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Propagation of States in Dilation Analytic
Potentials and Asymptotic Completeness

Peter A. Perry*
Department of Physics, Princeton University, Princeton, NJ 08544, USA

Abstract. We estimate the space-time behavior of scattering states for two-body
Schrédinger operators with smooth, dilation analytic potentials. We use our
estimates to give a simple proof of asymptotic completeness for a class of long-
range potentials, including the Coulomb potential plus a fairly general short-
range perturbation.

Introduction

The goal of this paper is to present a simple proof of asymptotic completeness for
the modified wave operators that describe two-body quantum scattering with
certain long-range potentials. Modified wave operators were introduced by
Dollard [6] to study scattering for the Coulomb potential. Spectral and scattering
theory for general long-range potentials has since been studied by many authors.
Spectral representations for such long-range Schrodinger operators have been
studied by Ikebe [14, 15] and Saitd [31, 32]. Their results imply completeness of the
stationary wave operators defined via the spectral representation. Isozaki [18]
proved completeness of the stationary wave operator and Kitada [22-24] proved
completeness of time-dependent modified wave operators by a stationary method.
More recently Ikebe and Isozaki [16, 17] have also given a proof of completeness for
the modified wave operators. Agmon [1] has also proved completeness results for
Schrodinger operators with long-range potentials and Enss [8] has given a
“geometric” proof of completeness for certain long-range potentials.

Here we would like to give a simple, “geometric” proof of completeness for
Schrédinger operators H, = H,+ V+ V on L?(R"), where H, = — 34, Vis along-
range, dilation analytic potential, and ¥ is a fairly general short range perturbation
(we formulate precise hypotheses below). Our class of potentials thus includes the
Coulomb potential plus a fairly general short-range perturbation. Our assumptions
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are more restrictive than those of the authors mentioned above in that we require
the long-range potential to be dilation analytic, but on the other hand we can allow
a more general short range part.
The modified wave operators we will study are given by:
Q5 (Hy,Ho) =s-limet % (1,0), )

= +0

where the “modified free evolution” %, (z,s) is defined by
t
Uo(t,s)=exp—i{Hy(t—s)+ (W' (pr)dr}. ()

In (2) W' is a smooth function that closely approximates the long-range behavior of
V (we choose W' in Proposition 1.2 below). p is the momentum operator and, with
our choice of H,, p =Yy, the velocity operator.

The class of dilation analytic potentials was introduced in [2]; see [4] for a
characterization of dilation analytic potentials and [30] for discussion and further
references. We denote by % (6) the group of dilations: %(0) acts on L*(IR") by
(% O)p)(x)=e2y(e?x) for vectors yeL?(R"). A symmetric, H,-compact
operator is a dilation analytic potential if the operator Z(0)V#(0)™ ' (Hy+ i)~ !
extends to a bounded operator-valued analytic function of 6 in some strip S,
={0:|Im0| < ¢}. We will assume that 0 < ¢ < n/4.If H= H,+ V and Vis dilation
analytic, H(0) = % (0) H% (0) ' extends to an analytic family of type (A) in S,,. In
[2] this analyticity is used to prove, among other results, that H has no singular
spectrum and that eigenvalues of H can accumulate only at 0.

We are now ready to state our result.

Theorem 1. Let Hy=—%/4 and H, = Hy+ V+ V on L*(R"). Suppose that:

(i) V is dilation analytic in some strip S, and (1+ |x|)"**(VV)(x) (distributional
derivative) is uniformly locally L* for some a>%.

(i) (H,+i) ' —(H+i)‘ed,, the ideal of compact operators, where
AH=H,+V.

(iii) For some integers 3,y = 1 and some ¢ > 0, the bounded, monotone decreasing
function h(R)=||(H,+ i)y"PV(H,+ i)~ F(|x| = R'~%)|| is integrable on (0, ).
(Here and elsewhere, F(x€S) denotes multiplication by the characteristic function of
the set S.)

Then the modified wave operators QF (H,,H,) exist and are complete, i.e.,
RanQy =RanQ, = #, (H,) and H, has empty singular spectrum. Eigenvalues of
H, can accumulate only at 0.

Remarks. 1. To treat the Coulomb potential |x|™*, we write it as (1+ |x|)~!
+[Ix]”* = (1 + |x])~*] and group the term in square brackets with the short range
potential V. We can similarly treat power potentials | x|~* for a > 4. 2. The existence
theory of modified wave operators with our choice (2) of modified free evolution
[3,5] breaks down at & =%, so our hypothesis (i) is necessary.

Below in Sect. 1, we will prove that the potential ¥ in Theorem 1 can be written
as V=W + W where Wis C* and dilation analytic, |FW(x)| < C(1+ |x|)~4+%, and
W is short-range (Proposition 1.1). Since W is smooth, the operator H= H,+ W
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has several domain properties which are technically convenient: we collect them
in Proposition1.3.

Given Proposition 1.1, it is very natural to break up the proof of completeness
of Qf (H,,H,) into two steps: (1) prove that the ordinary wave operators
Q* (H,, H) exist and are complete, and (2) prove that the modified wave operators
Q5 (H,H,) are complete.

The heart of our method is a “geometrical” estimate on the space-time behavior
of scattering states propagating under exp(—iH?). To state it,let D =%(x-p+ p-X)
be the generator of dilations and let P, (respectively P_) project onto the positive
(respectively negative) spectral subspace for D. Let g be a smooth function with
compact support in (0,00) away from eigenvalues of H. In Sect.2 we prove:

[E(x| =)'~ )e ™ g(H) P, || = Cy (1 + |27 (€)

for any integer N, any ¢ >0, and + 1€(0, o0). Estimate (3) is proved by extending
Mourre’s technique in [26], where he proves a similar estimate for H= H, = — 3 4.
“Local decay” estimates similar to our estimate (3) have been proven for certain
dilation-analytic potentials in [19] and for a larger class of potentials in [20, 21].
These authors do not apply their estimates to prove asymptotic completeness.
Together with any formulation of Enss’s method [7] for short-range scattering, (3)
immediately implies:

Theorem 2. Let H= H,+ W, where:
()" W is dilation analytic in S,, and C*® with bounded derivatives. Suppose H, is
another self-adjoint operator so that

() (Hy+i) '—(H+i) tes,.

(i)’ For some integers f,y = 1 and some ¢ > 0, the bounded, monotone decreasing
Sfunction h(R)=||(H,+ i)F(H, — H)(H+ i)~" F(|x|= R'"¢)|| is integrable on
(0, 0).

Then Q* (H,, H) exist and are complete,i.e.,RanQ* (H,,H)=RanQ~ (H,,H)
= A, . (H,) and H, has empty singular spectrum. Eigenvalues of H, can accumulate
only at 0.

Remark. To show that (i)-(iii) of Theorem 1 = (i)’—(iii)’ of Theorem?2 when
H, — H=W+ V, one uses Propositions 1.1 and 1.3(a). Proposition 1.3 (a) enters in
showing that (iii)’ holds given (iii).

The next step:

Theorem 3. Let H= H,+ W, where:

()" W is C* with bounded derivatives and dilation analytic in S, and |VW (x)|
SCOA+ |x))-U* for some o> 3.

Then the modified wave operators Q5 (H,H,) are complete, i.e., Ran Qf
=Ran Q, = X, . (H).

To prove Theorem 3, we will prove directly that the inverse modified wave
operators Qf (H,H,)* exist as strong limits. Just as the usual “Cook’s method”
proof for the existence of Q7 depends on the asymptotic equality of x and pz under
the free evolution exp(—itH,), so our proof depends on the same fact with H|,
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replaced by H. In Sect. 3 we combine the estimate (3) with ideas of Enss [9] to prove
that x and pz are asymptotically equal under exp(— it H). We use this result, a result
of Enss on the operator D(f) = e#*De~"#! [9], and Mellin transform estimates [27]
to prove Theorem 3 in Sect. 4.

In an Appendix, we prove a result on the invariance of operator domains used in
Sect. 2.

1. Regularization of the Potential V

Proposition 1.1. Let V satisfy hypothesis (i) of Theorem 1. Then V =W+ W, where:
(a) W is dilation analytic in S, and C* with bounded derivatives,
®) VW(x) = CA+ |x[)~4*9, and
(©) (1 + |x|)+e=9 W (x) is uniformly locally L* for any &> 0.

Remarks. 1. Conclusion (c) implies that |[IW(Hy+ i)~ F(|x| < RI-7)| is an
integrable function of R on (0, o0) for some # > 0 and y large enough [33, Ex. 2.1]. 2.
W is obviously H,-compact since it is the difference of two H,-compact operators.

Proof. We set
W(x)=(4n)="2 [d"y e~ =1V (p) (1.1)

(W is the Weierstrass transform of V; see [11, 25]). The integral in (1.1) converges
absolutely since, by a result of Strichartz [34], any H,-bounded multiplication
operator is uniformly locally L2. W is obviously C* with bounded derivatives by the
smoothness and decay of exp (— (x —y)?/4). To see that Wis dilation analytic, first
note that Wis Hy-compact. For, letting C = V(H,+ i)~ ! and T(y) = translation by
¥, We can write:

W(Hy+ i)' =@m)=" [d"yT(y)"' CT(y)exp(— y*/4).

The integrand is compact and norm-continuous since C is compact and 7(y) is
strongly continuous: since the integral converges in operator norm, we conclude
that W(H,+ i)~ ! is compact. Next note that, for real 0,

W(0)(x) =W (e"x) = (4m)~2e="2 [d"y V' (e’ (x - y))exp{ — e~ y*/4},
so that as an operator (again 7(y) denotes translation by y):
W(0) = (4m)~-"2e="2 [ d"yT(y) "' V(0)T(y) exp{ —e 20 y*/4}.
Hence if C(0) =V(0) (Hy+ i)™,
W(O)(Hy+ i)~ = (4n)-"Pe2 [d"yT(y)~ ' C(O)T(y) exp{ —e20y?/4}.

Now C(0) is an analytic bounded operator valued function in S, and the kernel
exp{—e~20)y?/4} is analytic in 6 and rapidly decaying for |Im6|<r/4, so the
integral converges absolutely. The integrand is norm continuous and analytic in
6: hence W(6) (H,+ i)~ ! extends to an analytic bounded operator valued func-
tion in S,. This proves (a).
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To prove (b), we estimate:
|1+ |x )+ IVIW(x)| < (4m)-"2 (1 + | x[)0+o
{ j‘lxl + Lx,}|(VV)(X—y)|e—y2/4dny'

<% bi>5

The first term is bounded since (1 + |x])@+® PV is uniformly locally L? and the
second is bounded owing to the rapid decay of exp(—y?/4). This gives (b).

Finally, (c) is proved as follows. Pick ¢ > 0. Let y, be the characteristic function
of the unit cube centered at ce Z"; we want to show that sup||(1+ |x )4+ a9 Wy.||,
< 00. Write ¢

(47 = ()2 (4 x 0o [ Ay [V (e—p) = V()] e,

and split the region of y-integration into |y| < |x|® and |y|> |x|® for some < &.
The integral over |y| > |x|® decays rapidly in |x|. The L? norm of the other term is
given by

27172
[jd"x<xc(1+|x|)<i+u—e> j [V(x—y)—V(x)]e—y’/4d"y>J N )

Iyl<xl®

Write )
V(ix=y)—V(x)=[y-VV(x—ty)dt
0

true in distributional sense. Putting this in (1.2), we can dominate (1.2) by

12¢lsup  sup (fly(1+ |xITe=OVV(x—1y) [2d"x)12.
1e(0,1) |yl <|2¢|®
Since we have chosen < ¢, this is bounded uniformly in ¢. [J
We note for later use (cf. Sect. 4, especially Lemma 4.2) that, by Hormander’s
construction ([12], Lemma 3.3), we can further regularize the C® potential W

Proposition 1.2. Let W be a C® function with bounded derivatives and suppose that
[PW(x)| £ C(1+ |x|)-U*+* for some o.>%. Then for any & with 0 < <a, we can
write W=W'+W", where

(@ W' is C* and [(DFW)(x)|< Cp (14 |x|)~"ED, where m(j)=1+jé,
j=12,....

d) [W"(x)| £ CA+ |x[)~*2 for some e > 0, i.e., W" is a short-range potential.

For the proof see ([12], Lemma 3.3).
The operator H = H,+ W has several nice domain properties that follow from
the smoothness of W. We collect them in:

Proposition 1.3. Let H= H,+ W, where W is C* with bounded derivatives. Then
(a) D(H*)=D(H}) for all positive integers o,
(b) exp(isH) and (H+ i)™ "' preserve AR,
(c) For any ge C§(R), g(H) preserves AR").

Proof. Part (a) follows by calculating the difference H* — H% in the operator sense
on vectors in F(IR"). The difference consists of a sum of lower powers of H, times
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derivatives of W; such terms are Hy-bounded and since F(IR") is a core for H¢, it
follows that D(H*) = D(H%), proving (a). To see that exp(isH) preserves F(R"),
introduce the seminorms |u|,= sup |[X¥HPu| for multi-indices k (these

JSk
m= k| =]

seminorms generate the usual topology on &). By a result of Hunziker [13], for
any ue AR"),
llexp(isH)ull, = Cpy (14 s {fue]ly. (1.3)

Hence exp(isH) preserves F(R"). (H+ i)~ ' preserves #(RR") since
(H+ i) '=—ife setsds,
0
so by (1.3),

I1(H + i)~1””k §D;k|””“k-
This proves (b). (c) follows similarly by writing

() =) | dsg(s)exp(isH)

and using the bound (1.3). OO

2. The Basic Estimate

In what follows, we will denote by o,,,, (H) the pure point spectrum of the operator

H, i.e., the set of eigenvalues of H. We will prove:

Theorem 2.1. Let H= H,+ W, where W is C*® with bounded derivatives and dilation
analyticin$S,. Let ge C§ ((0,0)\ 6, , (H)). Then for any positive integer N, any ¢ > 0,
and any t with +te(0, ),

IE(Ix| = [t]'=5)e-Hg(H) P, || = Cy,(1+ [~ 2.1

Remarks. 1. Since eigenvalues of H accumulate only at 0, the set of vectors g(H) ¢
with p e L and g as above is dense in #, . (H). 2. Remark 1 and estimate (2.1) imply
that Pre~ P, (H)%0 as t— + 0. 3. The proof of Theorem 2.1 depends on the
analyticity of U(0) P, =P P, for + Im60 > 0. Given an analytic vector y for D,
€90y is a vector-valued analytic function of 6 for + Im6 < 6 for some 6 > 0. By
mimicking the proof of Theorem 2.1 below, we can show that the estimate

IF(x| = [t['=9)e g (H)y || = Cy,, (1 + [1)7Y

holds for analytic vectors y for D. The constant Cy,, depends on y through

sup [le=?Py|| for some &’ <.
0<f<d . .
Theorem 2.1 follows immediately from:

Theorem 2.2. With the hypothesis and notation of Theorem 2.1, for any positive
integer N and ¢ >0,

A+ |x)Ne-Hg(H)P, || < Cy (A + 1) 22
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Our approach to proving Theorem 2.2 follows Mourre’s proof of Lemma 1 in [26],
where a similar estimate is proven for H= H,= — 4. To extent his approach to
our case, we need Proposition2.5 below and the results of the Appendix (see
Lemma 2.4). For the reader’s convenience, we repeat the arguments of [26]. We
begin with several reductions.

Lemma 2.3. Suppose that H, g obey the hypotheses of Theorem 2.2, that + t€(0, 00),
and that for every positive integer N,

1D+ i|-0+2e=itiig(H)P, | < Cy(1+ |2))~Y. 2.3)
Then the conclusion of Theorem 2.2 holds.
Proof. By a simple interpolation, (2.3) implies that
1D+ i|-Ne-Hig(H) P, || £ Cyp (1+ [))~* (2.3
for any ¢ > 0. By writing
A+ |x)NeHg(H)P, =1+ |x|) N (H+ ) Ve M [(H+ )Vg(H)]P.,

we are reduced to showing that the operator (1+ |x[)~V(H+i)~¥|D+i|¥ is
bounded. To do this we need only show that terms of the form

A+ IxDNH+ D) Nx, p, X, p,, 24

are bounded. By Proposition 1.3 (a), D(HY) = D(H") for all positive integers N and
(H+ i)~ ! preserves & By commutation, one can rewrite (2.4) as a sum of bounded
terms plus terms of the form (1+ [x[)~Vx; X (H+ )~"p;, - p;,. The factor
involving the x, is obviously bounded for all N; the factor involving the p;, is
bounded for N even and hence for all N by interpolation. [

To estimate |||D+ i|-W+2e~iHg(H)P, ||, we reexpress e~'#' in terms of the
resolvent of H and prove a resolvent bound using the dilation analyticity of H. The
first step is

Lemma 2.4. (2.3") holds if for any compact subset K of (0,00)\ 0,, (H),
Sup||| D+ i~ (H — 4 Fig) "+ D P, || < oo, 2.5)

AekK
e>0

Proof. We first note that for + ¢1€(0,0),geC¢,

e-”’"g(H): lim ﬂ (—1) +j°0 d/'{(H—,’{il.ﬁ)—(N-‘—De—i“g(H) (2 6)
o 2mi (oY 2, ' ‘

(2.6) follows from the functional calculus if we apply the Cauchy integral formula
for the Nt derivative to the function f, (x) = e~¢/le~**. For f; (x) — e~/** in sup norm
as ¢! 0, and by Cauchy formula

N! (=1)*®

=" 3 Tia)-(NH1) peid
fi(x) i GO _dell(x A Fie) e
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for x in a fixed compact subset of IR. Hence to show that (2.3") holds, it suffices by
(2.6) to show that
1D+ i|~W*2(H — A + i)~V Dg(H)P, || 2.7

is an integrable function of A. Since g has compact support, (2.7) decays rapidly
outside any compact subset K of (0,00) containing suppg. We can find such a
compact K away from eigenvalues of H. Hence we need only show that (2.7) is
bounded uniformly in A€ K and ¢ > 0. Furthermore, we show in Corollary A.6 of
the Appendix that if ge Cg, then g(H) preserves the domain of DV for all positive
integers N. Hence | D+ i|-¥g(H)|D + i|" is a bounded operator, so (2.7) is bounded
if (2.5) holds. [J
To prove (2.5) we consider the operator-valued function

F@O)=|D+ i|-W+2(H(0) — A Fig)~W+DeitDP, (2.8)
which by hypothesis extends to an analytic bounded operator-valued function in

the strip 0 < + Im#6 < ¢. We will derive the following differential inequality on its
restriction G(s) = F(is) to the imaginary axis:

G ()l = CeslIG ) |V+DIOVHD 5|~ VDNV, 0 < + 5 <0, 2.9)

for some positive 6 < ¢ and Cy; independent of &. We can integrate (2.9) directly
and conclude that G(s) is uniformly bounded in (0, + 6). In fact, G(s) is Holder
continuous in s! So it clearly suffices to prove (2.9). We first need an a priori
estimate on the resolvent of H(6).

Proposition 2.5. Let K be any compact subset of (0, 00) not containing eigenvalues of
H. Then there is a 6 > 0 so that, uniformly in 0 < + Im6 < 9,

sup ||(H(0) — 4 Fie) '|| < C 5| Im6| 1. (2.10)
AeK
e>0

Proof. We will show that for any 1,€(0,00)\0,, (H), there is some interval

<AO—g,lo-l-g)c(o,oo)\ap_p_(H) and a >0 for which (2.10) holds. The

proposition then follows by a covering argument. Further, we will only estimate
II(H(6) — A —ig)~ ||, since the other estimate follows by taking adjoints. Finally,
since (H(0y+ i0,)—z)~! and (H(if,) —z)”' are unitarily equivalent, we will
suppose that Ref = 0 without loss.

By the spectral theorem, for any A, >0 there is a neighborhood N of 4,
contained in (0, 0) so that

(e H—i—ie) " | <ClO,|7* (2.10%)
for AeN, where C is uniform in ¢ >0, AeN and 0 <6, < ¢. Furthermore,
(HO)—z2) ' =(e2H—2) [T+ X(O)(e¥H—2)""]""1, (2.11a)
where
XO)=(1—e YW+ W) —W) (2.11b)
whenever
|1 X(0) (e 2H —z)" | < 1. (2.11¢)
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By the estimate (2.10"), we need only prove that || X(i0,)(e=2¢: H — 1 —ig) '] <1
uniformlyin 0 < 8, <d, 1e(4y — 4, Ao+ 1) and ¢ > 0 for some numbers é > 0,7 > 0.
Equation (2.11b) and the hypotheses on W show that X(6)=0-Y(6), where
Y(0)(H+ i)~ ! is an analytic compact operator-valued function of 6. Since there
are no eigenvalues of H in a neighborhood of Ay, E;, _, , +,(H)>0 as #—0 so
1 Y(O)Ey, -2+ (H)|—0 as n#—0 (by analyticity this holds uniformly for
Im0| < @/2). So we insert M=E; _, ; ,,(H)+ Eg\ @, -1+ H) in

1 X(0)(e 2 H—L—ie)  '| S 0|1 Y(O)Ey,—y sy (ED || (e H— A —ie)™ 1|
+ 101 1YO) (H+ )" | |(H+ i) (e H— A —ig)!
'Em\(zo—mzom)(H) Il.

Put 6 =i6, . In the first term, |6| = |6, | cancels the singularity of the resolvent up to
a constant factor that can be made small by choosing # small enough. If we then

restrict A to the interval | 4, — g, Ao+ g , the second term is bounded by a constant
times [6]= |6, [, so it can be made small by restricting 6, to 0<6, <6 for some
6>0. Hence || X(0)(e2%H— ) —ig)~'| <1, uniformly in Ae(lo - g, Ao+ g),

0<0, <9, and ¢ >0, and the proposition is proved. []
To prove the differential inequality (2.9), we note that if 8 =0,+ 6, then
by (2.8)

F0)=|D+ i|-W+2 ei%l (H(if,) — A Fig)~N+De-0DP,
Taking the derivative along the real direction, we find
F'(0)=|D+ i|-®™+2iDe? (H(i0,) — AFig)-NtD =00 P,
But G'(s) =i F'(s) so we have
IG" )= NID+ i|=W+D (H(i0,) — AFie)~ VD e PP, |. (2.12)

To obtain (2.9) we estimate ||A(2) || = || |[D+ i|"?(H(is) — A +ie)~®FD-e~sPP, || by
interpolating between Rez=0 and Rez= N+ 2. For Rez=0 we have ||4A(z)||
< Csls|~@™+Y by Proposition2.5, while for Rez=N+2, [[A@)| =G|
. . ' 1 N+1
I lity (2.9) foll N+1=0-—on e
nequality (2.9) follows since N+ 1=0 N+2+(N+2) Nio
We have thus proven:

Lemma 2.6. The differential inequality (2.9) holds.

Collecting Lemmas 2.6, 2.4, and 2.3, Theorem 2.2 is proved.

3. Evolution of Observables Under exp(—itH)

In this section we use ideas of Enss [9] to study the Heisenberg operators x(¢), p(?),
and D(t), where A(f) =e'Ae~'H'. We will prove:
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Theorem 3.1. Let H= H,+ W where W satisfies (1)" of Theorem 3. Then
D()

(@) T — H in strong resolvent sense as t— + oo on #, (H).

X)) —tpt
(b) Let 0 <6 <o. Then X0 = (1) — 0 in strong resolvent sense as t — + oo on

o=
i (H).

Remark. Theorem 3.1 (a) and its proof below are due to Enss [9]; Theorem 3.1 (b) is
new.
Theorem 3.1 implies:

Theorem3.2. Let ye#, (H) and suppose that y=E,,(H)y, where
(a,b)=(0,00)\ 0,, (H). Let y,= e "*Hy. Then:

v, — Fo(lx —pt| <|t]'~ B)E(ab)<D> (Ho)y,—~0ast—+£ oo,

where ge Cg (0, 00) satisfies g =1 on (a,b).

Remark. For an n-tuple A of commuting self-adjoint operators and a subset S of
R, the “smooth” projection F,(A€eS) is defined as follows. Let ys; denote the
characteristic function of S and let ¢ satisfy Sd"y £(y) =1 and EeC¥(R"). F,(A€S)
is the operator associated to the convolution y,* ¢ by the functional calculus for A.

Proof of Theorem 3.2 given Theorem 3.1. It is enough to show that
D
l//t'_E(a,b) 5; v, —0ast—+ oo and y,— Fo(|x —pt|<|t]'"°)y,—»0as -+ o0

separately, since the result then follows by the uniform boundedness in ¢ of
the projections. By Theorem 3.1 (a) and Theorem VIII. 24 (b) of [28],

E(a b) <D2(t)) - E(a b) (H)

D
= I:E(a,b) (H) — Eg (Z)] v,
D
“ |:E(a b) (H) E'(a b) ( 2(;) )] l// ” - Oa

where in the last step we have used the unitarity of e#. A similar argument using
Theorem 3.1 (b) shows that ||(1 — Fo(Jx — pt| < [t]!=9) y,||— 0. Finally, since g = 1
on (a,b), (1 —g(Hy))y,= (g(H) g(Hy)) w,, which goes to zero by the compact-
ness of (H+i)™! —(H,+ i)"! and a standard argument [33, Lemma2.4]. O

To prove Theorem 3.1, we first recall a standard criterion [28, Theorem VIII.
25 (a)] for strong resolvent convergence: A4, — A in strong resolvent sense if 4, » 4
on a core for 4 contained in D(4,) for each n. Hence our first step is to find a nice set
of vectors on which to study the Heisenberg operators D(¢) and x (¢) — tp(%).

as t— + oo. Write

D
’ Wt - E(a,b) ('2_;) l//t
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Proposition3.3. Let N =p?+ x>+ 1 and let 2D be the set of all vectors of the form
g(H) e ¢ for peL? 0> 0, and geC ((0,00)\ 0,, (H)). Then:

(a) D is a core for H A, (H).

(b) D= AR and exp(— itH) D= ARY).

© 1F(Jx| < |t|t=2)e~iHy || < Cy(1+ |2])~N for any ¢ >0, teR, and ye 2.

Proof. Since ey >y as 00, 2 is dense in | Jrang(H), which is obviously

g
dense in D(H [,  (H)) in graph norm, proving (a). (b) holds since for 6 >0,
ey eC®(N)= AR") [28] and by Proposition 1.3, g(H) and exp(—itH) both
preserve FA(R"). Finally (c) holds since, for 6 > 0, e-?Vy is an analytic vector for N
and N analytically dominates D (e.g. by Faris [10, Theorem 16.4]); hence any y € £
is of the form g(H)y where y is an analytic vector for D, and by Remark 3 after
Theorem 2.1, such vectors obey the estimate of (c). [

Proof of Theorem 3.1. Following the method of [9], we consider the Heisenberg
equations of motion for D(z) and x(¢) — p(?)-¢. Weakly on I x 2,

%D(t) = e [2H, — (x-V)W] e, (3.1)

and by Proposition 3.3 (b), (3.1) holds in the operator sense on &. Write the
quantity in brackets as 2 H + I; by Proposition 1.1, Iis H-compact. Integrate (3.1)
and divide by 2t to obtain

D(t) D(0) 1% S T

— = — isH [ g=isH 3.1

T 57 +H+2t£dse e (3.1)

Applied to vectors y € , the first term in (3.1’) vanishes by the RAGE theorem [29,
Theorem X1.115] since I(H+ i)~ ! is compact and (H+ 7))y is bounded, if y € 2.
This proves (a). To prove (b) we compute, weakly on & x 2,

& x()~ 1-p) = e W) (x) 8. (3.2)

Again, (3.2) actually holds in the operator sense on 2. Integrate (3.2) and divide by
|£]1=? to obtain

x(O)—1-p(1) _ x(0) 1

t
W e et ends. (3.2)

0

The first term vanishes as ¢ — + co when applied to we 2. The integrand of the
second term applied to y € Zis estimated using Proposition 3.3(c) and the estimate
on VW in Proposition 1.1 (b):

W) () eyl S cst. x [|F(Ix] <[s['=) e Hy |+ [(PW)(x) F(|x| = |s|'"-) |

SCy(1 4+ |s)~V+ const (14 [s])~U+e=-2 (3.3)

for any ¢ > 0. On integrating the right hand side of (3.3) and dividing by |z]'~¢, we
obtain an estimate for the second term in (3.2) that vanishes as t - + o0, since ¢ > 0
x()—p()-t

is arbitrary and 6 < o. Hence -

—0 on 2, proving (b).
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4. Proof of Theorem 3

To prove Theorem 3, we will show that the inverse modified wave operators
QF (H,H,)* exist as strong limits on a dense subset of #, . (H). We will only give
the proof for Q5" since the proof for Q3" is similar. Q, * exists if
lim supl| [e=#C =9 — U (t,5)] e~y || =0, (4.1)
§>00 t=s
for y in a dense subset of J, . (H). Consider the set of vectors y with E , (H)y =y
for some (a,b)=(0,00)\ g,, (H). For such y, (4.1) holds if

lim sup

s§—0 =S

le=H0=9 — Uy (1,5)] Fo(Ix — ps| < [s['~°)g(Ho) E (%) “ =0, (42

where ge C§ (0, 00) satisfies g = 1 on (a,b), by Theorem 3.2. By a “Cook’s method”
argument, (4.2) holds if

lim sup} W' X))+ W"(x)— W (ps) U, (s,s)

S0 125 g

 FolIx — ps| < [s"9)g(Ho) Eius (3> ds' = 0. @3

2s
We will prove (4.3). We first collect some estimates on the modified free evolu-
tion %, (s',s). The modified free evolution is dominated by the free evolution
e~ '~9); the first Lemma is a simple extension of the estimate on e~*#o! proven
in [27] by Mellin transform methods.

Lemmad.1.Let ge CF (0,00). Then there is a c > 0 so that, for all s’ with s’ > s > 0 and
any integer N,

- D ,
F(lx| <cs)em 9% g(Ho) E (2—S> “ =G+ Ishr.

We omit the proof.
The next lemma shows that the corrections to the free evolution introduced by

the factor exp[—ifW’(pr)dr} are small.

Lemma4.2 [8]. Let e C§ (0,00) and let K(s',s) =exp| —i [ W'(pr) dr] g(H,). Let

S1,S, be subsets of R* with dist(S,,S,) = d>0. Then for any integer I,

@) | F(xeS)K(s',s) F(xeS,)|| = D,(1+ |s')A-0+1+0 (1 + d)-!, where ¢ is
defined in Proposition 1.2.

(b) The same estimate holds with x replaced by x — ps'.

(c) (a) and (b) hold with F replaced by F,,, where F, is defined as in the remark
after Theorem 3.2.

Proof. (b) follows from (a) since exp(—is’H,) commutes with K(s',s) and
exp(—is' Hy) f(x) =f(x —ps’)exp(—is'H,) for Borel functions f. (c) follows
from (a) (respectively (b)) by using the rapid decay of F,(xe&S) [respectively
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Fy(x —pseS)] outside of S. To prove (a), we note that in x-space, K(s',s) is the
operator of convolution with a rapidly decaying kernel. (a) then follows by using
the estimates of Proposition1.2 on derivatives of W' together with Young’s
inequality (cf. [8,Eq. (41)ff.]). [J

Next, we note some useful properties of the “smooth” projections F,, introduced
in Sect. 3.

Lemmad4.3 [8]. Let Fo(x —pseS) be defined as in Sect. 3.

() (small momentum transfer) Let g€ CZ (0, c0). Then for supp& small enough
there is a geC§(0,00) with g=1 on suppg so that Fy(x—pseS)g(H,)
=g(Hy) Fo(x —pseS)g(H,) and similarly for s replaced by s'.

(b) (small position transfer) For ¢ >0 and supp& small enough,

F<|x| <%S’> Fo(x —ps'eS)F(|x|>cs')=0.

Proof. Let fg= ys*¢&. Then

Fo(x —pseS) = [d"Afs(A)exp[id- (x — ps)].
By the Baker-Campbell-Hausdorff formula, exp[id: (X — ps)] = [expid-x] X [exp

—id-ps] x exp2il®s. Using this fact along with the compact support of f;, it
follows that F,(x —pseS) has a momentum transfer of at most a where
suppl<={A:|A| <a}. This shows (a). (b) is proved similarly. [J

Next we note a formula for the operator difference W'(x) — W' (ps’) that occurs
in (4.3).

Lemmad4.4.
W'(x)—W'(ps)= jd@ {vW)(0x+ (1 —0)ps’)- (x—ps)+is'(AW)(0x+ (1 —0)ps)}.
0

Lemma 4.4 is proved by writing W' as the integral of its Fourier transform and

using the formula
1
eix — v =i [ df etxig-(x —ps’) el -0aps
0

together with the Baker-Campbell-Hausdorff formula. We omit details. Finally, we
note:

Lemmad.5. For any positive integer k and s' >0,

sup cs’'
6e[0,1] 4

)” <G+

F<|0x+ (1—0)ps’'| <f§_> Fo(|x—ps'| <23’1—5)F<|x] >

The proof is very similar to the proof of Lemma1 in [8] and is omitted.
We now carry out the

Proof of Theorem3. We will show that the integrand of (4.3) is estimated by
C(1+ s)~0+» for some # >0 and C independent of s,s’. We first note that, by
Lemma4.3, Fo(|x—ps|<|s|'~?)g(Ho)=g(H,) Fo(|x —ps|<|s|'~°)g(H,) for
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some geCg(0,00). Writing B=W'(x)+ W"(x)—W’(ps’), we see that the
integrand of (4.3) equals

D

“ BK(s',5)e- =9t Fy(|x — ps| < |s|'~9)g(Ho) B <ﬂ> H ’

which, by the identity
eI =% f(x — ps) = f(x — ps')e~ =,

equals

(4.4)

, / - D

Writing T= F(|x| <c¢s)+ F(|x]|> cs’) and using Lemma 4.1, we conclude that
(4.4) is estimated by a term decaying rapidly in s’ plus

IBK(s',5) Fo(Ix —ps'| <[s|'=?) F(|x]| > es) || (4.5)
By choosing ¢’ < § in Proposition 1.2 (so} < §’ < § < «), we can use Lemma 4.2 to
see that || Fy(|x —ps’| > 25" 1= K(s',s) Fo(|x — ps’| < s1-9)| decays rapidly in s’ for
s' > 5. Hence we can estimate (4.5) by terms that decay rapidly in s” plus
1BFo(Ix —ps'| <2s"=0)K(s',5) Fo(Ix —ps'| <s' ) F(|x| > cs)||.  (4.6)
By Lemma 4.3,
Fo(|x —ps'| <s"1-)F(|x|>cs) = F(le >

’

"’; )Fo(lx —ps'| <519 F(|x| > cs')

for supp small enough, and by Lemma 4.2, | F( |x| < C: K(s’,s)F<|x| > CZS >“

decaysrapidly in s'. Hence, finally, we can dominate (4.6) by terms decaying rapidly
in 5" plus

BFE,(Ix —ps'| <2s'1—6)F<|x| > c: ) “

+ ” W (x) Fy(|x —ps'| < 2s/1—5)F(|x] > "j) . (4.7)

To estimate the first term on the right hand side of (4.7), we use Lemmas 4.4 and 4.5
and bound it by rapidly decaying terms plus

AW(Ox+ (1 - 0)ps’)F(]9x+ 1-6)ps'|> %) “}

. {!I « d )ps) <I 1-0)ps'|= c8
0¢[0,1] P X
Jx—=ps) Fo(lx —ps'| <2s1-9)]|

+ 5’
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The first term in brackets is bounded by a constant times (1 + s")~(+9 (1 4 s)1-?
=(1+ s")~+n forn > 0, since 8, 6’ > 3. The second term in brackets is bounded by
a constant times (1+ s)~2%, and since 6’ >3, 26’ =1+ 7 for some # > 0. The

W/(x)F<|x[ > Cs’)

g since, by Lemma 4.3,

second term in (4.7) is dominated by

Fo(Ix—ps’| <2s’1~6)F<|x| > cj >
cs'

- F<|x| > ?>F0(|x—ps/| > 25’1—5)F<|x| > Cj >

is estimated by a constant

W (x)F<|x| > %)
times (14 s)~@+" for some # >0 by Proposition 1.2 (b). This shows that (4.3)
holds, proving Theorem 3. [

for suitable choice of supp¢. ’

Appendix. On the Invariance of Operator Domains

Let 4 be a self-adjoint operator and let U(ax) =exp(iaz4). For any self adjoint
operator B, U(«) induces a family of self-adjoint operators B(a) = U(x) BU(x) ™!
unitarily equivalent to B. We wantt to show that if the map o — B(a) is smooth, nice
functions of B preserve D(A"),k =1, ...,n, where n depends on the smoothness of
the map o — B(«). The following Proposition is central:

Proposition A.1. ¢ eD(A4") if and only if the vector-valued function ¢ («) = U(a) @ is C*
at 0.

Remark. If ¢ (o) is differentiable at 0, then by translating with the unitary group, itis
differentiable everywhere. Hence the phrase “C* at 0” makes sense.

Proof. For k =1, this is Theorem VIIL. 7 of [28]. Suppose the proposition holds for
peD(A* ). If ¢(x) is C*, certainly peD(A*" 1) and ¢®(0)=y’(0), where y
= A*"1¢. But then y e D(A), i.e., p eD(A*). By a similar argument, any g e D(4") is
C* at zero. [

Suppose g is a smooth function; then g(B) p e D(A4*) if U(x)g(B) @ is C* at 0. But
U()g(B)o =g(B(0)U(x) @ so U(x)g(B) @ is C¥, if p eD(A*) and g(B(e)) is norm C*
as a function of «. Hence:

Corollary A.2. Suppose that B(a) = U(x) BU(c)) ™ ! as above and that g(B(a)) is norm-
C" as a function of «. Then g(B(x)) preserves D(A*) for k=1,...,n.

We now find sufficient conditions on the map « — B(«) and the function g for
g(B(x)) to be norm-C". We first consider bounded operators B and then make an
easy extension to semibounded self-adjoint operators.

Since the operator B(«) are self-adjoint, we can write

g(B(@))=(2n) "' [§(1) exp(it B(a)) dt. (A1)

We are then motivated to consider the operator expizB(x):
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LemmaA.3. Let B(x) be a family of bounded, self-adjoint operators and sup-
pose that the map o— B(a) is norm-C* in some interval I containing 0. Let
B[l = sup |(DiB)(@)|. Then

0

<jsk
ael

llexp(itB() [l < C, (1 + )| B(@)lle- (A2)
Proof. By the Duhamel formula,

1
expitB(a+¢) — expitB(a) = it | dsexp(istB(a+ &)
0

“[B(a+¢) — B(a)] x expi(1l — s)tB(a),

so expitB(¢) is norm-continuous in « for fixed ¢. Dividing by ¢ and taking norm
limits, we get

d% (expitB(a)) =it } dsexp(istB(a)) B’ (o) exp(i(1 —s)tB(a)).
0

Repeated application of this formula gives (A.2). [
Combining (A.1.) and LemmaA.3, and using Corollary A.2, we obviously have:

Proposition A.4. Let o — B(x) be norm-C" and let ge Cg . Then g(B(x)) is norm-C".
If B(0) =U(x) BU(a) ™! with B and U(x) as above, then g(B(x)) preserves D(A") for
k=1,...,n.

Now let B be a semibounded self-adjoint operator and let B(«) = U(x) BU () ™ 1.
Suppose that for some suitable ¢, R(x)=(B(«)+ ¢)~* is norm-C". If geCg

(—c,0), f(») =g<§— c> is a C¥ function so g(B(x)) =f(R(®)) is norm-C". We
have therefore proved:

Theorem A.5. Let B(a)=U(x)BU(x)™ ', where B is a semibounded self-adjoint
operator and U(«) is a unitary group generated by the self-adjoint operator A. Suppose
that R(o) = (B(a)+ ¢) ™! is norm-C" for suitable c. Then for any ge Cg (—c, ),
g(B(x)) preserves D(A"), k=1, ..., n.

If H=H,+ W with W dilation analytic and H(0)=%)H% ()™ ', R(6)
=(H(0)+ ¢)~ ! is analytic. Clearly:

Theorem A.6. Let H = H,+ W with W dilation analytic and H+ ¢ > 0 for some c. Let
geC&(—c,0). Then g(H) preserves the domain of D" for all positive integers n.
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