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Estimates on the Vorticity of Solutions

to the Navier-Stokes Equations*

Vladimir Scheffer

Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Abstract. We estimate the vorticity of the flow of an incompressible, vis-
cous, three dimensional fluid near the boundary of its container. We obtain
a bound that is valid outside a small subset of space-time with special
properties.

1. Introduction

It is the basis of the Prandtl boundary layer theory that vorticity is introduced
into solutions of the Navier-Stokes equations through a boundary layer. There-
fore, it is important to obtain estimates of the size of the vorticity close to the
boundary. The theorem below yields the following type of estimate: We fix a
small positive number τ and examine points (x, f) in space-time, where x lies
at a distance τ from the boundary. We also assume that the time elapsed since
the beginning of the flow is at least τ2. Then the size of the vorticity at (x, t) is
at most 0(τ~2) unless (x, t) happens to lie in a certain set. This set is the union
of cylinders of size τ. The number of different cylinders is at most 0(τ~5/3).
Since the cylinders are subsets of space-time, their union is a small set.
However, the important point is not the measure of this set. The interesting
thing is the clustering of this set into lumps of size τ. Outside of these lumps
we have uniform estimates on the vorticity.

The proof of the main theorem in [1] involved the construction of a similar
set. There the set was the union of finitely many cylinders At where ]Γ

I

(diameter of At)
5/3 was bounded by a constant that depended only on the

initial kinetic energy. In addition, the maximum of the diameters of the Al

could be made arbitrarily small. The theorem below is an improvement on
this.

One can go further and state that the vorticity is continuous at the points
where we can estimate its size. This is a consequence of the local boundedness

This research was supported in part by the National Science Foundation Grant MCS-7903361

0010-3616/81/0081/0379/S04.40



380 V. Scheffer

of the velocity vector field at these points (this is brought out in the proof) and
of the argument that led to partial continuity of the vorticity in [1].

In this paper the vorticity is the curl in the distribution sense of the
velocity vector field. It is not difficult to show that it is actually a classical curl
at the points at which it is estimated. In other words, the spatial partial
derivatives of the velocity vector field exist in the classical sense at each such
point.

Theorem. Let U be an open bounded subset of R3 such that the boundary of U
has Lebesgue measure zero. Suppose that w°:R3-^R3 is an L2 function such that
w°(x) = 0 for xφU and div(w°) = 0. Then there exists a weak solution u:U
x(0, oo)-»jR3 to the Navier-Stokes equations of incompressible fluid flow in U

with adherence at the boundary of U, initial condition w°, viscosity = I, and the
following property: If 0<τ<l and

T={(x,t)εR3xR:t^τ2 and distance (x,R3~U)^τ},

then there exist ( x ί , t^\ (x2, t2), ..., (XM, tM) where (x^ tj)eT, M^Nτ~5/3 where
N is a constant that depends only on ||w0 | |2, and the inequality
|(curl(w))(x, ί)|^ Cτ~2 holds whenever

M

We use the notation introduced in Sect. 1 of [1]. The constant C in the
theorem does not depend on any of the parameters. Saying that u is a weak
solution means that u satisfies the properties listed in Theorem 1.2 of [1] when
the domain of u is extended to all of R3 x (0, oo), using the definition u(x, t) = 0
for xφU. The condition div(w°) = 0 means that J w°(x) F/(x)dx = 0 for any
C00 function f:R3-^R with compact support. R3

In later sections we will use the definition

( f * g ) ( x , t ) = $ f(y,t)g(x-y)dy
Ri

when Ac:R, f is a function defined on R3 xA, and g is a function defined on
R3.

2. Preliminaries

The following definition is consistent with Definition 2.1 of [1].

Definition 2.1. If Ac:R3xR and / is a function defined on A, then we ab-
breviate /(/,Λ) = J/ and M(/,Λ) = the supremum of {|/(x, ί)|: (x, t)εA}. If

A
3, teJR, r>0, s>0, fo>0, and fee {1,2, 3, ...}, then

-x\^r and t-s^
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and ί-s^

x J R : w<Ξί},

G(x,ί,r,fc)-K(x,ί,r(l-2- f c), r2(l-2-2fc)).

Lemma 2.2. There exists an absolute constant C± with the following property:
Suppose u:R3 x R+ -^R3 is a continuous function such that 1 j |w(x, t ) \ 2 d x : ί>0\

\ R 3 /

is α bounded set of real numbers and Du is an L2 function. Suppose also that
{a,c}^.R\ {b,d}<=:R, {m,p,n,q} is a set of integers, b>2~2m, \a-c\<2~m, b
-2~2m<d^b, 2~(n+ί)<2-m-\a-c\^2~n, 2-2(p+l)<d-(b-2-2m)^2~2p, q
= mzx{n,p},and K = K(c,d,2-m-2,2-2(p+2}). Then

(2.1)

and

$\u(x,ή\2(\x-c\+(d-t)ίl2Γ4dxdt

Proof. The hypotheses of Sect. 2 of [1] are all satisfied. Hence Lemmas 2.2, 2.3,
2.4 of [1] are valid in this case. The second of these lemmas yields (2.1). Now
we will use a portion of the proof of Lemma 2.5 of [1]. Using the definition of
E(k) given in (2.30), (2.31) of [1] and (2.1), we obtain

K~{(c,d)}= 0 E(k).
k = m+2

From (2.33) of [1] we get

if (x,t)eE(k).

Combining (2.9) of [1], Definition 2.1, and the proof of Lemma 2.5 of [1], we
find the following: If |α-c|^2- ( m + 1 ) then

k = m+ 2

if 2- ( m + 1 )<|<z-c| and n^p then

k = m+ 1

Σ C22*/(|Z)M|2,Γ(α,6,2-m,2-2 m,2-k + 2));
m+ 1
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if 2~ ( m + 1 )<|β-c| and n>p then

^ £ C2~ / cM(|w|2, D(d)nG(α, b, 2~m, fc + 1 -m))
k = m+ 1

«+l

+ X C22 k/(|/)tt|2,T(fl,b,2- I I I,2-2 l l I,2-k + 2)).
fc = m + 1

The conclusion follows from all of the above, q = max{n,p}, and (2.1).

Lemma 2.3. Suppose u:R3 xR+ ->R* is a continuous function of the type consid-
ered in Lemma 22. Suppose also that (α, c}c:^3, (6, d}^R, τ>0, b>τ 2, \a
— c|<τ, b — τ2<d<b, n and p are the integers determined uniquely by

2^ (2.2)

and g = max{rc,p}, X = X(c, d, τ/4, τ22~2(p+2}\ Then

p^O, n^O (2.3)

and
$\u(x,t)\2(\x-c\+(d-t}1/2Γ4dxdt
K

q+ί

^Σ C12~
k=ί

Proof. Set α'-τ^α, c'-τ"1^ bf = τ~2b, d' = τ~2d, and u'(x,t) = u(τx,τ2t). The
conclusion follows when M, α, b, c, d in Lemma 2.2 are replaced by i/, α;, b;, c', d'
and the m in that lemma is set equal to zero.

3. An Integral Inequality for Approximate Solutions

This section is a continuation of Sect. 5 of [1]. In particular, we have the
choices of Φ, Ω, Ψ made at the start of that section and we also have the
function u:R3 x [0, oo)-*R3 of Definition 5.14 of [1]. Lemma 5.6 and Defi-
nition 5.10 of [1] imply that u is a function of the type considered in Lem-
ma 2.2. Lemma 5.17 of [1] shows that u is locally in L3. The number ε is
introduced immediately after Definition 5.1 of [1]. We may assume that \\Δ(Φ)
-Δ(Φ*Ω*Ω)\\2 Beholds instead of (5.1) of [1].

Lemma 3.1. There exists an absolute constant C2 satisfying the following: If
τ>0 then there exists a continuous function v:R3xR+-*R?> such that

(x, t)\2dx:t>0} is a bounded set of real numbers, Dv is an L2 function,

\v(x,t)\^C2τ-3f2( j \u{y,t)\2dy)112 if xeB(a,τ),
B(a,5τ/4)

I ( \ D v \ 2 , Γ(α, b, τ, τ2, r))^ C2τ~^r(l(\u\\ K(a, b, 4τ, τ2)))2/3
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if 0<r^2τ and the following is true: If aεR\ beR, ε<τ/64, 5(α, 5τ/4)c U,
b>τ2, ceR3, deR, \a — c|<τ, b — τ2<d<b, p and n are integers defined by (2.2),
q — max {p, n} , and A = K(a,b,5 τ/4, τ2)

\(u-υ}(c,d)\

\ f
) B(c,τ/4)

C2τ"2 / 3M(|w-t;|, D(d)nG(α, b, τ, ̂  + 2))(J |M(X, ί)|3 dxdt)1/3

A

C 2τ- 5 / 32 5 p / 3

(α, 5t/4)

+ C 2 τ 2 | |w° | | 2 ε.

Proof. Let ^^^[0, 1] be a C00 function such that λ ί ( x ) = 0 for |x|^
A!(X) = ! for |χ|^τ/32, and HDUJI^g Cτ"1' for i = l,2,3. Define J:R3~{0}-»R
and Q^.K3^^ for ί>0by

J(x)=-(4π\x\Γ\ Qt(x) = (2y^Γ3t-3/2cxp(-\x\2/(4t)). (3.1)

This is consistent with (5.6), (5.7) of [1]. The function L:R3-*R is given by

L(x)=-[Δλί(-x)J(x)-2Djλί(-x)DjJ(x)'] for xφO, (3.2)

and L(x) = 0 for |x|<τ/32. We define

υ = u*L (3.3)

and observe

|φ,ί)I^Cτ-3 / 2( j \ u ( y 9 t ) \ 2 d y ) 1 1 2 , if xeβ(α,9τ/8),
B(β,5τ/4) (3^

|Dt;(x,ί)|^Cτ-5 / 2( J \u(y, t ) \ 2 d y } 1 / 2 , if xeβ(α, 9τ/8).
B(α, 5τ/4)

We abbreviate

X j = JC(c, d, τ/8, τ22-2(^+2)), K2 = K(c, d, τ2~(cί+2\ τ22-2(g+2)), (3.5)

h = τ2~(p+2\ H=^τ2~(q + 2\ B = B(a,5τ/4). (3.6)

From |c-α|<τ, b>τ 2, (2.2), and d<b we conclude

jB(c,τ/8)c:ΰ(α,9τ/8), 0<b-τ2 <d-h2 <d<b. (3.7)

If jχeβ(c,τ2- { g+2 )) then (2.2) and ^rc imply

|x-α|^|x-c| + |c-α|^
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Iϊd-τ22-2(q+2)^t^d then q^p, (2.2), and d^b imply

All this implies

K(c, d, τ2~(q+2\ τ22~2(q+2})c:D(d)nG(a, b, τ,q + 2). (3.8)

In particular, we obtain

(3.9)

We select a C00 function λ2:JR-»[0, 1] such that λ2(f) = 0 for t^d-h2, λ2(t) =
for t^d-h2/2, and | |(d/dί)λ2ll0 0^Cτ-222 p. Then we set λ(x, i) =

Now we fix ze {1, 2, 3}, recall (3.1), and define

by
/(x,s) = λ(x-

F£(x,s) = /(x,s), *}(x,s) = 0 if;e{l,2,3} and j Φ / , (3.10)

G- curl (curl (F)).

Using Definitions 5.1, 5.2 of [1] and ε<τ/64 we obtain

(G*5P*y)(x, i) = 0 if x^B(c,τ/8). (3.11)

The function G satisfies

Using the proof of Lemma 5.7 of [1] we conclude

\(G*Ψ*Ψ)(x,t)\^C(\x-c\+(d-t)V2Γ\

\(DG*Ψ*Ψ}(x,t)\^C(\x-c\+(d-t)ll2Γ4.

We also have

d-/ι2 B(a, 5τ/4)

j |tί(x,ί)|3^xrfί) (3.13)
2 β(α, 5τ/4) /

If ί<d, then (3. 12) yields

j \ ( G * Ψ * Ψ ) ( x , t ) \ d x
B(a,9τ/8)

J |(G*ϊί*ϊί)(x,ί)|5/4dx)4/5

(3.14)
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Using (3.11), (3.7), (3.4), (3.6), (3.14), (3.13), and (3.7) we obtain

d

j j \ v ( x , t ) \ \ D v ( x , t ) \ \ ( G * Ψ * Ψ ) ( x , t ) \ d x d t
d-h2 R3

d

= J J \ υ ( x , t ) \ \ D υ ( x , t ) \ \ ( G * Ψ * Ψ ) ( x 9 t ) \ d x d t
d-h2 β(α,9τ/8)

gc( } τ-4(J|M(x,ί)|2dx)( j \(G*Ψ*Ψ)(x,t)\dx)dt
\d-h2 B β(β,9τ/8)

2/3 / d v l / 3

d~h2

d \ 2 / 3

j J |w(x,ί)
-Λ 2 β(β, 5τ/4)

b χ 2 / 3

j j |ι/(x,ί)|3^x^ί) (3.15)
-τ2 β(α,5τ/4) /

From (3.5), (3.6), (3.12), (3.9), (3.4), ^p, (3.13), and (3.7) we conclude

$ \ υ ( x , t ) \ \ ( D G * Ψ * Ψ ) ( x , t ) \ d x d t
κ2

d

£ J j C\v(x,t)\(\x-c\+(d-t)ί/2Γ*dxdt
d-H2 B(c,H)

^ j Cτ-3/2(J|w(x,ί)|2^x)1/2( j (|
d-H2 B B(c,H)

£ J Cτ-3 / 2(J|t/(x,ί)|2dx)1 / 2(d-0
d-H2 β

l/3 / d χ2/3/ d χ l / 3 / d

J (\\u(^t)\2 ax)*12 dt\ f (d-
\d-H2 B ' \d~H2

d 1/3

J J|M(x,
-h2 B I

b v l / 3

J J | M (x, ί) l 3 dxdί) . (3.16)
b-τ2 β(fl,5τ/4) /

Using (3.11), (3.7), (3.4), (3.12), (3.6), (3.5), q^p, and (3.7) we find

j |φ, ί)|2 \(DG * !F * !P)(x, ί)l dx at
K ι ~ X 2

^ J Cτ
K ι ~ K 2

d-H2

^ ί Cτ-
d-Λ2
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J (|
K 3 ~β(c,H)

d-ίf2

£ ί Cτ-3(| [«();,

b-τ2 B(β,5τ/4)

/ b , 2 / 3

^Cτ- 7 / 3 2M j I \u(x,ή\3dxdt\ . (3.17)
\b-τ2 B(α,5τ/4) /

From (3.5), (3.6), (3.11), (3.8), (3.16), (3.12), and (3.17) we conclude

d
J J |(M-ϋ)(x, 01 MX, 01IΦG * Ψ * !P)(x, 01 dxat

g J |(M - ϋ)(x, 01 |t;(x, 01 IΦG * Ψ * !P)(χ, ί)| dx d t
κ2

+ ( j \(u-υ)(x,t)\2\(DG*Ψ*Ψ)(x,t)\dxdt)

b \1 / 3

J $\u(x,t)\3dxdt)
~i '

d-Λ 2 B(c,t/4)

/ b ,2/3

Cτ- 7 / 3 2«( j j | t t(x, ί) l 3 dxdf) . (3.18)
V-t 2 J5(α,5τ/4) /

Finally, (3.11) and (3.12) yield

I j |(M-»)(x,ί)|2(|x-c| + (d-ί)1/2)-4dxdt). (3.19)
-h2 B(c,τ/4) /

From Definitions 5.1, 5.2, 5.10, 5.14 and Lemma 5.6 of [1] we conclude

M(χ,ί) = (w'(ί))(x) = (w(ί)* !P)(x),div(w(ί)) = 0, !P(x)=!P(-x). (3.20)

If d-h2/2<s<d then (3.10), (3.20), the definition of λ and Definition 5.5 of [1]
yield
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ί K(x, s)] [/d/(x, s)] dx = J [%(x, s)] [Δ Fk(x, s)] dx
βs Ri

= - ί K(*, s)] [Gk(x, s)] dx + ί K(x, s)] [Dt(dίv(F))(x, s)] dx
K3 K3

= - ί K(x, s)] [G,(x, 5)] d x = - j [K(s))(x)] [(Gt * Ψ)(x, s)] d x
R3 J{3

= - ί ί[((D,wlk)(t))(x)][(Gik*ίP)(x,ί)]dxdί
d - A 2 K 3

- 1 K(wit(ί))(x)][φίGfc* P)(x>ί)]dxdί. (3.21)
d-/J2 E3

Using Lemma 5.6 and Definition 5.2 of [1], support (G * !P)c= 17, div(G*?P) = 0,
and (3.20) we obtain

- J [J(wk(ί)*β*0)(x)][(Gk* !P)(x,ί)]dx. (3.22)
κ3

Properties (3.20) and (3.10) give us

- ί CK(0)W][(A^*^)(^0]^χκ3

- j [J K(ί) * Ω * β)(χ)] [(Gk * Ψ)(x, 0] ^x
Λ3

= - ί CK(0)W] [(/>, Gk* ψ)(x, ί)] ̂ x
J?3

+ ί [K(ί))(x)] [φtDk(div(F))* Ψ)(x, ί)] ̂ x
^3

- j lA (wk(ί) * fi * 0)(x)] [(Gk * !P)(x, ί)] dx
R3

+ j [ J (wk(ί) * Ω * Q)(χ)] [(Dk(div(F))
κ3

= ί [(wfc(0)(χ)] \&t(Δ (F,))* y)(x, 0] d
Ri

+ ί [/I (wk(ί) * Ω * β)(χ)] [( J (Fk) * !P)(x,
Ri

= ί [K(ί))(x)][((Dί + zl)(zl/))(x,ί)]dx
K3

ί)]dx. (3.23)
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Observe that (3.10) and A(Qd_s*J) = Qd_s imply

((Dt + J)(J/))(x,f) = 0 i f |x-c |^τ/32 and d-

Using this and the fact h<τ (recall (3.6), (2.3)) we find

The identity Δ(Qd_s*J} = Qd_s also yields

\\Δf(x,t)\dx^C.
κ3

From the assumptions made at the start of this section we conclude

\\A(Ψ*Ω*Ω)-AΨ\\2=\\(A(Φ*Ω*Ω)-ΔΦ)*Ω\\2

(3.24)

(3.25)

ε. (3.26)

Using (3.2), (3.3), the continuity of u, Δ(Qt*J) = Qt, (3.21)-(3.23), (3.20), (3.7),
(3.24), (3.26), (3.25), Lemma 5.6 of [1], and h<τ we find

\ui(c,d)-vi(c,d)\

ί J [K (ί))(x)] [βjKWXx)] [(Gk* Ψ*Ψ)(x, ί)] dxdί
d-fc 2 K3

+ c( J j |u(x,ί)|3dxdί) τ-5 / 325^/ 3

\d-ft 2 B(α,5τ/4) /

d

+ f l l w (OI !

R3

d~h2

C

j [W.(x,ί)][D;tιk(x,ί)][(Gk*ίP*!P)(x,

-h2 B(a,5τ/4)

(3.27)

From (3.20) and (3.3) we conclude div(u) = 0, div(ϋ) = 0. Hence (3.19), (3.18), and
(3.1 5) yield
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ί $[Uj(x,mLDjUk(x,

389

g j \ll(uj-vj(xj)]lDJ(uk-υJ(x,tmGt*Ψ*Ψ)(x,ty}dx\dt
d-h2 R3

ί |ίC^(χ,ί)][i>J K-%)(χ,
d-h2 R3

d-h 2

ί \ίL(uj-v^(x,tm»k-t'k)(x,t)'][.(DjGll*Ψ*Ψ)(x,t) jdx\dt
d-h2 R3

ί I j fy(x,
d-h2 R3

j Gt * !P * P)(x, ί)] dxdt

-h2 B(c,τ/4)

\u(x,t)\3 dxdt
b-τ2 B

1/3

/ b > 2 / 3

+ Cτ- 7 / 32« I j \u(x,t)\3dxdt\
\b-τ2 B(α,5τ/4) /

+ Cτ-7/32-"/15 j J \u(x,t)\3dxdt
\b-τ2 JB(α, 5τ/4)

The last inequality of the lemma follows from the above, (3.27), and q^p^Q
(see (2.3)). The estimate on v follows from (3.4). The argument that gave us (3.4)
yields the following for 0 < r rg 2 τ:

Γ(α,b,τ,t2,r) β(α,4τ)

^ j Crτ- 3( j \u(y,t)\2dy)dt
β(α,4τ)

& χ 2 / 3

J |M(y,ί)|3dj"*t]
ί?-t2 fi(β,4τ)

b-τ2

This gives us the estimate on Dv.
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4. An Estimate for Approximate Solutions

The assumptions of Sect. 3 are still in force.

Lemma 4.1. There exist absolute constants C3, C4 with the following property:
Suppose τ>0, v is the function of Lemma 3.1, αejR3, beR, ε<τ/64,
J5(α, 5τ/4)c[7, αrcd b>τ 2. Suppose also that

(4.1)

(4.2)

(4.3)

,τ/2,3τ2/4). (4.4)

Proo/ We choose C4>0 so that 16C2 CΊ C^(1/4)C4. Then we choose C3>0
so that

We will use the method in the proof of Lemma 3.1 of [1]. A slight modifi-
cation of the construction in that lemma gives us a continuous function

such that (recall Definition 2.1)

C42
ίτ-1^/(λ:,ί)^Q2 ί-1τ-1 if (x,ί)eG(α,&,τ,i)-G(α,b,τ,i-l) (4.5)

for z = l,2,3,.... Here we define G(α,b,τ,0) to be the empty set. In particular,
we get

/(x,ί)^C42
/τ-1 if (x,ί)eG(α,b,τ,i) (4.6)

We intend to show

|(M - t>)(x, 01 ̂ /(x, 0 for all (x, i)einterior(K(a, b, τ, τ2)). (4.7)

Assume that (4.7) is false. Then the nature of / and the continuity of / and u
— v imply the existence of (c, <i)e interior (K(α, 6, τ, τ2)) such that

|(tt-t;)(c,d)|=/(c,d), (4.8)

|(w-ϋ)(x,ί)l^/(*50 if (x,ί)6Z)(^)ninterior(X(fl,b,τ,τ2)). (4.9)

Using this (c,d) we define the integers p, n, ^ by (2.2) and g = max{p,n}. From
(2.2) and (4.2) we obtain
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We can use Lemma 3.1, (4.1), and (4.2) to conclude the following for fe^ 1 :

I(\D(u-v)\\T(a,b,τ,τ2,τ2-k+2))

(4.11)

Since the definitions of p, n, q imply (c, d)φ interior (G (a, b,τ,q)), we find that
(4.5), (4.8) yield

42"τ-1. (4.12)

Combining (4.12), Lemma 3.1, Lemma 2.3 with u-v in place of H, (4.2), (4.10),
(4.9), (4.6), (4.3), (4.11), (2.3), q^p, and the definitions of C3, C4 we find

/ d \
I I \(u-v)(x,t)\2(\x-c + (d-t)1/2)-*dxdt)

\d-t 2 2-2<P + 2> B(c,τ/4) /

^ Σ C 2C 12-*τΛί(|tt-o| 2,D(d)nG(α,6,τ,fc+l))
l t = l

4+1

k= 1

-1)2+"Σ C2 C 1 2 2 k τ- 2 (2C 3 τ2- / ί + 2 + 2C2 C
2 / 3τ2- f c + 2)

+ C2 C
2/3 τ~ 1 2« + C C3 τ~ 1 2« + C C2 2 2 3

This is a contradiction, hence we cannot assume that (4.7) is false. The
conclusion follows from (4.7), (4.6), and the definition of G(a,b,τ,i).

Lemma 4.2. There exist absolute constants C5, C6 with the following property:
Suppose σ>0, αeR3, beR, ε<σ/128, B(a, 5σ/4)c:[/, and b>σ2. Suppose also
that

I(\Du\2, K(a, b, 3 σ, σ2)) ̂  C5 σ, (4.13)

/(|w|3,K(a,6,4σ,σ2))^C5σ
2, (4.14)

Hw° | | 2 ^C 5 σ- 3 ε- 1 . (4.15)
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Then
b

j (max{\u(x,t)\:xeB(a9σ/4)})3dt^Cbσ-1. (4.16)
b-3σ 2/16

Proof. Using the method in Sect. 4 of [1] (which is an application of the
Hardy-Littlewood weak-type inequality for L1), we can find C 5^C 3 such that
(4.13), (4.14) imply that (4.1), (4.2) hold for some τ such that σ/2<τ<σ. Using
Lemma 4.1 we obtain (4.4) and hence

|(M-t;)(x,ί)|g4C4σ-1 if (x,t)eK(a,b9σ/49 3σ2/16), (4.17)

where v is the function corresponding to τ in Lemma 3.1. From (4.17), Lem-
ma 3.1, cr/2<τ<<7, Holder's inequality and (4.14) we get

b

f (max {|M(X, t)\: xeB(a, σ/4)})3 dt
b-3σ2/lβ

/ 2( f |
&-3σ 2 /16 B(α,5σ/4)

f j {ufat

5. An Integral Inequality for the Vorticity of Approximate Solutions

We continue with the same assumptions made in Sect. 3. Recalling Defi-
nition 5.14 of [1], we have

z- curl (w). (5.1)

Lemma 5.1. There exists an absolute constant CΊ with the following property:
Suppose α<E#3, beR, τ>0, B(a,5τ/4)c:U, έ»τ2, ε<τ/64,

) = max{|M(x,ί)|:x6B(α,5τ/4)},

|α — c|<τ, b — τ2 <d<b, and n, p, q are defined as in Lemma 2.3. Then

v l / 3v

f M(ί)3^ί
t2 /

2/3

/ d \
J j \Du(x,t)\2dxdt)

V(i-τ22-2(ί' + 2) β(α, 5τ/4) /

/ "d

J j \Du(x,t)\2dxdt
M-τ 2 2- 2 (P + 2> B(«,5τ/4)

1/2

+ C7 | |w0 | |2τe.
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Proof. Let h = τ2~(p+2\ H = τ2~(q+2\

K1=K(c,d,τ2-(p+2\τ22-2(p+2}\

if k is an integer and k^p + 2. The argument that led to (3.8) still applies, so
we have

(5.2)

As in Lemma 2.3, we can still say

p^O, fi^O. (5.3)

Now we will prove (recall Definition 2.1)

K(c,d,τ2~\τ22-2k)cιT(a,b,τ,τ2,τ2-k+2) if p + 2^k^n + l (5.4)

and fe is an integer. If xeB(c,τ2~k) and k^n+l then

This implies

B(c,τ2-k)cι{χεR3:τ-τ2-k+2^\x-a\^τ + τ2-k+2} if fe^n + 1. (5.5)

The argument that gave (3.7) is still valid, so we have

Q<b-τ2<d-τ22~2(p+2}<d<b. (5.6)

Combining (5.5), (5.6) we get (5.4). In addition, we get

Using (5.2), (5.6), and q^p we find

$\u(x,t)\\z(x,t)\(\x-c\+(d-t)1/2Γ4dxdt

d
j (M(t) j (\x-c\ + (d-t)1/2Γ*dx)dt

-H2 B(c,H)

-H2

l / 3
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/ & v l / 3

J M(ί)3dί - (5.8)
\b-τ2 /

If g>p then q = n>p, so (5.7) and (5.4) yield

j \z(x,t)\2(\x-c\+(d-t)1/2Γ3dxdt
Kι~K2

β+1

^ X /(|z|2,£(/c))τ~323 ( k + 1 )

fc = p+2

«+l

^ Σ Cτ-323 k/(|Dw|2,T(α,6,τ,τ2,τ2-k + 2)). (5.9)
/c = p+2

From (5.3) and \a-c\<τ we conclude B (c,τ2~(p+2)) c:B(a,5τ/4). Using this and
(5.6) we conclude the following when q>p:

j \u(x,t}\2(\x-c\+(d-t)ll2Γ5dxdt
Kι~K2

d-m

^ fd-h2

(M(t)2 j (\x-c\ + (d-t)ll2Γ5dx)dt
d-H2

ίd~H2 \ / d \
^C J M(t)2(d-t)-ldt\+C( I M(t)2H-2dt)

\d~h2 I \d~H2 I

^c( } M(t)2H'2dt]^CH~2( J M(t)2dt]
\d-h2 I \b-τ2 /

I b χ2/3

J M ( t ) 3 d t ) . (5.10)
\b~τ2 /

If q=p then KV~K2 is the empty set. Hence we can use (5.8)-(5.10) and the
inequality

x,t)f

to conclude

l/3

k = p+2

/ b

j M ( t ) 3 d t ) . (5.11)
\h-t2
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If q = p then the second term in the right hand side of (5.11) is, of course, zero.
Using \c — a\<τ and (5.6) we find

\u(x,t)\2(\x-c\+(d-t)1/2)-5dxdt

2J (M(t)2

d-h2 R3~B(c,h)

C($\Du(x,t)\2h-3dxdt)
Ki

/ d

J M(t)2h-
\d-h2

/ d

J
M-

K3

2/3

j J |DM(x,ί) | 2 dxdί) . (5.12)
-h2 B(α,5τ/4) /

Now let ^: ^3^[0, 1] be a C°° function such that A!(X) = O for \x-c\
^τ/16, A 1 (x)=l for |x-c|^τ/32, and HD^JI^^Cτ^ for i = l,2. Let λ2:
R-*[0,l] be a C00 function such that Λ2(ί) = 0 for t^d-h2, λ2(t) = i for ί^rf
-h2/2, and IKd/dή^H^^Cft- 2 . We set λ(x,t) = λ l ( x ) λ 2 ( t ) , fix ie{l,2,3}, and
define/: R3 x(- oo,d)->,R, g: K3 x(- oo,^)->^3 by (recall (3.1))

/(x,s) = λ(x,s)βd_s(x-c),gί(x,s)=/(x,s),g j.(x,s) = 0 if je{l,2,3} and

We have

f)1 / 2)~ , (5 13)

and hence the method of the proof of Lemma 5.7 of [1] yields

\(Df*Ψ*Ψ)(x,t)\^C(\x-c\+(d-ty/2)-4.

From ε < τ/64 we obtain

(Df*Ψ*Ψ)(x,t) = Q if xφB(c9τβ).

I ϊ d — h2^t<d then the above, \c — α|<τ, and Lemmas 5.13, 5.6 of [1] yield

I j Dtzt(x, t)f(x, ί) + Zifo 0 A/(^ 0^^

-1 J u/x, Oz^x, ί)(/)/* ̂ * Ψ)(x, t)dx
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J Zj(x, t) ut(x, t)(Djf* Ψ * Ψ)(x, t)dx
R3

$ z i ( x , t ) ( A f + D t f ) ( x , t ) d x
Ri

J [(wί(t

B(a,5τ/4)

\z(x,t)\\(Δf+Dtf)(x,t)\dx

J3(α,5τ/4)

\Dg(x,t)\dx). (5.14)

Since fr<τ [see (5.3)] and (J/+Df/)(x,ί) = 0 if the two conditions |x-c|^τ/32,
d-h2/2^t<d are satisfied, we conclude IM/+D f/| | 2^ C/ι~5 / 2. Using this,
(5.14), (3.26), (5.11), (5.12), q^p, and (5.13) we conclude

\Zi(c9d)\ = \lim $ Z i ( x 9 s ) f ( x 9 s ) d x \
-

lim j J Dt ̂ .(x, t)f(x, t) + zf(x, ί) /)f /(x,
s-*d- d-h2 K3

d-h2 B(c,t/8)

-Λ2 B(a,5τ/4)

l/2

Λ, 5τ/4)

l/3

2/3

323^( J j \Du(x,t)\2dxdt)
\d-h2 β(β,5τ/4) /

'
d-ft 2 β(α,5τ/4)

The conclusion of the lemma follows from the above, (5.3), and

6. An Estimate for the Vorticity of Approximate Solutions

The assumptions of Sect. 3 are still in force.
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Lemma 6.1. There exist absolute constants C8, C9 with the following property:
Suppose τ>0, aεR\ beR, J5(α,5τ/4)c: £/, b>τ2, e<τ/64, and M(f)
= max{|w(x,f)|:xejB(α, 5τ/4)}. Suppose also

b

J M(tfdt^Csτ~\ (6.1)

I(\Du\2, T(a,M,T2,r))^r i/ 0<r^τ, (6.2)

,K(α,fc-τ 2 + s, 5τ/4, s))^-^ i/ 0<s^τ2, (6.3)

llw'H^τ-^-1. (6.4)
Then (recall (5.1);

~2 ι/(x,ί)eK(α,fo,τ/2,3τ2/4). (6.5)

/ Choose C8>0 so that 2 4C 7 C^/3^l/4. Then choose C9>0 so that 2 6 C 7

+ C 7 Cg / 3 + 3C7^C9/4. Once again we use the method of the proof of Lem-
ma 3.1 of [1]. We construct a continuous function

such that

C92
2l'τ-2^/(x,ί)^C92

2( ί'-1)τ-2 if (x,t)eG(a,b,τJ)~G(a,b,τ,ί-l) (6.6)

for z = l,2, 3, .... As before, we define G(α,b,τ,0) to be the empty set. Again, we
have

/(x,ί)^C92
2 ίτ-2 if (x,ί)eG(α,b,τ,i). (6.7)

We will prove

|z(x, 01 ̂ /(x, 0 for all (x, t)e interior (K(a, b, τ, τ2)). (6.8)

Assume that (6.8) is false. Then we can find (c, d)ε interior (K(a, b, τ, τ2)) such
that

if (x,ί)eD(d)ninterior(K(α,^τ,τ2)). (6.10)

Using this (c,d) we define the integers p, n, q by means of (2.2) and q
= max{n,p}. Since (c, d)φ interior (G(α, 6, τ,q)), (6.6) and (6.9) yield

(6.11)

Using (6.3) and the definition of p we find

d
f J \Du(x,t)\2dxdt

d

^ ί j |Du(x,ί) | 2rfxdίgτ- 1( ί/-(fe-τ 2))^τ2~ 2 p. (6.12)
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Using (6.11), Lemma 5.1, (6.10), (6.7), (6.1), (6.2), q^p^O, (6.1), (6.12), and (6.4)
we obtain

k = p+2

This is a contradiction. Hence (6.8) must be true. Setting i = l in (6.7) yields
(6.5).

Lemma 6.2. There exist absolute constants C]0, C1 3 with the following property:
Suppose σ>0, αe#3, beR, β(α,5σ/4)cJ7, b>σ2, and ε<σ/128. Suppose also

b

j (max{|M(x,t)|:xeβ(α,5σ/4)})3cίί^C1 0σ-1, (6.13)

I(\Du\2,K(a,b,2σ,σ2))^Cί0σ, (6.14)

||w°||2^σ-3ε-1. (6.15)
Then

(6.16)

Proo/. As in the proof of Lemma 4.2, we find C 1 0^C 8 such that (6.14) implies
that (6.2), (6.3) hold for some τ such that σ/2<τ<σ. Then (6.1) is a con-
sequence of (6.13) and (6.4) is a consequence of (6.15). Using Lemma 6.1 we
conclude (6.16).

Lemma 6.3. There exist absolute constants η<l, C12, C13 with the following
property: Suppose σ>0, aeR3, beR, ε<ησ/32, B(a, 5σ/4)cι (7, and b>σ2. Sup-
pose also that

I(\Du\2, K(a, b, 3 σ, σ2)) ̂  C3 2 σ, (6.17)

/(|w|3,K(a,b,4σ,σ2))^C1 2σ2, (6.18)

| |w°| |2^C1 2σ-3ε-1. (6.19)

Ίϊien

if (x,t)εK(a,b,ησ,(ησ)2). (6.20)

Proo/. Let f7>0 be small enough so that (4^)2^3/16, 5η^l/4, C6^
Then choose C1 2>0 small enough so that C12:g C]0(4τ?),
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Cί2^(4η)~3. Then Lemma 4.2 yields

f (
b-(4ησ)2

We also have

Lemma 6.2 with σ replaced by 4ησ yields |z(x, ί) |^C 1 1 (4f/σ)~ 2 if
(x, t)eK(a,b,ησ,(ησ}2).

Lemma 6.4. There ex/sί an absolute constant C14 and a number N, where N
depends only on \ w°||2, swc/i ί/iaί ί/te following is true. Suppose 0<τ<l,

||w°||2^ C12(4τ/5)- 3

:£^τ 2 and distance (x,R3

/Λere exisί (x^ίj), (x2, ί2)» •> (XM^ ̂  where (xpt^eT, M^Nτ'5/3, and

tt))(x, ί)| ̂  C 1 4τ- 2 (f (x, ί)eT- (J K(x 7, ί,., τ, τ2).

Proo/ We define σ = 4τ/5. Observe that there exist (a^b^\ (α2,έ>2), ... and an
absolute constant C15 such that (α f,fe f)eR 3 xK, β(fl f,τ)cC/, bt>i2,

, (6.21)
i= 1

and for every (x, t)<=R3xR there exist at most C ] 5 integers i such that
(x, ί)eK(αί,bί,4σ, σ2). Holder's inequality yields

/(Itt^Xfo^σ,*2))^^ (6.22)

From Lemma 5.6, Definition 5.10, Definition 5.14, and Lemma 5. 17 of [1] we
conclude

f ί
0 R3

Hence the number of integers i for which the inequality

fails to hold is at most Cllw 0 ! ! 2,^" 1 . Similarly, the number of integers i for
which the inequality
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fails to hold is at most C | |w°| |^0 / 3σ~5 / 3. Combining this with (6.22) we find
that the number of integers i or which the inequality

fails to hold is at most C |lw°| |2 0 / 3σ" 5 / 3. Since τ<l we conclude that there
exist integers z 1 ? i2, ..., iM such that

5/3 where N depends only on ||w°||2,

^,3σ,σ2))^C12σ if iφ{il9 ...,ίM},

/(M3,K(α^4σ,^))^C12σ
2 if iφ{il9 ...,/M}.

From Lemma 6.3 we conclude that |z(x, ί)|^C13(^σ)~2 if
(x,ί)eX(fl ί 5b f,?7σ,(^σ)2) and i£{i1 ? ...,iM}. Now (6.21) implies that |z(x,f)l is
bounded by Cl3(ησ)~2 on the set

M

The conclusion follows from η<l and (5.1).
The theorem in Sect. 1 now follows easily. The function u was constructed

using fixed 0<α<ε. In Sect. 6 of [1] it is shown that a sequence of such
functions u with ε-»0 converges weakly to a weak solution to the Navier-
Stokes equations with initial condition w° and the adherence condition at the
boundary of U. The conclusion follows from Lemma 6.4 and a compactness
argument.
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