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Abstract. The creation and propagation of jump discontinuities in the solu-
tions of semilinear strictly hyperbolic systems is studied in the case where the
initial data has a discrete set, {xj"= 1, of jump discontinuities. Let S be the
smallest closed set which satisfies:
(i) S is a union of forward characteristics.
(ii) S contains all the forward characteristics from the points {χ.}"=1.
(iii) if two forward characteristics in S intersect, then all forward characteristics
from the point of intersection lie in S.
We prove that the singular support of the solution lies in S. We derive a sum
law which gives a lower bound on the smoothness of the solution across for-
ward characteristics from an intersection point. We prove a sufficient condition
which guarantees that in many cases the lower bound is also an upper bound.

1. Introduction

This paper is devoted to the study of the regularity of locally bounded solutions
to strictly hyperbolic semilinear first order systems in one space variable. That is,
we study ueL™oc(Ω) satisfying

A0(x, t)dtu - Afc, t)dxu = G(x, t, u) (1.1)

where the Aί are smooth m x m complex matrix-valued functions. We suppose
that the system is strictly hyperbolic, that is, det A0 ^ 0 and the equation
det (A0 — λA)) = 0 has m distinct real roots, {λ.}?L ί, for all < x, t > under considera-
tion. We study solutions on jR r, the open trapezodial region bounded above and
below by the lines t = T, t = 0, on the left by a characteristic of maximal speed, and
on the right by a characteristic of minimal speed. We let I-t = Rτ n {< x, t > 1 1 = t}.

lfueLco(RT) satisfies (1.1) in the sense of distributions, then u is weakly conti-
nuous on [0, Γ] with values in L°° in the sense that for any fixed ?e(0, T) and
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Fig. 1. The region RΓ

(Interior (/,)), φu is a continuous function of ί, for t near I, with values in
L°° (R) = L1 (R)* endowed with the weak star topology. Similar one sided assertions
apply at t = T and t = 0 so it makes sense to discuss the initial values of M. In addi-
tion there is a local existence and uniqueness theorem in this category, and for many
systems solutions exist globally in time. Thus, there are an abundance of L°°
solutions of (1.1) and they are uniquely determined on Rτ by their data on

/o = [*,*].
In our analysis we take advantage of the fact that by a smooth change of the

dependent variables, the Eq. (1.1) and the initial condition can be cast in the canoni-
cal form :

(dt + Λdx)u = F(x, t,u) <

where A = diag {λί , . . . , λm}.
Now, suppose that the initial data u° is C00 with bounded derivatives except

for finitely many jump discontinuities (either in u or derivatives of u or both) at
the points x1 ? ... , xπe/0. What are the smoothness properties of u in Rτl Let
50 denote the intersection of Rτ with the union of forward characteristic curves
from each of the points x.. If F is linear function of u for each <x, ί>, then the
singular support of u in R will be contained in S0. In [4], we gave the following
example which showed that if F is nonlinear the singular support may be larger
than S0. Consider the system

Λ

- +

-t;w, z(x,0)-0.

Then it is easy to check directly that u = < v, w, z > jumps across the solid lines
in Fig. 2. Furthermore, although u is continuous across the dashed line, Dxu has
a jump there. This new "anomalous" discontinuity across the dashed line
could not occur if the right-hand of (1.3) were linear. This suggests the following
general principle for semilinear hyperbolic partial differential equations: When
two singularity bearing characteristics cross, the point of intersection becomes,
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in general, a source of new singularities traveling on all forward characteristics from
that point. Notice that in the example (1.3), the anomalous singularity is in the
first derivative while the singularities along the solid lines are in u itself. This
suggests a second general principle: Anomalous singularities are weaker than the
singularities that produced them. It is the purpose of this paper to make these two
principles precise for jump discontinuities of solutions to semilinear strictly
hyperbolic systems in two variables.

From the intersection points of 50, construct the forward characteristics which
are not already in 50 and call this set 5r In general, let Sn+1 denote the union

n

of forward characteristics, which are not already in (J Sk, from intersection points

n oo

of (J Sk. Define S to be the closure of (J Sk intersected with Rτ. Examples of such

sets S. are depicted in Figs. 3 and 4. Figure 3 shows the set S for the system (1.3)
with two initial singular points χ± and x2. In general, (J Sk will not be a closed
set. This can happen as follows. Consider a four-by-four system with two rightward
moving and two leftward moving characteristics and two initial singular points
xl and x2. The point p (See Fig. 4) will be a limit point of intersection points and

00

it is quite easy to see that whenever that is the case, the curves of |J Sk will be
dense in the whole forward cone from p (i.e. everything to the right of the most

Fig. 4
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Fig. 5. Part of a typical set S

leftward characteristic and to the left of the most rightward characteristic), so
the whole forward cone from p will be in S. In general, S will consist of such closed
forward cones plus a network of pieces of characteristic curves (see Fig. 5). There
is a qualitative difference between the cases m = 2,m = 3, and m ̂  4. In the case
m = 2, singularities propagate as in the linear case (this is just the result of [4])
since S = S0. In the case m = 3, anomalous singularities can occur but S will
consist of a locally finite latticework of curves. For m ̂  4, S will contain, in general,
both a latticework of curves and closed forward cones.

Now we can describe the results of this paper. In Sect. 2, we prove that u is C°° on
RT\S9 i.e. the singular support of u is contained in S. Thus, the only way that ano-
malous singularities (that is, singularities not present if F is linear) can appear is
by the method described in the first general principle above.

In Sect. 3, we investigate the second general principle, the amelioration of
anomalous singularities. We will say that u has order n across a curve in S if all
of the first n partial derivatives of u are continuous across the curve but the same
is not true for n 4- 1. Suppose that two characteristics <^1 and %>2 carrying singulari-
ties of order nί and n2 respectively intersect at a point p and that u is smooth
across the other characteristics which are incoming to p. We prove that u will
be at least of order n1 + n2 + 2 on all of the forward characteristics from p except
(^1 and ̂ 2 (where u will still have orders n1 and n2). In general, more than two
singularity bearing characteristics may intersect at a single point. Label the
characteristics coming in to p by .̂, i = 1, ..., m, and the orders of u across the
incoming parts of the #. by «., i = 1,..., m, where we have chosen our labels so
that nί ^ n2 ^ n., for i =£ 1,2. If u is C°° across <6i then we set nt = oo. Denote
by m. the order of M across the outgoing piece of #.. We prove that

m. ̂  min {n., nί+n2-\- 2}.

In other words, if n t and π2 are the orders of the worst incoming singularities
then the outgoing singularities will have order at least n1 + n2 + 2 unless
u has order an n. which is less than nί + n2 + 2 on the incoming part of the charac-
teristic in question. In the example (1.3), n1 = — 1, n2 = — 1, so nv + n2 + 2 = 0.
Thus u should be continuous across the dashed line in Fig. 2 but could have a
singularity in its first derivative there. This is exactly the case. In the case depicted
in Fig. 3, we see that if u has order — 1 at xα and x2, then u will have order at
least fc — 1 across the lines Sfc. Less precise results expressing the second general
principle can be found in [1], [2], and [3].
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The results of Sect. 3 guarantee that when anomalous singularities are produced
they are weaker than the singularities which produce them. However, this does
not answer the question of when the anomalous singularities actually exist. That
is, which of the lines in S are actually part of the singular support of u and what
is the order of u across these lines? This is the question which is investigated in
Sect. 4. To see that this is a delicate question, notice that if one looks at Fig. 2
and runs time backwards, then the singularity along the dashed lines disappears.
We show that if nί ^ 0, n2 ^ 0, n. ̂  ̂  + n2 + 2, for i =£ 1, 2, and if

(1.4)
du,du2

for some i =f= 1,2, where q is the intersection point of (&l and ^2, then u will have
order exactly n1 + n2 + 2 on the ith forward characteristic from q. This criterion
permits us to construct examples where the anomalous singularities occur on
all the isolated lines of S with orders exactly equal to those predicted by the
amelioration formula mt = min {«., n1 4- n2 +2}. The analysis also explains the
disappearance of singularities mentioned above.

The assumption of strict hyperbolicity guarantees that the {A.}™= t are distinct.
In fact, the results of Sects. 2 and 3 go over virtually unchanged to the case where
the multiplicities of the λ. are constant. It is merely necessary to regard the com-
ponents of u which correspond to the same speed λ. as a single vector-valued
component. The ideas of the proofs in Sect. 4 also carry over easily to the case of
constant multiplicity, but the main condition (4.1) is replaced by a matrix condition.

The elementary methods of the paper are useful for studying jump discontinui-
ties across isolated curves, but they break down when the singular sets are more
complicated. For example, suppose that the initial data are Hs on an interval and
C°° outside of the interval. Then the union of forward cones (including the interiors)
from the points in this interval will, in general, be the singular support of u and
this singular support should be stratified into regions of various degrees of smooth-
ness because of the principle of amelioration of singularities. In order to handle
these problems, one must construct a nonlinear microlocal calculus and apply it
to semilinear hyperbolic systems. We do this in a forthcoming paper, [5]. That
paper does not subsume the results of this one for two reasons. First, that paper
deals only with the case of continuous functions so the interesting case of jumps
in u is excluded. Secondly, it is difficult to identify and study piece-wise smooth
functions by the methods of Fourier analysis.

Although we have mentioned the solid forward cones, we don't prove anything
about them in this paper. A natural extension of the results of Sect. 3 suggests that
each time singularities intersect, the anomalous singularities produced should
be at least one derivative smoother. Thus, if we are only interested in CN smooth-
ness for fixed JV, we should only have to consider finitely many interactions. So,
if the data is C°° except for finitely many jump discontinuities, we expect that the
solution will be CN except on a finite network of curves. As N gets larger, the num-
ber of singularity carrying curves increases, until, as N -> oo, the curves become
dense in the solid forward cones discussed above. We prove these statements in
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[5] and provide examples where the initial data is C°° except for two points,
but an entire solid forward cone is contained in the singular support of the solu-
tion.

Throughout this paper the symbol [A]^0 will denote the jump in the function h
at the point p across the ίth member of a family of curves. For vertical curves the
jump is from left to right; otherwise it is from bottom to top.

It is a pleasure to thank M. Oberguggenberger for helpful discussions.

2. Smoothness

In this section we shall prove that u is C°° on RT\S. If <x, ί> is a point of RT\S,
then the backward "cone" from <x, ί> (i.e. the domain of dependence of <x, £>)
contains only finitely many curves, Γ., i = 1,... , fc, from the set S. To see this,
note that if the cone contained infinitely many intersection points of curves in
S, then the closed forward cones from the limit points would contain <x, ί> and
would be contained in S. Since <x, ί >φS the cone can contain only finitely many
intersection points. Thus, by the definition of S, the only points of the cone which
are also in S are points in S0 and the points on the forward characteristics from
these finitely many intersection points. Since every <x0, ί0> in RT\S is contained
in the interior of a backward cone, it suffices to prove the theorem in the case
where S c Rτ contains only finitely many curves Γ., i = 1,... ,fc, and Rτ is a
backward cone. We may also assume without loss of generality that the end-
points α, b of the initial interval /0 are not in the singular support of w(0). Thus S
divides Rτ up into finitely many simply connected open sets R{ bounded by pieces
of curves Γ. in S and the boundaries of Rτ see Fig. 6. The basic space which we will
work with is the set of Revalued functions on RT\S which are N times continuous-
ly differentiable on RT\S and such that all the first N partial derivatives have
continuous extensions from each of the R. to their boundaries (of course the boun-
dary values on the curves Γ. will, in general, be different if one approaches Γ.
from two different regions). We denote this space by C^(RT\S). Since S will remain
fixed from now on we will sometimes denote this space simply by C^(JRΓ); it is a
Banach space under the norm

\\U\\N=Σ\\U\\C»(Rί)
ί

where || u \\CN(RI) is the sum of the sups in jR. of all partial derivatives of order less
than or equal to N.

X1

Fig. 6. The region Rτ
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Before proving the singular support theorem, we first derive a basic computa-
tional tool: a formula for differentiating certain indefinite line integrals of functions
in C^(RT). Let Rτ denote a region such as the one discussed above; we will denote
the variables by < y, s >. Suppose that g e C^(RT\ and define

Assume that the line Lyo = {<y 0,r>|0^r ^s0} intersects the curves {Γj*=1 one
at a time and transversally and that < y0 , s0 > φ u Γ.. We want to prove that u is
N times continuously differentiable and derive a formula for the derivatives.
Since the Γ. are C°° curves which are transverse to L, they are the graphs of C°°
functions γ. for y near y0. Relabeling the Γ. so that γ. <yi + 1,WQ can write

u(y,s)= j g(y,r)dr+ £ J g(y,r)dr (2.1)

where we set y0(y) = 0. Clearly, dsu exists and equals g(y, s) for < y, s > near < y0, s0 >
and from the hypotheses on g we get immediately that d^df u exists and is con-
tinuous near < y0, s0 > if £2 ^ 1 and /t + /2 ^ N. Thus, we need only consider the
pure y derivatives of u.

<V s o>

Fig. 7

Each term in (2.1) is continuously differentiable with respect to y. Differentiat-
ing and collecting terms, we find :

dyu(y, s) = , r)dr -

where [ ]£} denotes the jump from below Γ. to above Γ. at p. The integral is to
be understood as a sum of integrals over the pieces of Ly. Because of the hypotheses
on g, dyu is continuous so u is continuously differentiable near <y0, SQ >.

s

To take the dy derivative of dyu, notice that $dyg(y, r)dr has the same form as
o

the expression which we differentiated above, so

, r)dr = d2

yg(y, r)dr -
/=!
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Furthermore, [yί0](<>fyι(y)> = y'ί(y){gJr(y, yjίy)) - 9~(y,yi(y))} is differentiate in y
and

Therefore,

i = l

(2-3)

It is clear that we can continue in this way differentiating N times with respect to y
and obtain, forn ^ N :

δXK s) = K0(y, r)dr - Σ "Σ [(3, + tf δ/y^- ̂ gj^^ (2.4)
0 i= 1 <? = 0

where [ ]<iyίϋ0> denotes the jump from below Γ. to above at <j>,y f(j;)>. Thus u
isCNat<};0',s0>.

Notice that the answer in (2.4) is independent of the ordering of (yj. We also
remark that our notation seems to imply that the line Lyo intersects each curve
Γ. only once. We need no such hypothesis since the analysis is completely local
in a neighborhood of L. If one of the Γ. interests Lyo more than once, we just
treat the pieces of Γ. near the different intersection points as separate curves.

We summarize these computations in a lemma :
Lemma 2.1. Let g be a function from a neighborhood, Jί , of the line Lyo = {O0, r>
|0<r<s 0 } to Rm such that g is CN except across finitely many CN curves
Γ., i = 1, ... , /c, which intersect Lyo transver sally. Suppose that (yQ9soy is not on
any Γ. and that Lyo intersects the Γ{ one at a time (i.e. Lyor^ΓίnΓj = 0ifi^j\
Suppose that all the derivatives of g up to order N have, for each ι, (local) continuous
extensions from each side ofΓt up to Γ. and define u in a neighborhood o/< y0 , s0 > by

Then u is CN in a neighborhood of <( ̂ 0 , s0 ) and the y derivatives satisfy (2.4).
We are now ready for the main theorem:

Theorem 1. Let Rτ be a region of U2 as described in the introduction with initial
interval /0 = [a, b~\ and suppose that A is C°° in a neighborhood Jf of Rτ and that
F \Jf x (Rm -> tRm is C"0. Let ueL»(RT)

m satisfy (1.2) in the sense of distributions and
take on the initial data w°(x)eLGO(/0). Suppose that u°(x) is C00 with each derivative
uniformly bounded on the complement of finitely many points {xjf= 1 . Let S be the
closed subset ofRT defined in the introduction.

Then u is C°° on RT\S and all derivatives of u have continuous extensions from
each connected component ofRT\S to its closure.

Proof. As described at the beginning of this section, it is sufficient to consider the
case where Rτ is a backward cone and S consists of finitely many curves. We will
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show that for each integer N ^ 0, u is in C^(RT\S). Since the initial value problem
(1.2) has at most one solution in LCG(RT\ it suffices to show that there is a solution in
C^(RT\S\ for this solution must be u. We construct the solution in C^by solving
the integral equations corresponding to (1.2).

Suppose that w 6 C^(Rto\S) and, for < x, t > e RtQ , define

MH(x, ί) = κ?(£(0)) + f /X£(α), w(ξ(α)))(l + λt(ξ(a))2)ll2da (2.5)

where ίί .(x, t) is the ith backward characteristic from < x, t > to /0 and a -» £(α)
is the arclength parametrization of #.(x, ί). If w is in C^ and ^w = w, then w
satisfies (1.2) in the sense of distributions and takes on the correct initial data.
The crucial step in finding a fixed point in C^ is to show that Jt takes C^(Rto\S)
into itself. Suppose that (x,ty$S. Then ^.(x, ί) intersects the curves in S (which we
denote by {Γ;.} one at a time, for if #.(x, t) intersected an intersection point of two
or more of the Γ. then < x, t > would be in S by the way in which S was defined. For
such < x, t > $S, we want to show that (,/^w). is N times continuously differentiable.
In order to do this it is convenient to work in coordinates so that the ith vector
field, dt + λtdx , is straightened out. Define a mapping η. : < x, t > -> < y, s > by letting
j; be the x-coordinate of the point where #.(x, ί) intersects 70 and 5 be the length
of #.(x, ί) from < y, 0> to <x, t >. Because /l(x, ί) is C°°, ^. is a C°° diffeomorphism
on all of Rτ. Denote by Γ .̂ the characteristic curves of thejth family in the new
coordinates. In these coordinates the ith family becomes a collection of vertical
straight lines L = {<j;, r > | 0 ^ r ^ s(y)}. The strict hyperbolicity of (1.1) implies
that the Γ. intersect L trans versally for j =/= i. Thus, the Γ. satisfy the hypotheses of
Lemma 2.1. In the new coordinates < y, 5> we have

(Jlw\(y9 s) = uf(y) + fjίy, r, w(y, r))dr.
o

Since weC^(Rto\S) and /. is C^^g =fJ(y,r,w(y,r)) satisfies the hypotheses of
Lemma 2.1 too. Since (y, s>^S, <y, 0> is not in the singular support of the initial
data. Thus, by Lemma 2.1, («^w). is CN near <y, s>. Furthermore, since all of the
objects that appear in the explicit differentiation formula (2.4) are functions conti-
nuous up to the Γ. or indefinite integrals of such functions, it is easy to see that all
the derivatives of (Jtw\ up to order N are continuous up to the Γ.. Thus

To solve ^w = w, one shows that for ί0 small Jt is a contraction on a ball in
C*(Rto\S) if the norm is suitably modified. This type of argument is relatively
straight-forward, so we just provide a sketch. Define

We norm C^(Rto\S) by

\u\\w = γ o \\u\\
\u\\t0 L b j \ \ u \ \ j , t 0

where the ε0 = 1, and the other ε. are small positive constants (depending on F)
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to be chosen shortly. We denote by X"o the set of w in C"(Rto\S) such that w(x, 0) =
w°(x,0) and || w | |W ^ 2|| u0 ||£> where °w0(x, ί) is the solution of (1.2) if F = 0. To
estimate the derivatives of (Jlw\ we use the coordinate system < /, sl > given by
the C°° diffeomorphism η.. The derivatives in the original coordinate system are
then estimated by the </, s l> derivatives times some ^-dependent factors. Since
the η. depend only on A, these factors have universal bounds in terms of || A \\CN(R }

For N = 0, the contraction proof is standard and we get a solution in X°Q forτ£0

small enough. For N =1, there will be terms in the expressions for — (Jtw — Jiw)
ox

Λ

and— (^w — J(vί) which involve/^., w( )) evaluated at points. Since/, is Lipschitz

on bounded sets, there is a C such that for all w, weX^ and tl ^ ί0 , we have:

Since C is not small at looks hard to prove the contraction property. This is the
reason for ε t . By choosing the norm as we did, when we compute || Jtw — ̂ w^1

there is an additional factor of ε1 on both sides of (2.5). ε1 is just chosen so that
ε1C < 1. With this trick it is easy to prove that Jί is a contraction on X\ for ίt

small (in general smaller than ί0).
The proofs for higher N are similar. Notice, however, that as N ->• oo we may

have tN -> 0. We would like to fix N and apply the above local existence theorem
and show that after finitely many applications we will have ue C^(RT\S). There are
two problems. The first is that we must show that the interval of existence does not
shrink to zero. We do this by proving an apriori estimate which shows that for
0 < ΐ < T and u in X~ satisfying the differential equation,

MN(Ϊ)= Σ Σ
ί = l k = O

has a bound independent of t. This is accomplished as follows: We bound the
first derivatives of u. using the </, sl > coordinates. Since dsu. = f.(u\ the bound
on u yields a bound on dsur To bound dyu^ we use the differentiation formula
(2.4) to obtain

If < y, s > φS, then M.( , 0) = u® (.) is smooth at y and, by the hypotheses on w°, |3yw? |
is uniformly bounded for such y. The third term depends only on u and is thus
bounded by a constant depending only on M0 (we will denote constants depending
only on T9 A, F and M0 by C(M0)). Thus,

m

dr

O j = l
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Returning to the original variables, we find that

213

which by GronwalΓs inequality shows that M^ί) is apriori bounded in R7 by a
constant Mί .

We now use the same procedure to estimate M2(t) and so forth. The two crucial
points are, first, that the jump terms in the differentiation formula (2.4) for the
(N + l)sί derivatives depend only on the first N derivatives and thus are bounded
by the induction hypothesis. Secondly, the term under the integral in the formulas
is always linear in the N + lsί derivatives and so, when the lower order terms are
dominated by the induction hypothesis, the Gronwall lemma again gives the result
for N + 1. Thus each Mn(t) is apriori bounded so we can continue to apply the local
existence theorem and arrive at T after finitely many steps.

There is one last difficulty. The local existence theorem gives us a solution in
Rt . This solution will be singular, at most, at the points {zt}

h

i= 1 where the line
t = ί0 intersects S. If z. is an intersection of two or more curves in S, then all forward
characteristics from z . are in S and there is no problem. If z. is on only one curve,
Gj in S, then we expect (and are trying to prove) that near ί0 the singularity will
continue on the curve and not go on the other forward characteristic curves
(let's call them (G.|z ̂  /} from z.. Unfortunately, from the local existence result
starting at ί0, we can only conclude that u is CN away from the union
of the curves in S and the {Gj. This difficulty is overcome as follows:
If we apply the local existence result with initial data u(x9 ί0 - ε) given at
time t' = t0 — ε then we conclude that u is CN near z. except on the union
of S and the other forward characteristics {G'k} from the singular point
zj. Since the λ. are distinct, the {Gf

k} can intersect the {G £ | i=£^} in only finite
many points such as p in Fig. 8. We conclude that u is CN across the {Gt\i ψ £}
except possibly for these finitely many points. By varying ε, we can eliminate these
points also.

Fig. 8. A neighborhood of zi
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3. Interaction of Singularities

In this section we derive an upper bound for the strengths of the anomalous
singularities produced when two or more singularities meet. Let q be a point of
intersection of isolated curves in S and let R be a neighborhood of q of the form
described in the introduction (see Fig. 9) so that there are no other intersection
points in R. By a change of time variable, we may label the beginning, the inter-
secting, and the ending times of R by t = 0, |, and 1, respectively. Lable the charac-
teristics through q by #., i = 1,... , m, and let n ί 5 ί = l , . . . ,m be the largest
integer so that u is Cnι across #. for ίe[0,^), i.e. so that u is in C"1 in a neigh-
borhood of the incoming half of (6i. We set n. = oo if u is C°° across #. for ί 6 [0, ̂ ). If w
itself jumps, n{ will equal — 1 ni will equal 0 if u is continuous but a first derivative
jumps, and so forth. We relable the characteristics if necessary so that
— 1 :g nl ^ n2 ^ n. if ί ̂  1, 2. There are two trivial cases. If n^ = n2 = oo (which
is possible since S contains but does not necessarily equal sing supp u\ then u is
C°° in R for ίe[0, j) and Theorem 1 implies that u is C°° in all of #. If ̂  < oo and
n2 = oo, then Theorem 1 applied at time t = \ together with the argument at the
very end of the proof of Theorem 1 show that u is C°° in R except on (&1 across
which it is at least C"1. This just repeats what we already know, namely that anomal-
ous singularities can only be produced when two or more singularity bearing
characteristics intersect.

Fig. 9. The region R

When n2 < oo, we will show that u is Cm across #. for te(^, 1] where

m. = min {«., n t + n2 + 2}. (3.1)

The usual case is when the curves in S intersect two at a time, i.e. nt = oo for i =/= 1,2.
In this case u is at least C"1+"2 + 2 across the forward characteristics from q except
^ and ̂ 2. If one of the other incoming characteristics, #., is carrying a singularity,
i.e. nt < oo for some i =/= 1, 2, then we would not expect u to be better than Cnί on the
outgoing part of #. and this is reflected by the formula (3.1).

The proof consists of several steps which gradually establish more and more
smoothness across the outgoing parts of the #.. First we show that u is Cnι in R.
Then we prove that, for ίe(y, 1], u is ̂ "2 across all #. except i = 1. Then we prove a
proposition which gives conditions that guarantee that if the jump [l/w](l) is
continuous at q then so is the jump [Dzf/z(w)](I) for any /zeC00 provided
\{\ ^ nl + n2 + 1. This is the origin of the number π t 4- n2 + 2. Then we prove that
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the jumps [DV)(l) are continuous at q for \f\ ^nί+n2 + 2. Finally, we prove the
main theorem.

Throughout the proofs, D* denotes an Λh order partial derivative and [D'ti]®
denotes the jump at p across the ith characteristic curve #. through q.

Step 1. u is Cnί in R

Proof. If nί = — 1 we have nothing to prove since we already know that u is in
C™. If nί ^ 0, then standard regularity theorems in one space variable (or one can
use the proof of Theorem 1) show that u is Cnι since the data (at ί = 0) is in Cnι.

Recall that if £ is a finite set of arcs in R, then C* (R\E) is the set of functions
υeCk(R\E) such that for each component R. of R\E and each \f\^k,D^v\Ri has
a continuous extension to Rί.

Step 2. u is in C12(R\^^

Proof. If nί = n2 = — 1, there is nothing to prove so we may assume that n2 ^ 0.
We will prove that if ueC^R^J and k + 1 g n2, then κeC*+ l(R\Ήl). Since, by
Step 1, the hypothesis is valid for k = nl, this suffices to establish the result. To
show that weC*+ 1CR\^ι), we will first show that for any pφ^^u is in Ck + 1 on a
neighborhood of p. Since we C™(R\S) by Theorem 1, it suffices to consider pe#.\{#}
f o r i ^ l .

First suppose j ^ i. We work in the variables < y7, sj > given by the diffeo-
morphismη j mDk + vuj = S^d^u^y, s) where/1 + /2 = k + 1. If/2 ^ 1, thenDk + 1uj =

d^d^2~lfj(u) so Dk+ lUj is in CJ(R\%>^) by the induction hypothesis. Thus, we need
only consider Sk+1Uj. Letp0 = <y 0,5 0> be a point on#.,p0 ^^. According to the
differentiation formula (2.4),

4- jump terms at p0.

But, the jump terms at p0 are all zero by the induction hypothesis since they involve
only derivatives of order at most k. Since dy+lfj(u) is bounded, it follows that
dk

y

 + 1Uj is continuous across #..
To handle the component ui9 we work in the variables </, s1') given by ηt. As

above, the induction hypothesis immediately handles all partials of order k + 1
except dk

y

+ iui. Let < y0, s0 > be a point on #. for ί > |. For j; near y0, formula (2.4)
yields

-Σ ΣE^
7^ιV = 0

Since /c ^π2 — 1, ̂ +1u.(y, 0) is continuous near y = y0. By the induction hypo-
thesis, all of the jump terms are zero except for j = 1. On the other hand/.(w) is in

by the induction hypothesis, so each term \_(dy + y S/y^-^u)]^^
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<vv

Fig. 10

is continuous for y near yQ. Furthermore, dy+1fJ(u(y, r)) contains many terms but
all except the term ( S U ι f i ) ( d y + ί u i ) are continuous near y = yQ since
and for j
(3.2) as

i, we have already shown that w.eC*+1(R\<^1). Thus, we may write

f VuβM y,r))dr (3.3)

where c(y) is continuous for y near y0. Substracting this expression for 3; < y0

from this expression for y > y0 and taking the limit as y goes to y0 we find:

so

where [ ](ί) denotes the jump from left to right. Since (3.4) holds for all
50e[0, 1] and ( d u f i ) ( u ( y Q 9 r ) ) is bounded, GronwalΓs inequality implies that

To complete the proof, we need only consider u near (^1 . Consider the restric-
tion of u to one side, <9*+, of #t . We must show that u\^+ has aCk+l extension to
& + . The first part of the proof together with the fact that ueC™(R\S) shows that
u has a C f c + 1 extension to £^+\{q}> In fact, {q} is easily handled too. Notice that
^ + is decomposed by the #. into m triangular shaped regions ZΓ 1 , . . . , ZΓ m. Suppose
I f I = fc + 1 and let h. denote the continuous extension of D*u to ?Γ . guaranteed by
Theorem 1. Then, D*u has a continuous extension to ̂ + if and only 'iih.(q) = h.(q)
for all i,j. We can label the & '. so that ̂ i^^ί+1 contains a characteristic arc, Γ,
through g. From the first part of the proof we know that ht = hi+ion Γ\{q} so, by
the continuity of the Λ., it follows that h.(q) = hi+1(q) and the proof is complete.

The third step is the proof of the following proposition. It asserts that certain
regularity is preserved under non linear maps and explains the occurrence of the
number nl+n2 + 2.

Proposition 3.1. Let {^}fi i be M smooth curves in U2 which intersect at a point q
where their slopes are distinct. Suppose that Ω is a neighborhood ofq which contains
no other intersection points and let v be a function on Ω satisfying:

(i)
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(ii) veCnι(Ω)

(iii) vECy(Q\VJ

(iv) For some i and some k^nί+n2 + I, [Z)V|(ί) is continuous on %?. for all

Kl^fc.
Then:

(v) [D'λ(t;)](ί) is continuous on <$.for all \£\^k and all ^functions h.

Proof. When nv = — 1 the problem simplifies since k^n2 which implies, by (iii),
that reC^OY^). Thus if \ί\ ^ k, [D'hty)]® = 0 if i ± 1, and [D'/ifo)]^ is continu-
ous.

Next, suppose that n1 ^ 0. D*h(v) is a sum of terms of the form

Since [ ]£} is linear, it suffices to consider each of these terms separately. Also,
since n2 ^ nί ^ 0, (D*h) (v) is continuous everywhere in Ω. It thus suffices to con-

Γ Ί(0

sider Y\Dβnvj(n) . Since Σ\βn\ ^ nγ + n2 -h 1 and nl^n29 at most one of
L n Jp

the \βn\ can be bigger than n2. Suppose that there is such a βn, call it β^. Then,
we factor :

Γ Π D^ωT = [̂ '̂ i Λ°( Π β%,,<P
L n ^ l Jp \ n ^ 2

where p1 denote the limits at p from the two sides of #.. For π ̂  2, Dβnvj(n} is

Γ Ί(0

continuous in Ω since |/?J < n1 . Thus Y[ Dβnvj(n} = 0 and f j Dβnvj(n}(p+) is
L«^2 Jp n^2

continuous. Since [D^vj(l)~\(^ is continuous by hypothesis, we conclude that

Γ Ί(0

Π Dβnvj(n) ^s continuous.
L«^2 Jp

On the other hand, if all βn satisfy |jgj g n2, then Π DHΛlI) is in CjΦY^).
Γ Ί(ί) n>ι

Thus {I D ϋj.(π) vanishes for i ̂  1 and is continuous for i = 1.
L π Jp

We remark that we did not use the full strength of the hypotheses in the proof
of the proposition. It would have been sufficient to assume that h and the curves
ζei were C"1+n2 + 1 and that υ is in C£+"2 + 1(Cl\u^.). Secondly, one can easily
construct a counterexample which shows that under hypotheses (i), (ii), (iii), the
hypothesis (iv) with k ̂  n^ + n2 + 1 replaced by k ̂  n1 + n2 + 2 is not sufficient to
imply the conclusion (v) with fe ̂  nγ + n2 -h 1 replaced by k ̂  nv H- n2 + 2. Just
let w(ί),ί= 1,2, be two functions which satisfy w(0eC^(ίΛ^)nCMί(β) such that
some derivative D"ί + 1w(0 jumps across #.. Set υ = w(1) + w(2). Then hypotheses
(i)-(iv) hold for all k. However, if h(υ) = v2, then [D"1 +"2 + 2h(v)J*} is not continuous
atp= q for i = 1 or i = 2.

Next, we show that the jumps of u have higher regularity at q then we expect for
u itself.
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is continuous along eachStep 4. // n2 ^ 0, then for all \f\ ^n1+n2 + 2, [D
^.atp = q.

Proof. Since n2 ^ 0, u is in C£(KΓ\*Ί) so [w](0 - 0 on #. for all i ̂  1 and [u](/) is
continuous on <^1 . We will show that if [DVlp* *s continuous for all i and all
\f\ ^ fc g ni -h ft2 + 1, then the same is true for all i and all \f\ g fc + 1. Since the
hypothesis is valid for k = 0, the desired result will follow.

Fix i. The arguments for the components u. and uj9j ^= i, are different. First we
consider u. and work in the variables </, s1) given by the diffeomorphism η..

where If then, . . . . . .
V/(M)]p} is continuous by the induction hypothesis and Proposition 3.1.

Thus, we need only consider
for 3; ± y0 (2.4) yields

+ 1 wί]p). If ̂  is given by the line { < y0 , s > }, then

^+ XG>, s0) = 5J+ ̂ ^ 0) + J3J+ Viίφ, r))ίr
o

-Σ ΣWy + yΆYy dΓn^jMy
j+ί <?=o

By proposition 3.1 and the induction hypothesis the jump terms are continuous
at q. Therefore, as in the proof of Step 2 (see Fig. 10) we have

(3.5)

Since the second term on the right is independent of s and the integrand of the
first term is bounded, we conclude that \dk+ luλ(? \ is continuous in s.u y i-J^yotS/

Next, we suppose that j ^ i and work in the variables < /, sj > given by the
diffeomorphism^ .Letp = <_y 0 ,s 0 >beon^.,p 1 = <y0,s0 -hε>,p 2 = <y0,s0 — ε>.
As above, if <f2 ^ 1, then [Dk+ lu$> = [β^d^u^ = [3^3f2" lfj(u)J% is continuous
in p along #. by Proposition 3.1 and the induction hypothesis. Thus, we need only
consider K+1w.](l). According to (2.4),
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Letting ε 1 0 we find that

k

Γd k + 1 w~l ( 0 -- Y Γ ί d 4- v'd Yv'dk~*f(u)~\(i) (36)
LU W J ~ L\\°^tiUs)riυ W-l l }

Since y. is C°°, Proposition 3.1 and the induction hypothesis on u imply that each
term on the right hand side of (3.6) is continuous in y0. Thus, the same is true of the
left hand side.

The following theorem describes the local interactions of singularities.

Theorem 2. Let ^p i = 1, ... , m, be the m characteristic curves of the system (1.2)
though a point q (see Fig. 9). Suppose that weL°° is a solution of (1.2) in a neighbor-
hood Rofq and that ueCr£+n2 + 2(R\v(£ί) where ni is the largest integer (or infinity)
such that u is Cnί across the incoming part, ^Γ, of (€i ana we label the nt so
that nγ ^ n2 ^ntfor i ^= 1, 2. Then ,for each i, u is at least Cmι across the outgoing
part, ̂ +, ofi where

m = min {n., nί + n2 + 2}.

Proof. Assume n2 ^ 0. For i = 1 and i = 2, the conclusion of this theorem is
contained in Steps one and two. If i =/= 1,2, we already know by Step 2 that u
is C"2 across the outgoing part of #. (hereafter denoted by #.+). Let k satisfy
n 2 ^ f c ^ n 1 + n 2 - h l and k ̂  nf — 1 and suppose that w is k times continuously
differentiate across < .̂+ with i ̂  1, 2. We will show that the same statement
holds for k + 1 thus proving the theorem.

Fix i ^= 1, 2. To look at u. for 7 ̂  i we work in the variables </, s j> given by
the diffeomorphism η.. Suppose that ̂  + (2 = k + 1 and /2 ^ 1. Then d'ffiiij =
dy'd^'^u) is smooth across ^+ by the induction hypothesis. If *?2 = 0, then
the induction hypothesis and formula (3.6) in Step 4 show that [dy+1uϊ]® = 09

so MJ. is Ck+ ί across ̂ +.
For j = f, we work in the variables </, s'> given by the diffeomorphism ηr

As usual δ^δ^Mf will be continuous across ^+ if £2 ^ 1 so we need only consider
dk

y

+1ut. We now apply formula (3.5) observing that [dj;*1^.]^ 0> = 0 since k ̂
n. — 1. Thus,

[dy+ViWj^o r> is a sum of terms. Any term which does not contain a k + lsί deri-
vative of u is continuous across #. by the induction hypothesis and thus its jump
is zero. If the (k + l)st derivative falls on a uj with) ̂  f, then the jump of that term
is zero since we have already proven that Dk+luj is continuous across #.. Only
one term, (dM./f)(d*+1M.) remains. Since n2 ^0, u is continuous across #. away
from g so
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Thus, from (3.7), we obtain,

which, by GronwalΓs inequality, shows that [dy"1"1^]^^ =0. This completes
the proof that u is Ck+ 1 across ^+ and concludes the proof of the theorem in the
case n2 ^ 0.

In the case nί = — 1 = n2, we are only required to prove that u is continuous
across #. for ί=£ 1,2. This is easily accomplished (without differentiation formulas
or the machinery of this section) by using the integral expressions for the uί . B

In order to apply this local result to the initial value problem in the original
region Rτ, we need only introduce some terminology. Let p be a point of SnRT

which is not in a closed forward cone (defined in the introduction) of S. Then, if
Λf is a small enough neighborhood of p, Jf n S consists of finitely many pieces of
characteristic arcs. If p is an intersection point of two or more of these arcs, then
the hypothesis ueCl£+n2 + 2(Λ*\S) automatically holds since, by Theorem 1, we
know that ue C™ (^V\S). If p is not an intersection point, it lies on a piece of charac-
teristic arc, Γ, between two intersection points, between an intersection point and
the boundary of a closed forward cone, or between an intersection point and the
boundary of jRΓ. If Γ is in S0, we define the order ofΓ to be the order of the singula-
rity of the initial data at the point where Γ intersects the line f = 0. If Γ lies in Sk for

fc-l

fc ^1, then Γ starts at an intersection point q of characteristic arcs in (J SΓ

έ = Q

Let w. be the orders of the incoming arcs at q. Then the order ofΓ is defined to be
mm{nj + n£ + 2}. Theorem 2 immediately implies:
jϊt

Corollary. Let ueLcc(RT) satisfy (1.2) in the sense of distributions. Let p be a
point of S n Rτ which is not in a closed forward cone of S and which is not an
intersection point of arcs in S. Suppose that the arc on which p lies has order n.
Then, u is Cn at p.

4. Existence of Singularities

In the last section we showed that when two characteristics bearing singularities
of orders n1 and n2 intersect at a point q (see Fig. 9) then u has order at least
nι + n2 + 2 along .̂+ the outgoing portion of #., for each i ± 1, 2 (assuming that
n., the order of u on ̂ Γ, is ^ nί -f n2 4- 2). There is nothing in this statement that
prevents u from being C00 across .̂+ in which case there would be no anomalous
singularity propagating along .̂+ . In fact, this can happen as one can see by
letting time run backward in Fig. 2. In this section we derive a sufficient condition
which guarantees that the order of u on #.+ is exactly min {ni9nl +n2 + 1}.
Throughout we will use the region, figures, and notation introduced in Sect. .3. We
begin with the case where n. ̂  n1 + n2 + 1.

Lemma 4.1. Suppose that u is Cf across an isolated arc of a characteristic Ή. c S
containing no intersection points ofS. Then u is C^+l across Ή.for allj =/= i.
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Proof. We compute in the coordinates </, s j> given by the diffeomorphism n..
LetSi+S2 = t+L Then d^d^Uj = &y

ld's
2~lfjμ) is continuous across ̂  if < 2 ^ 1

by the hypothesis on n. And 'dy

+ luj is seen to be continuous by using the formula
(2.4) and the fact that the jump terms vanish since u is C* across ̂  . .

Proposition 4.2. Suppose that, for some i, u has finite order nt ^ 0 on #Γ. For each
ίe[0,f), let p.(t) be the corresponding point on #~ at time t. Then Kί + 1w]£}

(ί) ± 0
forallίe[0,i)and lim K£ + 1wJ^(ί) + 0.

ί T l / 2

Proof. We work in the < /, sl > coordinates in which (6ί becomes the line { (y0 , 5 > }.
For J ^ ί, Lemma 4.1 shows that uj is C"l + 1 across #Γ~. Using the differential equa-
tion, we see that the only derivative of ui of order ^ n. + 1 which can jump is
3J<+ 1w ί. By hypothesis this does jump for some s0 <s1/2 where s1/2 is the value of
s corresponding to ί = 1/2 in the </, s1) coordinate system. From the differential
equation, we have

for all se[0, s1/2). By the hypotheses on u and Lemma 4.1,

since n. ̂  0 and the jumps of all the other terms vanish. Since u is bounded in

JR,|δM./.| ̂  M. Thus, by GronwalΓs inequality,

IΓd" ί + 1 w Ί(ί) I <eM | s~ s o lir^n i + 1t/l ( i ) IIIΛ M iJ<y 0 ,so>l- e ILS MiJ<yo,s>|

Since the left hand side is non-zero, we conclude that [_Sn

y

i+iuiJ^)

yos> is non-zero
for all se[0, s1/2) and it cannot approach zero as s^sll2. This proves the result in
the coordinate system < /, s1 > and the result in the < x, t > coordinates follows.

Proposition 4.3. Let w , n., q and the region R be as described in Sect. 3 and Fig. 9.
Suppose that for some i, n{ ^ nl + n2 H- 1. Then mi — n. z.β. w has order exactly nt

across .̂+ .

Proof. We already know from Theorem 2 that u is C"1 across #.+ . We must show
that u is not Cnί+1 across #.+ . By Proposition 4.2,

But, by hypothesis, n. + 1 ̂  ̂  H- n2 + 2, so, by Step 4 of Sect. 3, [δ^X ]̂  is
continuous near q. Thus [3"* + 1 u^ is non-zero for p on ̂ + near q. The same proof
as in Proposition 4.2. shows that [δ^^wjίpwill be non-zero everywhere on ̂
up to the next intersection point of curves in S.

Proposition 4.3 says that an incoming singularity of order ^n1-\-n2 + l9

including those on <^ί and #2, will emerge intact from the interaction at q. We
turn now to the question of the existence of the anomalous singularities produced
at q. To give as simple a sufficient condition for existence as possible we will assume
that for i=£ 1, 2, u has order at least n1 + n2 + 3 on #Γ. This covers the main case
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of interest, i.e. the case when exactly two singularities meet. We also assume that
nχ ^ 0, n2 ^ 0 which simplifies both the sufficient condition and the proof.

Theorem 3. Let .̂, i = 1,2, ... , m, be the m characteristic curves of the system
(1.2) through a point q (see Fig. 9). Suppose that weL00 is a solution of '(1.2) in a neigh-
borhood Rofq and that M6CJ1+Π2 + 3(R\uίίf) where ni9i=l, ... ,m are defined as
in Theorem 2. Suppose that n t ^ 0 and n. έin0 + n2 + 3 for i ̂  1, 2. Then for each

,u is not C nι +"2 across # .+ near g if and only if

duίdu2

(4.1)

Pr00f. Fix i, we will work in a variant of the coordinates </, sl> given by 77 . .
Let τ' = s' - yfy) where y^y) is the function whose graph is ̂  near g. In the
coordinates <y, τ> (as usual, we drop the superscripts), all the ith characteristic
curves are straight lines of the form { < y0 , τ >, τ Ξ> 0} we take y0 = 0 for <β. . In
addition <^1 is the straight line τ = 0. See Fig. 12. For; ̂  i, let y;.( ) be the function so
that Ήj is the graph { < y, y.(y) > } in the new coordinates. Using (2.4), we find for y
close to zero, and τ > 0,

where τ0 < 0 is small and fixed. There are no jump terms across %>. for 7^1,2
since we know by Theorem 2 that u is at least n{ +n2 + 2 across those curves.
There are no jumps for j = 1 because in our coordinates y((y) = 0. Since u has
order at least nί + n2 -f 3 on
setting

nί+"2 + 3, d ui(y, τ0) is continuous at 3; = 0. Thus,

<y<Ύ 2 (y)>

Fig. 12
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we have

223

"' + V<°0,τ> =

where
L= lim J(ε) -J(- ε).

ε j O

Since u is C"1+"2 + 2 across #., Lemma 4.1 implies that there is only one non-zero
terms in the integrand, namely (Su.fί)\_dn

y

1+n2 + 3ui~](i\ This term vanishes for r < 0
since u has order at least nί+n2-\-3on(&~. Thus, we have

Since dn

y

1+"2 3

Ui is bounded,

(4.2)

3Mi]
(<ift> will be non-zero for τ small if L =£ 0.

o τ>
= 0.Conversely, if L = 0, then GronwalΓs inequality shows that

Thus M will be C"1 +"2+ 3 across #.+ if and only if L - 0.
We shall compute L and show that L ̂  0 if and only if (4. 1 ) holds. We repeatedly

use the following simple lemma. As usual [A]^ will denote the jump of A from below
#. to above #. at p.

Lemma 4.4. Suppose that ^19^2, the graphs of two smooth functions y 1 9 y 2 >
intersect transversally at q = <0, 0>. Let Ω be a neighborhood of q and let v and w
be functions on Ω\((^ί u #2) wAicA satisfy

(i) ϋeC^fl^)

(ii) weC^(Ω\(y?ί u^2)) αwrf [w]p2) is continuous for p near q.
Define

Tλen

Proof. There are two cases to consider depending on the relationship of (^1 and
^2 (see Fig. 13). Suppose that we are in the case depicted in Figure 13 a. Then,

lim M
yio
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The first step used the hypothesis that v is continuous across (β2 and the second
step used the hypothesis that [w]^2) is continuous for p near q. In the case depicted
in Fig. 13 b the calculation and result are the same except for a minus sign.

We now return to the proof of Theorem 3. Whenever we use Lemma 4.4 we will
also be using the result of Step 4 of Sect. 3 which guarantees that all the jumps
[D V|£} are continuous for p near qif\£\^ίnί+n2 + 2. We set k = nί-\-n2 + 2. In
order to compute L, we deal with each of the terms

τe(y) = [(3, + y2 W23i-'/((«)]<2,>y2(rt>

separately. Using Leibnitz' rule we can write T, as a sum of terms of the form

Ί(2)
JHJJ

Γ β Ί(2)

'2' I L n(j)
i—j= 1 -ky^

where £|β.| <Ξ ̂  + π2 + 2 and each D stands for

(̂  + /2δs) or dy

Daft(u) and δy/2 come out of the jump bracket because they are both continuous
since n. ̂  0 for allj and y2 is smooth. We next investigate when the limit

can be non-zero. According to Lemma 4.4, f| DβjUj must have a term which jumps

across (^1 and another which jumps across ^2 . If one β. satisfies \β.\ > n2 + 1 then
the rest satisfy \β.\ ^ nl . Thus f| DβiunU)

 wϋl not jump across <^1 or ̂ 2 so Lf ̂  = 0.
Jϊί

On the other hand, if all β. satisfy \βj\^ n2 then none of the factors jump across
^2 so again L^δ = 0. Thus one β. must equal n2 + 1, call it β1 . As above, if |/J.| ̂  nx

for all j > 1, Lemma 4.4 implies that L*tδ = 0. Since ^ l^7 | =
 wι + ̂  we conclude

j>ι
that L*δ will be zero unless there is exactly one non-zero /?. for j > 1, call it /?2,
and it must satisfy |/?2| = MI 4- 1. Thus L*δ = Q except possibly for terms of the
form, |α| = 2,

Suppose n1 < π2 . Then, we must have j(2) = 2 since if j(2) ^= 2, Lemma 4.1 shows
that D"2+1uj(2} will not jump across ̂ 2 in which case L^β = 0 by Lemma 4.4. The
same argument shows that we must have 7(1) = 1 and a similar argument handles
the case nί —n2. Therefore, to compute L^ = lim TJ(y) — TJ( — y) we need only

yίo
consider terms of the form:

where exactly £ of the D's equal (dy + γ'2ds) and the other (k — f) equal dy. If any of
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the factors (dy + γ'2ds) is contained in Dn2 +1

9 then D"2+1u2 = D"2f2(u) doesn't jump
across #2 so by Lemma 4.4, L%δ = 0. We are thus reduced to studying terms of the
form

We now write

0, + r'2 W
 + ' -' = ((3, + fΛ) + (7'2 - ft)δ/((δ, + y'A) - ΪW + ' -' (4.4)

where γ'^y) is the slope of the first characteristic at <y, 72(y)> If we expand (4.4)
and apply the result to M I , the differential equation and Lemma 4.4 imply that no
term with a factor of (dy + γ\ds) can contribute to lim j^(y) -j^( - y) since it will

yio
not jump across (^1 . Similarly, we write

and observe that no term with a factor of (dy + γ'2ds) can contribute to the limit.
We are thus reduced to studying

ΨXy) = (y'2 - y'Ά - FιΓ+1-'( - /2Γ
+ W1+X)0."^^

Notice that y'Jy) -> y'̂ O) - ^(0) = 0 as y -> 0 since <0, 0> is on both <β ^ and ̂ 2 .

Therefore, lim φf(y) -φ^(-y) = 0 unless / = nl + 1. If n t < n2,δ"1 + x M I is auto-
yl°matically continuous across ^2 and if nl = «2, then 3"1 w t is continuous across

^2 by Lemma 4.1. This fact and Step 4 of Sect. 3 show that dn

s

l + 1u1 and d"s

2+ίu2

satisfy the hypothesis of Lemma 4.4, so for £ — nv + 1, we obtain

Thus, we conclude that

By strict hyperbolicity, ̂ 2 is not tangent to ̂  at ,̂ so y2(0) ̂  0. By Proposition
4.2, both K1*1^]^ and K2 + 1w2]f} are non-zero. Thus, L ± 0 if and only if

d2f.
1 s non-zero.

The purpose of Theorem 3 is to show that anomalous singularities of order
nl+n2

Jr2 are "usually" produced if singularities of order n1 and n2 intersect.
Of course, verification of the condition (4.1) is non-trivial since one normally
does not know the solution u explicitly. However, in some cases, for example if

- — ̂ - never vanishes for i, /, k distinct, the condition is automatically satisfieddUjduk
at each intersection point; we give such an example below. On the opposite

.
= 0 for all i, j, k distinct. Then

k
m

f.(x, ί, M) = £ /*/£, x, u. , M.) (4.5)

δ2/.
extreme, suppose that- — ̂ — = 0 for all i, j, k distinct. Then

dujduk
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for each z. In particular, this holds if F is linear. In this case one can show by using
the methods of Section 2 that no anomalous singularities of any orders are pro-
duced at any intersection points. Roughly speaking, in order to produce an anoma-
lous singularity going in the z'th direction from q, we need/, to contain products of
other components of u which are singular at q see the example below.

We used the hypothesis nl ^ 0 repeatedly in the proof of Theorem 3 because
it guaranteed that u and therefore derivatives of the/, evaluated at < x, ί, u(x, t) > are
continuous. In the special case nί = — 1, the condition analogous to (4.1) is more
complicated.

We can now explain how a singularity can disappear. Suppose that we have
singularities along (Sί and ̂ 2 as in Theorem 3 and suppose that there is an incom-
ing singularity on #. of order exactly nί + n2 + 2. In this case (4.2) will have the
additional term I = [dn

y

ί+n2 + 3ui]
(^0>to> on the right since the initial data τ - τ0

jumps in the (n1 + n2 + 3)rd derivative. If it just happens that L + I = 0 then there
will be no singularity of order n1+n2 + 2 along .̂+ . This is what happens when
the situation in Fig. 2 is run backwards in time. In that case the cancellation is
not surprising since the size of the jump along the dashed line corresponds exactly
to the limit of jump terms, L, at < 0, 1 >.

Suppose that all the hypotheses of Theorem 3 hold except (4.1). Then the
theorem tells us that D"i+n2 + 3u will be continuous across #.+ . What about higher
derivatives? They will "usually" jump across .̂+ but the conditions on/, which
guarantee the existence of such higher order jumps, when the lowest order condi-
tion, (4.1), fails will be more complicated.

Example. Consider the system

d " Iw f^7~^τ: I W = Λ

and suppose that υ0 , w0 , z0 have singularities of orders nί at x1 and n2 at x2(nί ^ 0)
but are C°° elsewhere. If/j = wz,/2 = zv,f3 = w, then at each intersection point of
S (see Figure 1.3) an anomalous singularity will be produced since

.
dwdz dzdv dvdw

Thus the entire latticework S in Fig. 3 will be in the singular support of the solu-
tion u = < v9 w, z> and, using Theorem 3 we can say exactly which derivative of u
will jump across each line in the lattice. For example, on Sl the (nv + n2 + 3)rd

derivative will jump, on S'2 the ((n1 + n2 + 2) + n2 + 3)rd derivative will jump,
and on S"2 the ((n1 + n2 -h 2) + /t1 + 3)rd derivative will jump.

Actually, the above statements are only valid up to the time when the solution
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blows up (which it will do in finite time). To make a similar example which is
global in time, let/j = e~wz,f2 = e~vz,f3 = e~vw, and take the initial data to be
^ 2. Then v, w, z remain ^ 2 since the right hand sides are positive. Since the /.
remain bounded the solution will be global in time. Now,

d2f
so „ * ^ 0 at any intersection point since z > 2, w ̂  2. The same holds for

cwcz
d2f d2f
- — -and- — — so condition (4.1) is satisfied at each intersection point of the
ovoz cvow
lattice S. Thus all possible anomalous singularities will be produced and the
entire lattice S will be the singular support of u.
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