixed α>0, ea(λ 9a) — ea(λ'9Q) is non-decreasing in λ.

Proof, (i) By the Feynman-Hellman Theorem 2 [see Sect. 2, Eq. (17)],

dEnl

da

We can write the right side of (24) as

-2} ί ln Vga(y-RJ)-]\:φ:(y)-φ~(y)-]dy, (25)
yeP+ (n,n Rj)

because n Vga(y — R^ only changes sign under a reflection (of y) through
P(n9n-Rj). Here φ^ are defined as in (23) with respect to the plane P(n9n Rj).
Since n Vga(y — RJ)'^.09 all yeP+uP [because ga(y) is spherically symmetric
and decreasing] and φ^(y)^φ~(y\ all jeP + uP [Lemma 3, (i)], (25) is non-
postive and (i) follows.

a

(iii) Write Ea(λ,κ)-Ea(λ,Q) = $ dEJdada. Now, for every fixed α, dEa/da(λ,a)
o

is an increasing function of λ because of (25) and Lemma 3(ii).
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(ii) By integration by parts one can write (15) as

with

As before, we have

—— =Zj j Pj(x)(pa (x) — p~(x))dx, (26)
da α = o xeP+(n,n Rj)

because pj(x) only changes sign under a reflection (of x) through P(n,n R^.
Moreover, Pj(x)^.09 all x e P + u P (because ga* \x-Rj\~1 is spherically sym-
metric and decreasing). Hence, (ii) follows from (26) and Lemma 3 (iii). Finally,
it should be clear that (iii) is equivalent to (iv). Π

After all these preliminaries we can go to the

Proof of Theorem I. Because of Lemma A.4, Va-*V as αjO, in L5/2 + L4.
Therefore, Theorem 11.15 in [1] implies that, for fixed λ, β f l(/l;{RJ)
-»e(A;{RJ) as αjO. Hence Theorem 1 (ii) and (iv) follow from Theorem 6 (ii),
(iv). Now, by Lemma A.5, Ua^>U as αjO, hence for fixed λ,
Ea(λ\ {R$)->E(λ\ {jRj}) as α jO. Therefore Theorem 1 (i) and (iii) follow from
Theorem 6 (i), (iii). Π

4. Proof of Theorem 1 (ii) for the Electronic Contribution
to the Born-Oppenheimer Energy

The electronic contribution to the Born-Oppenheimer energy for a system of
one electron and k (fixed) nuclei (located at .R-elR3, with positive charge zt) is
defined by [5]:

e({JRί}) = infspec(Hβ), (27)
with

k

fj — Λ _ V 7 Y R I"1 (28)
i= 1

The behavior of e({Rt}) as a function of the nuclear coordinates has been
studied in [5] and [9]. In particular, it has been shown [5] that £({£,-}) is
monotonic non-decreasing under the dilation JRj -*/!^ (/>!), all i. Here we
will prove the following related result:

Theorem 7. Fix z f, all 1 g i r g f c . Fix j (1 ̂ j^fe) and assume that Rj is such that

all ϊφj, (29)

for some fixed unit vector rceR3. Then e({Rί,...,Rj_ί, Rj + an, Rj+ί,.. ,Rk}) is
a monotonic non-decreasing function o/α^O.

Remark. This is a straightforward generalization of Hoffman- Ostenhofs (Theo-
rem 3.2, [9]) and therefore we will give here only the necessary modifications
to his proof.



Dependence of the Thomas-Fermi Energy on the Nuclear Coordinates 427

Proof. Because of Lemma 5 (Sect. 3) and the comparison Theorem 2.3 of
[9], we have that ^+(x)^~(x), all xeP+(n,n-Rj). Here ιj/~ is the reflection
of the ground state ψ of He with respect to P(n,n-Rj) and ψ+ =ψ. Therefore,
by the Feynman-Hellman theorem we have

de
— = -z^\x-R^3(x-Rj) nφ2(x)dx

α"°=-Zj. j \x-R^-3(x-Rj).n(φ+(X)
2-ιlf-(x)2)dx

xeP + (n, n Rj)

^0. D

Appendix

Let /e(L5/2 + L4)(R3,ώc) and define /β(x) = (gβ*/)(x), with gα given as in Sect. 2,
for α>0. Since feL\OG, then / f leC°°(R3) ([10], Lemma 2.18(a)). Moreover
/ f leL5/2-f-L4, by using Young's inequality.

Lemma A.I. (Continuity of Ja(x) under translation.) Let J*(x)=Ja(χ — uR\ α>0,
fa in L5/2 + L4 as α|0.

Proof. Since (/α

α—/α)W —j [gα(j;~α^)~gαOO]/(:)C~J;)^3;5 an<^ gα6^00? we have

i
t — y)\ §dtu\R Pga(y

0

-y)||jR| sup |F

Now, /eL5/2 + L4 and FgαeLp for any l^p^oo hence /fl

α^/α in L5 / 2+L4 as
α|0, by using Young's inequality. Π

Lemma A.2. ^l(f^-f^dfJdy\Λ=Q in L5/2 + L4 as a|0.

Proo/ We need only remark that for a C2(IR) function ft, we have

0 0

for any α, f rΦθ. The rest of the proof proceeds as in the proof of Lemma
A.l. D

Lemma A.3. C7α({RJα) (given by Eq. (12) wiίft ^t replaced by R^ + an, α>0,
is continuously differ entiable with respect to α and

(A.I)

Proof. We need only prove differentiability at α = 0. From (12) we get

k

=zι Σ ^ίgα
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Since |x|~1eL5/2 + L4, Lemma A.2 implies that

α=0

as α jO in L5/2 + L4. Since gaelf, any l^p^oo, and using the definition of Va

[see Eq. (10)] we have

lima-' [[/a({^n- Utt({Rt}) ] =^ j'gaOO^ Jdy. (A.2)
a|0 ί^a a =0

[Notice that we have used Jgβ()')3/δα(|3;-αn|""1)|α=0^ = 0 to obtain A.2.]
Finally, (A.I) follows from (A.2) by integration by parts. Π

Lemma A.4. /β->/m L5/2 + L4 as a[0.

Proof. See ([10], Lemma 2.18(c)). Π

Lemma A.5. Ua-+ U as α JO.

Proof. We can write Ua — U= Σ (Aij + Btj) with

and

Because of ([10], Lemma 2.1 8 (e)) limga^\x + Ri-Rj\~i = \x + Ri-Rj\'~1 uni-
α|0

formly on |x|^α (as long as a<\Ri — Rj\). Hence, A^-^0 as α|0. Also, B^-^Q as
a 10 because of ([10], Lemma 2.18(e)). Π
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