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Abstract. We present a method to recover Wightman fields from a Haag-
Kastler theory of local observables. This may provide a basis for the
comparison of different theories and for an algebraic description of high
energy behaviour.

1. Introduction

For the discussion of structural properties of quantum field theory, it has
turned out to be advantageous to use the framework of algebras of local
observables [1], In this framework one assigns to each bounded region Θ of
space-time the C*-algebra 2l(#) which is generated by the observables measur-
able in Θ. The "local net" 0-*9I(0) is subject to the requirements of locality
and translation covariance, and according to Haag and Kastler [1], it contains
all the physical information which can be obtained from the theory.

This point of view has been very successful in deriving those properties of a
quantum field theory which are consequences of general principles, such as the
existence of scattering states [2], and the structure of superselection sectors
[3]. On the other hand, the algebraic point of view has not yet been equally
useful for a discussion of particular properties of a given theory. This comes
from the fact that it is difficult to construct the local net explicitly, and no
effective notion of "similarity" for different local nets, no perturbative treat-
ment of the algebraic structure has been developed.

We know that in field theory one can use the same set of fields to describe
different theories, labeled by parameters like coupling constants and masses.
Many properties of the theory are expressed with the aid of these fields. On the
other hand, there are in general many other fields which can be used to
describe the same theory. Roughly speaking, fields play a role similar to that of
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a coordinate system in differential geometry, and because of the arbitrariness
in the choice of a field, it is often unclear whether properties of the field are
really intrinsic properties of the theory.

In this paper, we start from a local net 0 —>2I(0), represented in a Hubert
space Jf such that the spectrum condition is fulfilled. Our purpose is the
determination of all fields which are associated to this net. Hopefully, this set of
fields can be used to obtain a more detailed description of the given local net,
but this goes beyond the scope of the present paper.

Fields, being localized at a space-time point, should be, in a certain sense,
limits of observables localized in a shrinking sequence of spacetime regions.
Since the only bounded operators which are localized at a point are the
multiples of the identity [4], fields must be singular objects. Physically, this
may be understood as a consequence of the quantum mechanical uncertainty
relation which says that measurements performed in a small region of space-
time require a large amount of energy-momentum transfer1. In a massive
theory, one may suppose that this is the only reason for the unboundedness of
local fields, so matrix elements of fields between state vectors with sufficiently
good high energy behaviour should be finite [12].

For these reasons, we think it might be reasonable to restrict ourselves to
Wightman fields A(x) which are associated to the given net and fulfil higher
order iί-bounds of the form

|| ( 1 + # ) - * ,4(1+if )- k | |<oo

for some fc>0, H being the energy operator. We shall show that these fields
are characterized by the fact that (1 +H)~kA(x)(l + H)~k belongs to the weak
closure of (1 + tf)-/c2I(0)(l +H)~k for any neighbourhood 0 of x. Thus at least
the set of Wightman fields with polynomially bounded high energy behaviour
is simply related to the underlying local net.

2. The Associated Fields of a Local Net

Our starting point is a local net 0-+2l(0) where to each bounded space-time
region 0 there is assigned a von-Neumann-algebra 91(0) such that Θ1aΘ2

implies 2 1 ( 0 ^ 21 (02). We assume that all these algebras are represented in
some Hubert space ffl such that the following conditions hold:

(Al) Locality: If the region Θ1 is contained in the spacelike complement 0'2

of some region 0 2 , then the corresponding algebras commute:

MiΘJczVKΘJ. (2.1)

(A2) Translation covariance: There is a strongly continuous unitary repre-
sentation x—• U(x) of the translation group in 2tf such that

U(x)21(0) U(-x)a21(0 + χ). (2.2)

1 See the discussion of Gedankenexperίments in Bohr, N., Rosenfeld, L.: Dan. Mat. Fys. Madd
XII 1933, Phys. Rev. 78, 794 (1950)
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(A3) Spectrum condition: The joint spectrum of the generators Pμ of U, μ
= 0, ...,3 is contained in the closed forward light cone V+ = 4

2

The class F of Wightman fields which we want to consider is characterized
by two conditions, a regularity condition (Fl) and a locality condition (F2).
Let us first discuss the regularity condition!

Let H = P0 be the energy operator in jjf. According to the spectrum con-
dition (A3),

is a positive bounded operator with norm smaller than one. Then we can
formulate our regularity condition:

(Fl) Every AeF, A = A(0)9 is a qudratίc form on ^CO(H)= f] Rk Jt such that
RkARk is bounded for some k>0. k>0

Usually, Wightman fields are defined as operator-valued tempered distri-
butions with a common invariant dense domain of definition. But this is, in fact,
a consequence of (Fl) [12]:

2.1. Lemma. Let A be a quadratic form which fulfils (Fl) for some k>0. For

/e^(R4), set

A(f) = ίd*xf(x)U(x)AU(-x). (2.3)

Then Rk-*A(f)Rk+* is bounded for any / e R .

Proof Clearly RkA(f)Rk is bounded for any / E ^ ( R 4 ) . By repeated use of the
identity

RA(f)-A(f)R = RA(dtf)R, (2.4)

we get the lemma at least for integer i. The result for noninteger values of £
then follows from interpolation arguments [5, Appendix to IX.4]. q.e.d.

So \\RkARk\\ <oo implies | | ^ ( / ) ^ 2 f c | | < oo, hence there is a unique operator
on (^0 0(iί) which coincides with A(f) as a quadratic form and which will be
denoted by the same symbol. ^°°(H) is an invariant domain of definition for
all operators A(f\ where A satisfies (Fl) and /e^(IR 4 ) . Denoting the adjoint
quadratic form by A*, we get immediately A*(f)aA(f)*, so A(f) is closable,
and the set of fields has a hermitean structure. Finally, for Φ,

\(Φ, A(f) Ψ)\ g |(Φ, (1 + H)2k Ψ)\ \\RkARk\\ J I/I d4x, (2.5)

so the temperedness condition is automatically fulfilled.
On the other hand, let A be an operator-valued distribution with ^°°(H) as

invariant domain such that for some k>0

\\RkA(f)Rk\\£\\f\\r, (2.6)



558 K. Fredenhagen and J. Hertel

with/e5^(IR4) and || \\<? denoting some ^-norm. Then there is a quadratic form
Ao on <g™{H) which satisfies (Fl) for some fc'^fe such that

A0(f) = A(f). (2.7)

This may be seen as follows: Since the norm of RkA(f)Rk is translation
invariant, the ̂ -norm || | |^ can be chosen to be of the form

11/11̂ = const K * Σ Wf){x% (2.8)

where /eN, α = (α o , . . . ,α 3 )eZ 4

+ } | α | = £ > μ and <3α = δα

0° d%\ As | | Λ P J ^ 1 and

(2.9)

Let Δ be the Laplacian on IR4. Then from (2.9) and (2.8)

\\Rk+2*A((l-ΔYf)Rk+2'f\\^const\d4x £ |(5α/)(x)|, (2.10)

which implies

| | R * + 2 ^ ( g ) Λ k + 2 / | | ^ c o n s t J d 4 x | g ( x ) | (2.11)

for any gE^(IR4), since {\-Δ) is invertible on ^(IR 4) and dΛ(\-Δ)-* is a
bounded operator on JSf^R4) for any α with | α | ^ / .

Now choose / G ^ ( R 4 ) with f / = 1 and set fn{x) = n4f(nx). Then the uni-
formly bounded sequence (Rk+2^A(fn)Rk + 2ί)nslN converges weakly to some B
e Jf(^f) due to the strong continuity of the translation group representation.
With

k 2 ' k 2 ' (2.12)

we get a quadratic form on ̂ ^(H) with the desired properties.
To finish our discussion of the regularity condition (Fl), we mention that

bounds of the form (2.6) are known to hold for members of the Borchers class
of the free massive field and for interacting fields in the superrenormalizable
theories which have been constructed so far. The bound is violated by the free
massless field. This may support our conjecture that for massive theories (Fl)
holds in typical cases.

We now want to specify how the Wightman fields of the class F are related
to the local net. We propose the following locality condition:

(F2) Let A be a quadratic form which satisfies (Fl). A is contained in F if for
any neighbourhood Θ of the origin and any Ce $!($)' such that C ^ i f f j c ^ 0 0 ^ )
and C*<r°(iί)ci<ίr>(iί)

CA = AC (2.13)

holds in the sense of quadratic forms on ^^(H).
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This condition might seem to be very weak, but in fact it implies that the
minimal closed extensions A(f)~ of the operators A(f) are affiliated to the
local v. Neumann-algebras:

2.2. Lemma. Let AeF and /G5^(IR 4 ) with s u p p / c 0 for some open bounded
region Θ. Then A(f)~ is affiliated to 91(0), i.e. A(f)-ηWί{0).

Proof We have to show that Ψe3f(A{f)-\ Ce%{Θ)' implies

(i) CΨs9(A(f)-) (2 .
(ϋ) CA(f)-ψ = A(f)~CΨ. [ ' ]

Let Ψs3ι(A{f)~). Then there exists a sequence ΨnE^°°(H) such that
Ψn—Γ^Ψ and A(f) Ψn—j-+A(f)~ Ψ. As & is bounded, supp/is compact, so there
are open neighbourhoods Θγ and Θ2 of the origin such that

supp/+0j+0 2 c :0 . (2.15)

Let /ie^(R4) with suppfccz02, J/i = l, and set

(2.16)

Then CneM(suppf+ΘJ9 Cβ^(β)ci^(Fl
and | | C J ^ | | C | | . Hence Cn Ψn —^ C Ψ and from (F 2)

^. (2.17)

This proves (2.14). q.e.d.

It is well known that 4(/)-*/9l(0) also implies that 4(/)*f/9T(0) [13]. So
A(/)* is a local closed extension of A*(f)~. As a consequence of Lemma 2.2
and from locality of the underlying net, it can be easily shown that all
Wightman fields in the class F are local and relatively local.

We now can state our main result which is more or less obvious at this
stage of the discussion.

Theorem. A quadratic form A on ^°°(iί) is contained in F if and only if there
exists a k>0 such that RkARk is contained in the weak closure of Rk^i(Θ)Rk for
any neighgbourhood Θ of the origin.

Proof a) Let AeF such that RkARk is bounded, and let Θ be an open
neighbourhood of the origin. Let /e^(IR4) with supp/c=0. From Lemma 2.2
we know that A{f)~ is affiliated to 91(0). Let

A(f)~ = V\A(f)\ = \A(f)*\V (2.18)

be the left, respectively right, polar decomposition of A(f)~. Then the partial
isometry V and the spectral projections of the positive operators \A(f)\ and
|4(/)*| are contained in 91(0) [6]. The initial support of V is the range of
\A(f)\9 the final support is the range of |,4(/)*|. So

A(f)~ = V\A(f)\* \A{f)\* = \A(f)*\± V\A(f)\K (2.19)
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Let Eλ, λ>0, be the spectral projection of \A(f)\ on the interval [0,λ]. Then
Tλ = \A(f)*\*VEλ\A(f)\*eSH(Θ). Since the bounds \\A(f)R2k\\, \\A(f)*R2k\\ <oo
imply the bounds |||4(/)|±1**||, \\Rk\A{f*\*\\ < oo [7, VI, 1.38], we have

RkA(f)Rk = w-\imRkTλR
k. (2.20)

So RkA(f)Rk is in the weak closure of 1**21(0)1** for any /e^(IR 4) with
supp/c=$. Now as before choose / with j / = l and set fn(x) = n4'f(nx). Then
from the strong continuity of the translations we have

which proves one direction of the theorem.
b) To prove the other direction, we consider a quadratic form A on #°°(lί)

such that RkARk is in the weak closure of l**2ί(Θ)Rk for any neighbourhood Θ
of the origin. Let Θ be such a neighbourhood, and let Ce2I(0) with C#°°CfiO,
C * ^ 0 0 ^ ) ^ 0 0 ^ ) . There is a net 4 A G 2 1 ( 0 ) such that RkAλR

k-^>RkARk.
Then for any Φ,

(2.22)

hence A fulfills the locality condition (F2). q.e.d.

3. Discussion of the Results

Given a local net 0-»2I(d?) and a covariant representation (π,Jf) with spec-
trum condition, we have found a class of Wightman fields which is intrinsically
characterized by the local net and the representation. Of course one should
expect that this class should be the same for each locally normal repre-
sentation. At the moment we are unable to prove this conjecture except for
representations which are particle excitations of some vacuum representation
[8].

More interesting is the question: which information of the theory is coded
into the structure of the field space FΊ F has the structure of an inductive limit
of Banach spaces Fk, fc^O, where

Fk = {AeF\ ||1**,41**|| <oo}. (3.1)

d(A) = inΐ{k^01A eFk} may be called the high energy dimension of the field A.
In typical cases one should expect that there is only a finite number of linearly
independent fields in each space Fk. In these cases, theories may be partially
classified by their dimension function k-^ dimFk. So, asymptotically free theo-
ries probably have the same dimension function as the associated free theory.
Another interesting aspect of the inductive limit structure of F is the existence
of a set of subnets 0—>2Ifc(0), where 2Ifc(0) is generated by the bounded
functions of A(f) with AeFk and supp/c(9. From the experience with free
theories and perturbation theory, one expects that 2Ik = 21 for some k> 0. If a
local net is generated by its associated Wightman fields, properties like weak
additivity and duality may be obtained directly.
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So there is a certain amount of information in the field space F which may
be used to specify a given theory to some degree. To get a more detailed
description, one could try to identify a product structure in F induced by the
product structure in 21. Such so-called operator product expansions are known
for free fields and in conformal field theory [9], and they presumably hold in
any renormalizable field theory. Operator product expansions may lead to
the definition of a theory without referring to a Lagrangian [10]. Perhaps our
methods may serve to clarify the intrinsic role of these expansions; we hope to
discuss these questions elsewhere.
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