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Abstract. We consider differentiable maps and compact invariant sets. We
introduce dimensional quantities related to the ergodic invariant measures,
and prove some simple relations.

We consider differentiable maps and compact invariant sets. An estimate from
above for the Hausdorff dimension of such a set has been given by A. Douady
and J. Oesterle [DO] and by Mane [Mj. In this paper we discuss some other
relations of this kind. We first show how to deduce an estimate involving Lyapunov
exponents of the system. We also introduce the fractal dimension/(m) of a measure
m on a compact space, which weights an "essential" dimension of (X, m).

The results are the following: for any ergodic invariant probability measure,
we consider the spectrum of the linear tangent map (the so-called Lyapunov
exponents) and the "dilating dimension" of this spectrum dim dil Sp m; the dimen-
sion of a compact invariant set is bounded from above by the supremum of dim
dil Sp m over all invariant probability measures individually, for any ergodic
invariant probability measure, we have

/(m) ̂  dim dil Sp m.

This inequality is generally a strict inequality, as is shown by considering maps
of the interval, where/(m) is related to the entropy h(m) and the positive Lyapunov

coefficient λ by/(m) = —r—.
Λ

This notion of dimension of a measure is closer to what is actually measured
in experiments like those performed by P. Frederikson, J. Kaplan and J. Yorke
[FKY]. It leads us to reformulate these conjectures there and to discuss some
other questions.

I. Notations and Results

Let L be a linear operator from an euclidean space E of dimension d in an euclidean
space F. Define s-numbers of L, denoted [L], as the decreasing sequence
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λί ^ λ2 — ^ λd of logarithms of the eigenvalues of the positive operator (L*L)1/2

(multiple eigenvalues are repeated according to their multiplicity).
For any such sequence s = /L ,..., λ,, and any real α, 0 ̂  α ̂  d, we define c%s)

[«]

by c*(s) = Σ ^i + (α — [α] )/l[α] +1, where [α] denotes the integer part of the number
i — 1

α, and dim dil s by

dim dil 5 = 0 if λi < 0,

dim dil 5 = sup {α, 0 ̂  α ̂  d, c%s) ̂  0} otherwise.

(We can put cα(s) = - oo for α > d).

Let K be a compact set in a metric space. For any β > 0, any ε > 0, and any
cover u of K by sets 4. of diameter r , ze/, r. ̂  ε, we compute JV^(w, ε) =^rf and

ie/

Mβ(K) = lim inf AfJw, ε).
ε i O M

The Hausdorff dimension of K dim K is defined by

dim K = mί{ββ ^ Q\Mβ(K) = 0}.

If/ is a differentiable map of Riemannian manifold X, and K a compact in-
variant set, we have by Douady and Oesterle's formula

dim K ^ sup { dim dil [Dxf\}.
X

For any measure m on a compact metric space (K, d\ for any ε > 0 and δ > 0,
we call Nd(ε, δ, πί) the smallest number of balls of radius ε we need to cover the
space up to measure δ. We then define the dimension of m by

ft x r r log ]Vd(ε, <5, m)
/(m) = hm lim sup ——^——!— .

a-o e-o kg1/**

For an invariant ergodic measure m by a map / we shall use a definition of the
entropy very close to the preceding one (cf. Katok [K]): let dn be the metric on K
defined by

dn(x, y) = max{d(/'x,/V), 0 ̂  i ̂  n}.

We define the entropy h(m) by

h(m) = lim lim lim sup - log Ndn(ε, δ, m).
ε V O δ V O n^co n

Let P = {pί9p29... , pn,...} be a partition of X into measurable sets and define
r(x)byxepr(x). ΉH(P) = - \logm(Pr(x})m(dx) < + oo, we have, by Shannon-Mac
Mίllan's theorem (cf [B])

\^-l-logm(pr(X)nf^pr(fx}n...J-"+lpr(fn.lχ})^h(m). (1.1)
n

If we consider a differentiable map / of a compact Riemannian manifold X,
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we denote <ί(x,/) the set of invariant ergodic probability measures. For any m
in <ί(x, /), there exists a sequence Sp m of s numbers such that

-\_DJn~] -» Sp m a.e.and in Zλ (1.2)

Furthermore by Oseledets' theorem (cf. [O], [R], [Ra]), there exists almost
everywhere a decreasing family of subspaces of TXX,

such that the map x^E*. is measurable and for almost all x, the sequence
1
- Log I Dxf

nv || converges uniformly on v in E*\E* towards some element

λ of Sp m.sj Γ

Our results are the following :

Proposition 1. /// is a differentiable map of a compact Reimannian manifold X,

and m an invariant ergodic probability measure, f(m) ^ — — , where λί is the first
λΐ

element o/Sp m. (Proposition 1 is empty when λί = 0).

Proposition 2. /// is a differentiable map of a Reimannian manifold X and K a
invariant subset,

inf sup dim dil [Dxf
n~\ = sup dim dil Sp m.

n xeK me£(K,f)

Corollary. With the same conditions, we have

dim K ^ sup dim dil Sp m.
me£(K,f)

Proposition 3. /// is a differentiable map of a compact Rίemannian manifold X
such that Dxfis Holder continuous on X and ifm£$(X,f\ we have

f(m) ^ dim dil Sp m.

Let us make some comments on these results.
Proposition 1 gives a rough estimate, but in certain cases it may be the best

one; for instance, in dimension 1, we have the following generalization of known
results (cf. [B], [Bo], [C], [E], [F]).

Proposition 4. Let f be a piecewise differentiable map from an interval I into itself,
such thatf is piecewise monotone — Let Q be the partition of I defined by the critical
points off and off — . Let m be an invariant ergodic probability measure such that
H(Q) < + oo and J log \f \dm>Q. We have

h(m)
f(m) =

Jlog|/ ' |Atf

There are examples where the estimate in the corollary is an equality, for instance
when an ergodic smooth measure exists, but there are also examples where this
is not true (cf. the discussion in [FKY] and below). The result of Proposition 3 is
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also an equality for an ergodic smooth measure and in a forthcoming paper, it
will be shown that we still have/(m) = dim dil Sp m if the following conditions are
satisfied: there is only one nonstrictly positive exponent and the measure m is
absolutely continuous with respect to the unstable foliation. (L. S. Young has also
obtained a related result.)

Let us also remark that all these results can be extended to a differentiable map
of a Hubert space satisfying suitable compactness conditions as long as ergodic
theorems (cf. [R2]) and [D.O] are still valid. In the case of a differentiable map
of a Banach space, Spectrum and Lyapunov are defined by an extension of the
Oseledets theorem [M2], and Mane ([MJ) gave a formula for the capacity of a
compact invariant set very close to the one we get by corollary here. The capacity

of a compact set K is given by c(K) = \imsup - Λ

 d ' — , where m is any
log 1/ε

measure with support the whole set K. Although it is not explicitly stated that way,
Mane's estimation could actually give with the help of Proposition 2,

c(K) ^ sup dim dil Sp m.

II. Some Proofs
We first prove Proposition 1.

Let /be a differentiable map of a compact Riemannian manifold X, and r > 0.
We put

For any χ > 0, there exists ε > 0 such that d(x, y) < ε implies Dyf \\ ̂  | Dxf \\r

(1 + χ). Let m be an invariant ergodic measure, δ > 0 and let us denote vr(f) =

By the ergodic theorem, there exists n0 such that if n ̂  n0 m(An) ^ 1 — <5, where

; sup Π\\DΛfl*<r«κι +

Let ε'<ε, if xeAn and d(y,x) ^ ε' e~nVr(n(l + χ}(\ + χ)~n, we have clearly by
induction on j r g n,

d(fjy,fίx)<ε'e-n^^+* fί II^/IK1 +xV""
k = 0

In the other words the d ball of radius ε' e~
nVr(f}(i + x} (1 + χ)~π and center x is

contained in the dn ball of radius ε'. Furthermore, in a cover up to measure δ by a
family of sets, the subcover made of the sets which meet An by a nonempty inter-
section covers X up to a measure 2δ.

And putting this together we have just shown

ΛΓJβ', 2δ, m) ̂  Nd
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By taking lim lim limπsup -log, we have, if vr(/) > 0

h(m) £f(m). [vr(/) (1 + χ) + log(l + χ)].

But χ and r can be arbitrarily small. Therefore we get h(m) ^/(m).
({log || D^/ \\m(dx))+ and by applying this result to fnn ^ 0, we have finally

h(m) ^ /(m) -({ log || Dxf
n \\ m(dx))+ which by (1.2) proves Proposition 1.

Before proving Proposition 2, we have the following Lemma.

Lemma 2.1. Let L and L be linear operators from respectively euclidean spaces
E to E' and E' to E". We have for any real α

Proof. It is clear that if one of cα([L]) or cα([L']) is — oo, that means that either
rank of L or L' is smaller than α, so that the rank of L'.L is also smaller than α and
(2.1) is valid.

Remark also that cx([L]) is the logarithm of the norm of the operator L and
that proves (2.1) for α = 1. The proof of (2.1) for an integer α follows by considering

the wedge product Λ Land applying cα([L]) = c1([ Λ L]).

Then (2.1) follows for a rational α = - by considering the direct sum of q copies

of the spaces E, £', E" and the maps L, L' and by applying cplq( [L]) = -cp( [ 0 L]).
" <2

Finally (2.1) extends to all real α by continuity.
We now consider a differentiable map/of a Riemannian manifold X and an

invariant subset K and let us call α0 = inf sup dim dil \_DJn~].
n x

We have clearly α0 ̂  sup inf dim dil \_DJn~] ^ dim dil Sp m and proving Propos-
x n

ition 2 is proving the converse inequality.
For all n we choose xn such that dim dil \DxJ

1f\ ^ α0, i.e. c\[DχJ
n~])^ 0 for

all α < α0.
Let us fix α < α0, AT, n > N and 0 ^j < N. We have, by Lemma 2.1:

[π/JVl-l

Σ c\ [_DfNk+jχJ
N]) + 2α JV sup log || DJ \\ ̂  0.

k = 0 x

By summing over j, 0 ̂  j < N, we get:

Σ cα( [£/**,/*] )^ -3 αjv2 SUP loβ IID*/ II > °r

DJ\\
, (2.2)

*k=o / n

where 5 denotes the Dirac measure at the point z. Let M be the set of vague limit
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j ι ι-1

points of the sequence of probability measures - £ δf*Xn All measures in M are
nk = o

invariant and (2.2) implies inf jcα( [Z^/*] )m(dx) ^ 0. So for all m in M and all N
meM

we get J cα ί — [£)χ/
N] ) w(dx) ̂  0 and this implies, if m = J mχ m(dx) is the ergodic

decomposition of m, by (1.2): Jcα(Sp mx)m(dx) ̂ 0, which means that there exists
an ergodic measure m0 with cα(Sp w0) ̂  0, i.e. dim dil Sp m0 ̂  α. This last relation
being true for any α < α0 proves Proposition 2.

We also now prove Proposition 4: we consider a piecewise differentiable map
of the interval and an invariant ergodic measure m, such that if Q is the partition
in critical points, we have H(Q) < oo and λ = j log | f'\ dm > 0. For any δ, \ > δ > 0,
we call P*n the set P* = {e~nδ < | /' | ̂  e~(n~i)δ} for n in Z. Remark that P^ is empty
when n is mall enough.

The function log+ T— r being integrable, we have

and therefore, if we call P v Q the partition defined by the critical points and the
sets Pδ

9 we have H(P v β) ̂  H(Q) - ^m(Pδ) log m(Pδ

n) < + oo. We fix now ε > 0
n- 1

and χ > 0. Call mn(x) the measure of the atom of V f~\P v β) which contains x.

By the ergodic theorem and (1.1) there exists nQ so that if n ̂  ft0,

m(An) ^ 1 - ε/2 and m(Bn) ^ 1 - ε/2,

where An = j 1 log | (/")' | ̂  λ(l-

Bn = < - -log mn ̂  h(m) + χ { { .

n-l

We call cn the set of atoms of V /"l (P v β) which intersects An n Bn. We have

the following properties :

m(cn) ^ 1 - ε

cn is made of less than en(h(m} +χ) atoms

cnis an interval where/" is monotone, so that the length of an
atom a in cn is smaller than

yea

n-1

For any two points y and z in the same atom of V/"1^ v β), we have
i = 0
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")'(y)l
Y g enδ. The two last properties imply that the length of an atom in cn is

smaller than - 7 , so that we have proved that Nd(enδ/enλ(1~χ\ ε, m) ̂

Therefore

log .
/(m) = limlim

+ χ

We first let χ be arbitrarily small and then δ to prove/(m) g —7—. The converse

inequality comes from Proposition 1 if /is differentiable, or is proved in the same
way if /is only piecewise differentiable and m such that H(Q) < + oo.

III. Proof of Proposition 3

The proof of proposition 3 consists in making rigorous the heuristic argument of
[FKY], We consider a differentiable map /of a compact Riemannian manifold
X, such that Dxf satisfies a Holder condition of order ε. For x and y close enough,
let us call τ* the isometry from TyX to TXX defined by parallel transport along the
geodesic. The Holder condition means that there exists C0 and ε > 0 such that

From this it follows that there exists C1 such that, if/Sc and/'y stay close
enough for 0 ̂  i < n,

\\DJ» - ̂ v"τ*l ^ cW(χ,yW (3 })
Let m be an invariant ergodic probability measure on X and consider the

spectrum Sp m = {λl ^ ... . ̂  λd} of Dxffor m. l f λ l < 0, by [R] Corollary 6.2, m is
carried by a finite set of points and/(m) = 0. If λd Ξ> 0, dim dil Sp m = d and Proposi-
tion 3 is also true. So for proving Proposition 3, we may choose; with λ. < 0 and

7-1 J

Σ Λ ,
d i m d i l S p m = j — 1 -M — Then by Oseledets' theorem, for m almost every

x in X, there exists a decreasing sequence of subspaces E* = TχX =D f£ z> ... . z>

£*r => £*r+ 1 = {0}, such that the map x -> £* is measurable and -log || Dx/"y || -> ASi

as M -> oc, uniformly on t? in £*\£* + 1? || ι? || = 1, i = 1, . . .,r. We now fix χ > 0, δ > 0.
There exists n0(δ, χ) such that for any n^n0, m(An) ^ 1 - δ where

An = {χeX, I £>x/"w || g (1 + χyv^ for all w in ESk, || w || = 1 and all fc}.

We choose now 5' > 0, n ̂  n0 and a set of balls {£., /e/} of radius rπ such that:
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We consider Γ a I such that if ie/', B. intersects An in x. and we consider
for ίeΓ the ball B( of radius 2rn and center x.. We have clearly |/'| <£/ and

ml U BJ 1 > 1 - <5' - <5; the main step of the proof is proving Lemma 3.1 :
\ r /

Lemma 3.1. For ί in Γ9f
nBf. can be covered by less than K balls of radius rne

nλj,

We show now how Lemma 3.1 implies Proposition 3. The set (J/nB!can be

covered by less than K\Γ\ balls of radius rne
nλj and has a measure bigger that

1 — <5' — δ. This means

£ 2(1 + χ)"« 'fί έ*λ*-λ*N£rn9 δ', m).
i = l

1 / ^ \1/ε

Remark also that rn = -(B(χ)γ, where B(χ) = . We have, by
^ \ U ~ r X / ^ ι /

-
taking lim lim lim

log

"

j-i
Hence: - λ/(m) ^log(l + χ)d + Σ^-Λp, and by taking χ arbitrarily

i = l

7-1

Σ A,.
small, we get/(m) rg j — 1 — — — = dim dil Sp m by our choice of λ..

λj

Proof of Lemma 3. 1 : For any point y in B'. we consider the points/ny and z, where
z is such that exp ~n

l

x. z = Dx./
n(exp ~ x y), where exρυ denotes the exponential

map from a neighbourhood of 0 in TVX into X.
By (3.1) we have

d(f"y, z)= |

C"r e"λj r e
< Γ"r rε = 1 » = "= ι'»'«
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If we consider now Ci = exp/nχ. [^/"(exp" * BJ)], the former computation
shows that for any point/"}; in/"B;, there exists a point z in C. with d(fny, z) g

ir ^J2Γ«e

From a cover of C by K balls of radius \ rne
n •>', we can therefore deduce a

cover of B( by X balls of radius rne
nλj. We compute now such a K: we choose in

T X an orthonormal basis uί9 u2, ... ud, by first choosing a basis in E**9 then
completing it into a basis in £*;'_1? and so on, so that the asymptotic behaviour
of || Df"uk || is given by λd_k.

We have exp"1 B'. c {veTxX\v = Σvkuk> \vk\= 2rJ and therefore

exp/"4 C, c: {*= TfnχX\v = Σ'*Φ,/X> kl ^ 2r^

where (Dxj
n)uk are independent vectors of TfnχX, satisfying

IKVKN^^i+xr-
Now cover expj^. C. by parallelepipeds in TfnχX of the following form,

with less than K such parallelepipeds, where

j-i

By using the exponential map, any such parallelepiped becomes contained in
r enλj

some ball of radius -^ — and this proves the lemma.

IV. Conclusions

In this paper we introduced a number associated to a dynamical system and
an invariant measure which expresses some geometrical property of the system.

For a compact metric K and a map/, one can also define

f ( K ) = sup f(m).
me<?(K,/)

Under which conditions is the relation dim K ^f(K) true? Is there an abstract
definition for/(K), by cleverly mixing topological entropy and capacity (cf. Bowen
[Bo] for instance)?

Let us come now to the comparison with numerical experiment. In [FKY],
they consider some map / of the square, and the computer gives a pseudo-orbit
{αnl ^n^N}. What is computed is the number L of squares of radius 1/8 which
cover the pseudo-orbit (except some of the very first terms) and the coefficient
5 - logg L.

If one admits that the statistic of the pseudo-orbit is given by some invariant
measure m, what is computed is actually Iog8 Nd(lβ,δ(N)9m) with δ(N)-+Q as
iV-» oo.

If one admits also that the system has very strong self similarity properties,
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then the convergence of d ' '— is much faster when ε-»0 than when
log 1/fi

<5->0.
So it is sensible to believe that the number s is closer to /(m) than to

lim lim d ' '— = c(m) which is the capacity of the support of the measure m.
ε-+0 <5-+0 *°β Vε

It turns out that for an Axiom A attractor such that the stable direction is of
dimension 1, and Ruelle's measure m, both numbers/(m) and c(m) can be computed
and that we have generically

/(m) = dim dil Sp m < c(m).

This remark is due to A. Manning and L. S. Young
A sensible reformulation fo [FKYjs conjectures is therefore, under some

conditions, a strange attractor generically admits an invariant measure satisfying
/(m) = dim dil Sp m.

Acknowledgement. I am very thankful to Michel Herman for having pointed out the inaccuracy of a
previous statement of proposition 4.
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