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Abstract. The well-posed property for the finite time vortex sheet problem
with analytic initial data was first conjectured by Birkhoff in two dimensions
and is shown here to hold both in two and three dimensions. Incompressible,
inviscid and irrotational flow with a velocity jump across an interface is
assumed. In two dimensions, global existence of a weak solution to the Euler
equation with such initial conditions is established. In three dimensions, a
Lagrangian representation of the vortex sheet analogous to the Birkhoff
equation in two dimensions is presented.

1. Introduction

A velocity discontinuity (vortex sheet) in an ideal incompressible fluid is subject to
the Kelvin-Helmholtz instability [see Birkhoff (1962) and Saffman and Baker
(1979) for a general introduction]. A simple illustration is provided by a flow with
uniform velocity U in the x-direction above the (x,y) plane and with the same
velocity in the opposite direction below this plane. Such a motion constitutes a
stationary but unstable solution to the equations of fluid dynamics (see e.g.
Chandrashekar, 1961). When a slight disturbance preserving the irrotationality of
the flow outside the interface is considered, a linear analysis indicates that the
amplitude of the /c-Fourier mode of the interface corrugation increases exponen-
tially in time at the rate \k U\. The linear problem therefore requires analytic initial
data to be well posed and will generally be so only for a finite time. Birkhoff (1962)
conjectures that the nonlinear problem with analytic initial data is well posed at
least for a finite time. Richtmyer and Morton (1967) make a similar conjecture for
piecewise analytic data.

The present paper is devoted to the nonlinear problem with analytic initial
data. We shall not, as is mostly the case in studies of Kelvin-Helmholtz instability,
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restrict ourselves to two dimensional flow to take advantage of the vorticity
conservation. A system of equations for the interface and the vorticity density is
derived from the Euler equation written in the sense of distribution in Sect. 2. This
system involves first order differential operators and also zero order pseudo-
differential operators. Such operators arise when expressing the interface velocity
in terms of the vorticity density. A proof of finite time analyticity of the interface in
two and three dimensions is given in Sect. 4. It is based on an abstract Cauchy-
Kowalewski theorem in scale of Banach spaces (here spaces of analytic functions)
in the formulation of Nishida (1977); see also Baouendi and Goulaouic (1977)
which improves a result of Ovsjannikov (1971) and Nirenberg (1972). In two
dimensions, our finite time analyticity result is a special case of a result by
Babenko and Petrovich (1979) which deals with the Rayleigh-Taylor problem. The
Babenko and Petrovich proof (which in places is only sketched) uses also scales of
Banach spaces (a la Ovsyannikov, 1971); it puts more restriction on the initial
data. Note that all these results leave room for improvement because the theorems
are restricted to situations where a coordinate of the interface can be resolved in
terms of the other (others). In Sect. 5, we prove existence for all times of a weak
solution of the two dimensional Euler equation with vorticity concentrated on an
analytic line. The last section is devoted to a Lagrangian representation of the
vortex sheet which is an extension of the Birkhoff equation (1954,1955,1962) from
two to three dimensions.

2. Equation of Motion of a Vortex Sheet

We consider an ideal three-dimensional flow in a domain without boundary and
we assume that the vorticity is concentrated on a surface (vortex sheet). We derive
from the Euler equation

du
+ u.yu=z-yp

a system which governs the time evolution of the vortex sheet and the vorticity
density on it.

The vortex sheet £f(t) is represented by the equation

r = r(λ,μ,t) (Λμ)eΙR2, (2.2)

or when cartesian coordinates are used

χ. = χ.(A,μ,ί) i = l , 2 , 3 . (2.3)

The vorticity density Ω(λ, μ, t) is defined by:

jφ(r)ω(r, ήdr = Jφ(r(λ, μ, t))Ω(λ, μ, ήdλdμ, (2.4)

where ω = Curl u is the vorticity distribution and φ a test function. Both £f(t) and
Ω( -, ή are assumed to be smooth.
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In the absence of irrotational contribution, the velocity at a point exterior to
the vortex sheet is given by

and has limits u+(λ, μ, t) and u~(λ, μ, t) when the point r tends in an arbitrary way
from one or the other side of the vortex sheet to a point r(λ, μ, t)e5f{t). In addition,

1 c r(λ,μ,t)-r(λ\μ\ή

(2.6)

where j indicates that the integral is taken in the sense of Cauchy principal value.
When written in the sense of distributions, the Euler equation reads

<M,Curl<p> = <ω,φ>, (2.7a)

= 0, (2.7b)

^ / φ = 0 , (2.7c)

where φ is a test function in (^(IR3 x IR+))3. In each of the two domains separated
by the vortex sheet Curlu = 0 and divu = 0, and Eqs. (2.7a) and (2.7b) readily imply
that the velocity jump across the vortex sheet

[u]=u+-u- (2.8)

satisfies

[n] N = 0, (2.9)

IU]ΛN = Ω, (2.10)

where the normal vector N is defined by (subscripts ί, λ, μ denote partial derivatives)

N = rλΛrμ (2.11)

and has components (β, γ, δ).
We introduce the three-dimensional manifold Jί = {t = t, r = r(/l,μ, t)} and a

normal vector v to this manifold with components (α = — rt iV, β, y, δ). The volume
element on J( is dv= \\v\\ dtdλdμ. Using the Green formula and Eq. (2.9), Eq. (2.7c)
is rewritten

ί \ M A N) • - ^ - + ([M.M] Λ N) • -J- + JV.[PM; Λ ύ] • φ

(2.12)
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where the last term vanishes because [Curl ύ] =0. In the first term of (2.12) we do
the substitution

^ ^ \ t ) . (2.13)

Vφi at a point of the vortex sheet is expressed as follows:

IliVII dn " ' | | r j 2 dλ 'λ^ \\N\\2\\rκ\\* dλ V λ " " ' \\N\\2 dμ y'λ""'

and finally

1 dφ 1 dφ 1 dφ

Vφ= -\ ^ -(r A N) -(r.ΛiV). (2.14)

||iV|| on II-NΊI ΰλ 11-̂ 11 dμ
Thus

dQ d I Q \ d I Ω
——I K- (rt, r.., N)\ — T— ~-(rt,r2,]S
oX 3/\||iV|| μ J dμ\\\N\\

(2.15)

where (a, b, c) denotes the triple scalar product a (b A C).

/([«,«] Λ N) — ςwMiμdί = j | | ~ {[«,«]

Replacing (2.15) in Eq. (2.12) and writing that the coefficients of φ and — in the

resulting equation vanish, we obtain the system

ίdr
(2.17a)

f
ir>Λ N)M AN}=0-(1

Further simplifications result from the following transformations

^ \VU{ A [u\ . (2.18)
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Since (Curlw)* =0, we have dp* =5^, and thus

Using the equality

δu± δu±

which results from (divw)±=0 and (Curlw)±=0 (see Appendix), Eq. (2.19)
becomes

, - (A(r, Λ

(2.21)
On the other hand

1
 K Λ A0,[M,M] Λ JV= i^jfTίKr,,,N)Ω- p j p - ( M , VN)(iVΛ V)

(LtίJ Λrμ)ΛV (2.22)

and a similar equation where λ and μ are exchanged. Substituting in Eq. (2.17b)
and using the equality

%•>.-%•"-*

which is a consequence of (Curl w)1 = 0 (see Appendix), we obtain

dΩL_ d i Ω 1 d j Ω

Ω ) d I Ω

^ O ^ = 0 . (2.24)

This leads to

Proposition 2.1. If during a period of time, the vorticity of an incompressible three-
dimensional flow remains concentrated on a smooth vortex sheet ίf(t) ={r = r(λ, μ, t),
(λ,μ)eIR2} with a density Ω(λ,μ,t), the following equations are satisfied:

(r,-F) JV=0, (2.25a)

Έ +
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where

N = rλΛrμ (2.25c)

and

1 ' r{λ,μ,t)-r{λ\μ\t)

Remark 2Λ. The two dimensional case often considered in the context of Kelvin-
Helmholtz instability is recovered by taking r(λ,μ,t) = {xi(λ,t\ μ, x3(λ, t)} and Ω
parallel to the x2-direction and independent of μ. The motion in the (x1?x3)-plane
is governed by

where the components of ρ and n in the (xί9x3) plane read

and

Remark 2.2. The above systems which are reversible in time, are equations of
contact discontinuity without loss of energy.

3. Linear StabOity of a Flat Vortex Sheet with Uniform Vorticity Density

When the vortex sheet can be resolved in the form z = z(x9y,t), Eq. (2.25) reads

where the subscripts 1, 2, 3 refer to the cartesian components of the vectors and

When linearized near the solution corresponding to a flat vortex sheet in the (x, y)-
plane with a uniform vorticity density Ωi0) = {Ω(?\ Ωf\ 0), Eqs. (3.1) and (3.2)
become
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(the subscript denotes infinitesimal perturbations) and

Uvp . f e α s Λ V P ^
4π\ F | ρ | 3 \ 3 2 dyj P | ρ | 3

^ ^ i (3 4)

with ρ = (*,)>)• The two dimensional Fourier transform of vp-~y is

k
2iπ—r- =2iπ(cosθ, sinθ), where θ is the polar angle of the wave vector k. The

*/c|
Fourier modes of the disturbances, denoted by a superscript , thus satisfy

(3 5)
( }

with

/ 0 -sin# —-cos# 0 \

-^/c2 |Ω< O ) |2sin0 0 0 ^(k Ω<O))sin0

| 0 0

0 -^(k

The eigenvalues of the matrix A read

^ = 0 , ^ = 0,^3=-α,A 4 = α (3.7)

with

α = i|/cΛΩ<0>| = i|/c [M]|. (3.8)

Perturbations transverse to the direction of streaming are thus unaffected
(Chandrasekhar, 1961, p. 484). The associated eigenvectors are given by

^ 2 = ((ί2(0) /c),0,0,i/c2|Ω(0)|2)

Λ 3 =(i, -sinθ|/cΛΩ(0)|,cosθ|/cΛΩ(0)|, -(/c Ω(0)))

(β ( 0 ) /c)). (3.9)
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In two dimensions, the system (3.1) is replaced by

yt=-yx

υi+v2> ( 3 1 O a )

Ωt+^{Ωv1) = 09 (3.10b)

where x = xv y = x3; the components of v in the (xvx3) plane read

Note that (3.10b) is a continuity equation for the vorticity density. The system
(3.10) also displays an instability at the rate |fc£2(0)| when linearized near a flat
interface with a uniform vorticity density Ω(0\

Because of this instability known as the Kelvin-Helmholtz instability, ana-
lyticity of the initial data is required for the linear problem to be locally well set.
Birkhoff (1962) conjectured that it is also the case for the nonlinear problem.

4. Short Time Analyticity of the Vortex Sheet

Local existence for the nonlinear problem both in two and three dimensions is
based on an abstract nonlinear Cauchy Kowalewski theorem in the formulation of
Nishida (1977) (see also Baouendi and Goulaouic, 1977) which improves a result of
Ovsjannikov (1971) and Nirenberg (1972).

Theorem (Nishida and Baouendi and Goulaouic). Let Sf = {Bs}s>0 be a scale of

Banach spaces, and let all Bs for s > 0 be linear subspaces of Bo. It is assumed by
BscBs> II * Us' = II * Us for 5 ' = s> w h e r e II ΊL denotes the norm in Bs.

Consider in Of the initial value problem of the form

γt=F(u(t\t) \t\<δ

n(0) = 0. (El)

Assume the following conditions on F:
(i) For some numbers R>0, η>0, so>0 and every pair of numbers s, 5' such

that O^s'<s<s0, (w, t)-+F(u, t) is a continuous mapping of

{i*eBβ;||iι||β<Λ}x{ί;|ί|<ι/} intoB,,. (HI)

(ii) For any s'<s<s0 and all w, veBs with | |M| | 5 <JR, | M | S < # and for any t,

\t\<η, F satisfies

t;||s/(s-s/) (H2)

when C is a constant independent of t, u, v9 s or s\
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(iii) F(0, t) is a continuous function of t, \t\<η9 with values in Bs for every s<s0

and satisfies, with a fixed constant K,

\\F(0,t)\\sίK/(so-s) 0^s<so. (H3)

Under the preceding hypothesis there is a positive constant α such that there
exists a unique function u(t) which, for every positive s<s0 and | ί |<α(s 0 —s), is a
continuously differentiable function of t with values in Bs, ||w||s<.R and satisfies
(El).

// in addition to (HI) and (H2) with t complex, F satisfies the following as-
sumption: for 0 < s ' < s < l and u holomorphic for ίeC, |ί|<<5 valued in Bs with
sup ||w(ί)||s<R, ί—>F(ί, u(t)) is a holomorphic function for \t\<η valued in Bs,, then

\t\<δ

u is an holomorphic function of t with values in Bs.

For the use of Nishida theorem, the main quantity to deal with is the nonlinear
integral operator (n = 2,3)

r r(xί,...,xn_1)-r(x'v...,x
f

n_1)

*\r(x x )-r(x' x' ) \ n

which solves the equation

V AV=Ω{r)®δ{r-r{x1...xn_J).

In three dimensions, we shall study this operator following the general method for
singular integral operators in the Holder spaces Cfcα. In two dimensions, it turns
out that, due to the fact that {r = r(x)} is a manifold of dimension 1, the study is
simplified by using auxiliary complex variables and the classical relation between
analytic functions of z = x + iy and harmonic functions of (x, y). Therefore, we shall
include different proofs in two and three dimensions.

A. Local Analyticity in Two Dimensions

As is generally the case in numerical calculations we assume that the interface is
periodic in the x-direction. We look for solutions (Ω, y) (x, t) which would be the
restriction of analytic functions (Ω, y) (x + iζ, t) defined in strips of complex plane.
Since the problem is nonlinear, it is convenient to deal with Holder spaces (defined
below), which are stable by multiplication.

The scale of Banach spaces we use is therefore constituted by the spaces
Bs(s>0) of π-periodic functions, analytic in the strip bs = {(x, ζ), xelRJπZ, |CI<s}
with the Holder norm

wherein

(x,ζ)ebs
(x',ζ)ebs

\u\s= sup \u(x + iζ)\.
(x,ζ)ebs
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We use the same notation | | s in the case of functions of two variables defined on bs

\φ\s= sup \φ(x + iζ,x' + iζ)\.
(x,ζ)ebs
(x',ζ)ebs

When π-periodicity is assumed, the components υλ and v2 are easily computed
using complex representation

z(x,t) = x + iy(x,t)

ϋ(x,t) = υ1-iv2, (4.1)

v{Ω, y} (x, t) = - ~ 7 , W'*}, , dx'
2ni _lz(x,ί)-z(x',ή

= -ir-- / Ω(x\t)cot(z(x,t)-z(x\t))dx\ (4.2)
Z7Ll x-π/2

which gives

vi{Ω,y}(x,t)=-- I — -gi(x,x\t)Ω(x\t)dxf (4.3)
Z π x-π/2 Sin[X — X )

with

, , 1 sh2(y{x,t)-y(x',ή)
1 4π sin(x —x')

sin2(x — x')

(x-x

gt(x,x, t) for i= 1,2 are defined by continuity.
ι;1 and ι;2 are analytically continued in the strip bs by

— X

X j i ( 4 . 5 )
x-π/2 Sin(X X )

If / is an analytic function in bs, we have for any s' <s

and the main part of the proof consists in establishing the

Proposition 4.L For |Imj/Js,|Im>ys strictly smaller than 1/2 and \\yx\\s, \\yx\\s, \\yxx\\s9

\\yxx\\s> Hulls' IÎ 11 s bounded, the analytic continuation of v to complex space variable
satisfies ( i=l,2)

^ f l l l . + l l ^ - y j I . + l l ^ - ^ J I J . (4 .6)
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Proof. We adapt the method of Ladyzenskaya and Uratlceva (1968) (Chap. 3,
Sect. 2) for elliptic operators. We define

U{Ω, g} (x + iζ) = X j . f* Ω(q + iζ)g(x + iζ, q + iζ). (4.7)
x-π/2 simx — q)

We have

U{Ω9 g) - U{Ω, g} = U{δΩ, g} + U{Ω, δg}, (4.8)

where (by symmetry)

U{δΩ, g} (x + iζ) = X j - — 4 {<5ί2(4 + if) ̂ (x + iζ, q + iζ)
sm(x — q)

It follows that

sup \\g(x + iζ, ) | | s . (4.9)

We now turn to the quantity 1/(1){&Q, gf}(x + iC)- ̂ (1){^Ω, g)}{x' + iζ). We assume
x<x' . The case |x — x' |>π/4 is obvious; when |x —x'|<π/4, we write

+ iζ,q + iQ-(3Ω(^ + iζ)g(x' + if,^ + iζ)

x*γ* δΩ(q + iQgjx' + iζ, q + iζ) - δΩ{x' + iζ)g{x' + iζ, x' + iζ)
aq —r-. r

x + π/2 S1I1(X'-^)

x-π/2 [ sin(x-g)

δΩ(q + iζ)flf(x' + iζ, β + iζ) - 5Ω(x' + iζ)g(xf + iζ, x' + iζ) 1
j . (4.10)

The two first terms of (4.10) are both bounded from above by C|<5Ω|s|0|s|x —x'|. In
the last one, referred to as δ, we split the integration domain into the ball
Σ = {q,\x — q\<2\x — x'\} and its complement. Let δΣ and δΣ be the corresponding
contributions to δ

\x — q\a

s u p \\q(x + iζ, ')L f -r— rdq. (4.11)

Since |x — x'| < π/4, there exists C 1 such that sin \x — q\>C1\x — q\ and the integral is
bounded by |x — x'\a.

δϊ = J dq (-—l r - -^-ri r) {<5Ω(̂  + iOffίx' + iC, ί + if)
«/2>|*-, |>2|*-*Ί \sm(x-ήr) sin(x'-ήf)/

ί f if) {0(x + if, 4 + iζ) - 0(x' + if, q + iζ)}. (4.12)
π/2>\χ-q\>2\x-x'\ SlΠ[X — q)
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The first term of δf is bounded by

where the integral is smaller than C\x — x'^.
da

The second term is bounded by |<5OL
s

\x-xT. Thus

rtn 1

(4.13)\£c{ sup \\g(x + iζ9

and

|| t/{Ω,̂ r} — t/{Ω9^}||s^C:{||^Ω||s(|όr|s + |^r | s )+ IIΩ||s(|^|s +1FS^|S)}. (4.14)

The Proposition 4.1 follows from the Eq. (4.14) and the

Lemma 4.1. // |Imyx | s and \lmyx\s are smaller than 1/2 and |Rej;Js, |Rejy s, \yxx\s,
\yxx\s

 a r e bounded, \g.\s and 1^^ (̂1 = 1,2) are uniformly bounded and

\g.-~gi\sSC\yx-~yx\s (4-15)
and

I V9i - VU ύ C(\yx - yJs +1^ - 5>«ϋ

Proof. The denominator of 0; reads

where (|x — x'|<π/2)

and ^ and b denote the real and imaginary parts of y(x + ίζ) — y(x' + iζ). 2 does not
vanish provided

l+(RQA)2-(lmΛ)2 = l~ . S

2

m ^ Λ + . L 1 1 ^ Λcos2fc
sm 2 (x-x') sin 2(x-x')

be strictly positive. This is insured if |Imj;J s<l/2. Lemma 4.1 results from
straightforward calculation.

Since in the estimation of \\v{Ω9 y} — v{Ω, y} \\s the first and second derivatives of
y enter, we also have to deal with the equations satisfied by yx and yxx, and thus to

dv
estimate —-.

dx

Proposition 4.2. For \Imyx\s, \lmyx\s smaller than 1/2, and \\yjs9 \\yx\\s, \\yxx\\s,
\\yxx\\s, H O t | |O| | β , | | O J | S , \\ΩX\\8 bounded,

-\\Ωx~ΩJs+\\yx~~yJs+\\yxx-yxx\\s).

(4.16)
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Proof. — {Ω, y) (x + iζ, t) are easily obtained by computing the derivative of v in the

real domain and then, analytically continuing the expression in the strip bs. Using
the notations (4.1) and (4.2) we have:

The real and imaginary parts are then analytically continued by

We complete the proof by using Proposition 4.1.
Consequently, the system

δ Ω

δv2

( 4 1 9 )
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satisfies the hypothesis of the above nonlinear Cauchy-Kowalewski theorem. This
leads to the

Theorem 4.1. For initial conditions such that the analytic continuations of

^ Mono to BSo, with I m ^

there exists a constant α such that for | ί |<α(s 0 —s), the system (3.10) has a unique
solution (y, Ω) which is an holomorphic function of t with value in (Bs)

2.

Remark. The "classical" proof which will be described in the next section
substitutes for the estimate (4.6) of Proposition 4.1 the refined one

This estimate, valid in two and three dimensions, is more complicated to prove but
makes it possible to use only the three first equations of (4.19).

B. Local Λnalyticity in Three Dimensions

To study the three dimensional problem, it will be convenient to assume that the
strength of the vortex sheet vanishes at infinity. Periodicity in x and y has some
minor additional technical difficulties but should produce essentially the same
results. For our purpose, it is suitable to use the scale of Banach spaces Bs(s >0) of
functions which are analytic in the strip

and belong to L 2 (R 2 + iσ), |σ |<s. We equip Bs with the norm

INILHML + NILI,

with

(ρ,σ)ebs \Q ~ I
(ρ',σ)ebs

\u\s= sup |w(ρ + iσ)|
(Q,σ)ebs

Dropping out the ί-dependence, we rewrite V in the form

V{Ω, z} (Q)=~~ f ^IZtf^ G^ 4) A Ω(q)dq, (4.20)

with

M^Γ
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For | ImFz| s <l, V can be analytically continued in the strip bs as

) = ^ j r(ρ + iσ) - r(q + iσ)

U{Ω, G, z) (ρ + iσ) = - — f l π | 3 G(ρ + iσ, q + iσ) Λ

V{Ω, ^ j
4 π R2 \Q — q\

(4.22)

Proposition 4.3. // (Ώ,z) satisfies | ImFz| s <l, | | |β | | | s J ||Pz||s bounded, and similar
conditions for (Ω,z)9 the analytic continuation of V to complex space variables
satisfies

\\V{Ω,z}-V{Ωrz}\\sύC{\\\Ω~Ω\\\s+\\V{z-z)\\s). (4.23)

Proof. To simplify the writing, we define

r(ρ + iσ) - r(q + iσ)

An £ \ρ-q\2

Then

F{Ω, z} - V{Ω, z} = U{δΩ, G, z} + ί7{Ω, ^G, z} + I7{Ω, G, ̂ z}, (4.24)

with δΩ = Ω — Ω, δG = G — G, δz = z — z and G obtained by replacing z by z in
Eq. (4.21). We separate the contributions from origin and infinity in the above
integrals by introducing an even, smooth function θx with compact support which
equals one in a neighborhood of the origin. We also define Θ2 = l — Θv Then

U{δΩ, G, z} = U{1){δΩ, G, z} + Ui2){δΩ, G, z}, (4.25)

with

• G(ρ + iσ, g + iσ)δΩ^{q + ΐσ)dg. (4.26)

Proposition 4.3 follows from the estimates of \\U(tf\δΩ,G,z)||s, ||(7(/)(Ω,<5G,z||s,
||L/(zf)(Ω, G, 5z)||s given in Lemmas 4.2-4.4.

Lemma 4.2. // z satisfies |ImFz|s<l and \\Vz\\s bounded, we have

\\U^{δΩ,G9z}\\8^C\\δΩ\\89 (4.27)

,z} | | β ^C| |δ0 | | L 2 . (4.28)

d d
Proof By symmetry we have V=

βxί' dx2

where

(4.29)
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Thus

{ \ρ-qfj (4.30)

with

, {δΩ, G, g, z} (ρ + iσ, q + iσ) = (r/ρ + iσ) - rfq + iσ)) G(ρ + iσ, q + ίσ)δΩ£q + iσ)

- (ρ - g) Vr {ρ + iσ)g{ρ + iσ, q + iσ) 5Ω^(ρ + iσ)

= {δΩ^q + iσ) - δΩ^ρ + iσ))(ρ - q) Vr.(ρ + ΐσ)gf(ρ + iσ, q + iσ)

+ {G(ρ + iσ, g + iσ) - #(ρ + iσ, q + iσ)} {(ρ - q) Fr .(ρ + iσ)} δΩ£q + iσ)

-(ρ-q)- Vrj(ρ + iσ)} G(ρ + iσ, q + iσ)δΩ^q + iσ). (4.31)

We then notice that

z(ρ + iσ) - z(q + iσ) - (ρ - q) Fz(ρ + iσ)
1

= (Q - Φ ί {VzMβ + iσ) + (1 - λ)(q + iσ)) - Vz(ρ + iσ)} dλ. (4.32)
0

Consequently

\z(ρ + iσ)-Z(q + ίσ)-(ρ-q)-VZ(ρ + iσ)\ί\ρ-q\1+«\\Vz\\s. (4.33)

Thus, if the hypotheses of Proposition 4.3 are satisfied

\ψM{δΩ,G,g,z}(ρ + iσ,q + iσ)\SC\ρ-q\1+°\\δΩ\\s (4.34)

and

|C/(1>{,5Ω,G,z}|s^C||<5ί3||s. (4.35)

To estimate

' ( 4 3 6 )

we split the integration domain into the ball Σ{q/\ρ — q\^2\ρ — ρ'|} and its
complement Σ ^ I R 2 ^ . Let δiΣ and δtϊ be the corresponding contribution to δv

Using (4.34) and the inequality

we have

(4.37)
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We rewrite δ^ in the form

4 π |β-«|>2|ρ-ρ' |

+ ψ ί V ' ^ i ^ (%/β + *> <1 + " ) - ΨiM +'σ> « + i°))dq (4.38)
4 7 1 |β-«|>2|ρ-ρ' | \Q ~ <l\

The first term of the right hand side of (4.38) is bounded by |ρ-ρTΊ|<SΩ||s.
 I n the

second term,

iσ,q + iσ) - ψj/f(ρ' + iσ,q + iσ) = Aβ + Bjtf + Cjιf + Djtf

(4.39)

with

^ = (δΩ,(ρf + iσ) - 5O/ρ + iσ)) {(ρ - 9 ) VT{Q + iσ)} ^(ρ + ίσ,q + iσ)

£;, = {(ρ - ρ') VrfQ + iσ) + {ρ' - q) (Γr/ρ + iσ) - Ftyρ' + iσ))}(5fl^ + iσ)

— δΩ^(ρ' + iσ))g(ρ + iσ, g + iσ)

Cj€ = (δΩM + iσ)- δΩ,(ρ' + iσ))(ρ' - q) Pr/ρ' + iσ)fe(ρ + iσ, q + iσ)

iσ) {(ρ - ρ') Vφ + iσ) + (ρ' - q) (Fr/ρ + iσ)

- VrfQ1 + iσ)} (G(ρf + iσ, ̂  + iσ) - g(ρf + iσ, q + iσ))

E jV = δΩjiq + iσ) {G(ρ + iσ, q + iσ) — g(ρ + iσ, q + iσ) - G(ρ' + iσ, ̂  + iσ)

+ g{Q' + iσ, q + iσ)} (ρ - q) Pr/ρ + iσ)

Fj, = δΩ,(q + iσ) {r/ρ + iσ) - r/ρ' + iσ) - (ρ - ρ') Vrfg' + iσ) -(ρ-q) (Ftyρ + iσ)

- Pr/ρ7 + iσ))} G(ρ + iσ, g + iσ)

H ^ = δQJq + iσ) {r/ρ' + iσ) - r/q + iσ) - (ρf - q) Ftyρ' + iσ)} (G(ρ + iσ, g + iσ)

- G(ρ' + iσ, q + iσ)).

Aμ does not contribute to δ^,

and its contribution to δtϊ is bounded by C|ρ-ρ'|α | |(5ί2||s. In C7 ,, we notice that

\g(ρ + iσ, q + iσ)-g{ρ' + iσ, q + iσ)\ ̂  C -

<C

Iβ-βl ' Iβ'-βl

iσJ-Fzίρ' + i

(4.40)
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-λ)ρ'O^λ^ί. Since

\g(ρ + iσ, q + iσ) - g(ρ' + iσ, q + iσ)\ ίc(\ρ- ρf + | ^ J ) . (4.41)

The contribution of Cj€ to δtϊ is thus bounded by C\ρ — ρ'|α||<5Ω||s. From (4.33) the
contribution of D^ is bounded by C\ρ — ρ'|αH<5Ω||s. To estimate the contribution of
Eμ we define

. N z{ρ + iσ) z(q + iσ) .. Λ^.
a(ρ + ισ,q + iσ) = - ^ -!—^ }-, (4.42)

α(ρ + iσ, q + iσ) = | ^ | Pz(ρ + iσ), (4.43)

and write

G-g = (a-a)^{ot,a}, (4.44)

with

^ ( ' f l ί ( l + α ^ ί l + α ^ K l + α ^ + ίl+α2)1/2} ' [ }

Thus

(G - g)(ρ + iσ, ̂  + iσ) - (G - #)(ρ' + iσ, q + iσ)

= (α(ρr + iσ, q + iσ) — a(ρ' + iσ, ̂  + iσ))

α, α)(ρ + iσ, q + iσ) — s/(<x, a)(ρf + iσ, q + iσ)}

(α, α)(ρ + iσ, q + iσ) {α(ρ + iσ, ̂  + iσ)

- a(ρ + iσ, q + iσ) - α(ρ' + iσ) + α(ρ' + iσ, ̂  + iσ)}, (4.46)

and

S/(QC, a)(ρ + iσ,q + iσ) - ^/(α, α)(ρ' + iσ, q + iσ)

= 08(a{ρ + iσ, g + iσ) - α(ρ' + iσ, q + iσ)) + # (α(ρ + iσ, g + iσ) - α(ρ' + iσ, ̂  + iσ)) (4.47)

with J* and ^ bounded.
The first term of the right hand side of (4.46) is bounded by

when substituted in E^, the resulting contribution to δ^ is bounded by

|ρ-ρTH<5Ω||s. The second term gives

f dqθ^Q~q][) δΩ,(q + iσ)(ρ-q) Pr/ρ + iσ)^{α,α}(ρ + iσ,q + ίσ)
Σ \Q~cl\

• {a(ρ + iσ, q + iσ) - α(ρ + iσ, g + iσ) - a(ρf + iσ, q + iσ) + α(ρ7 + iσ, q + iσ)} , (4.48)
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with

a(ρ + iσ, q + ίσ) — α(ρ + ίσ,q + iσ) — a(ρ' + iσ, q + ίσ) + a(ρ' + iσ,q + iσ)

= B1+B2 + B3 (4.49)

and

iσ">~zte' + ̂ )-{ρ-Q')• Vz(ρ' + iσ)}, (4.51)

B3=- - ^ - i - {Vz(ρ + iσ) - Fz(ρ' + iσ)). (4.52)

Clearly

UQ-q\)
^ + ^ _ ^ +

ϊ \Q~~Q\

ZC\Q-Q'\'\\δΩ\\3. (4.53)
For the last term, we write

K = ί d q ^ ρ ~ q l ) (ρ-q). Vrj{ρ + iσ)δa& + iσ)^{a, a}(ρ + iσ, q + iσ)B3

ϊ \Q~(1\

= 1 dqθ'ik73

gl) (g-g) Hd + ̂ BsiδΩM + *)*/{*, a}(ρ + iσ, q + i«x)

- 5Ω/ρ + iσ)s/{a, α} (ρ + iσ, q + zσ)}. (4.54)

In (4.54),

\δΩj(q + iσ)j/{α, a} (ρ + iσ, g + ίσ) — δΩ^(ρ + iσ)j/{α, α} (ρ + iσ, q + iσ)|

^ C|^Ω(^ + iσ) - δΩj(ρ + iσ)| + C\δΩ\s\a{ρ + iσ, q + ίσ)- <x(ρ + iσ, ̂  + iσ)|

^C\ρ-qn\δΩ\\s. (4.55)

Consequently

KSC\β-ρT\\δΩ\\s ί ^ M J d β

^C|ρ-ρ'ΠI<SΩ||s. (4.56)

To estimate the contribution of Fj( to δ^, we make the separation

F^D.-D,, (4.57)

with

D1=δΩί(q + iσ){rj(ρ + iσ)-rj(ρ' + iσ)-(ρ-ρ')-Vrj(ρ' + iσ)}G(ρ+iσ,q + iσ), (4.58)

£>2 = (<? - 9) (He +ίσ)- P r / β ' + iσ))δΩM + iσ)G(ρ + iσ, q + iσ). (4.59)
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We have

ID^QQ-QY+'WSQW, (4.60)

and the contribution of D 1 to δ^ is bounded by C\ρ — ρ'|α||<5ί2||s. The contribution
of D2 reads

• {δΩ(q + iσ) G(ρ + iσ, q + iσ) — δΩ(ρ + iσ)g(ρ + iσ, q -f iσ)}

^C|ρ-ρΊα | l^ll s J x ρ~®ldq^C\ρ-ρT\\δΩ\\s. (4.61)

Finally

^ - ^ | 1 + a | ^ | (4.62)

and its contribution to δ^ is bounded by C\ρ — ρ'|α ||<5Ω||S. This completes the proof
of estimate (4.27).

To estimate \\U{2){δΩ,G,z}\\s we use the Cauchy-Schwarz inequality, which
under the hypothesis of Lemma 4.3, leads to

l (4.63)

and

\VU(2){δΩ,G,z}\s^C\δΩ\Li. (4.64)

Lemma 4.3. // z, z satisfy the hypothesis of Lemma 4.2 with \\\Ω\\\S bounded, we have

{δz = z-z)
,, (4.65)

s . (4.66)

Proof Replacing G by δG and g by δg, the proof is similar to that of Lemma 4.2,
provided that estimates of a few quantities which enter in ψjtf{Ω,δG,δg,z} are
established. We have

9 (4.67)

|<3G(ρ + iσ, q + iσ)\ S Q Vδz\s, (4.68)

\δG(ρ + iσ,q + iσ)-δg(ρ + iσ,q + iσ)\ S\ρ-q\α\\ Vδz\\s. (4.69)

Proving (4.67) and (4.68) is straightforward. To obtain (4.69), we use (4.42)-(4.45)
and similar notations for the tilded quantities and write

_ J 1 1 1
θG Og — + α 2 ) 3 / 2 (1 + α 2 ) 3 / 2 (1 + α 2 ) 3 / 2 (1 + α 2 ) 3 / 2

= (α — α) j3/(α, α) — (α — α) jtf(<x, α)

= (δα - δα)jtf(α, α) + δα(s/(α9 α) - j/(α, α)), (4.70)
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which readily leads to (4.69). As a consequence,

\ψjAΩ,δG,δg9z}\£C\Q-q\1+*\\Vδz\\8 (4.71)

and

\U^{Ω,δG,z}\^C\\Vδz\\s, (4.72)

For |ρ-#|>2|ρ-ρ' | , we have

\δg(ρ + iσ, q + iσ) - δg(ρ' + iσ, q + iσ)\

s ' ( 4 ' 7 3 )

(4.74)
\Q-<I\

\δG{ρ + ίσ,q + iσ) - δg(ρ + ίσ, q + iσ) - δG(ρ' + ίσ, q + iσ) + δg(ρ' + iσ, g + ίσ)\

(4.75)

To prove (4.73), we write

δg(ρ + iσ, q + iσ) — δg(ρf + iσ, (2 + iσ) = {δa(ρ + ίσ, q + iσ)

— δa(ρ' + iσ, q + ίσ)}sd(μ, α)(ρ + iσ, g + iσ)

+ <5α(ρ' + iσ, ̂ f + iσ) {^(α, α)(ρ + iσ, q + iσ) - j/(α, α)(ρ' + iσ, q + iσ)} (4.76)

and use |δα(ρ + iσ, ̂  + iσ)-5α(ρ r + iσ, q + iσ)| ̂  C ( ^ 4 + Iβ " ^ Ί α ) II Vδz\\a (4.77)

{α, α} (ρ + iσ, q + iσ)- st{α, α} (ρ' + iσ, q + iσ)| ̂  C ί|ρ - ρ'|α + ^ | ) , (4.78)

and

+ iσ)|^|F<H. (4.79)

The proof of (4.74) is analogous. For (4.75) we simplify the notations and
characterize by a prime the function taken at (ρf + iσ, q + iσ)

δG-δg~ δGf + δg' = (δαf - δαf){jtf{α, α) - jtf{otf, α'}}

+ s/((χ9 α) {δα ~δα- δd + δα'} + (2 - α - α! + α') {«β/{α, α) - j/{α, α}}

+ (2' - α')(^{α, α} - j/{α, α} - ^/{α7, α'} + j/{α', 2'}). (4.80)

From (4.47) the first term of the right hand side of (4.80) is bounded by

and its contribution to \U{Ω,δG,z}(ρ + ίσ)— U{Ω,δG,z}(ρ' + ίσ)\ is bounded by
C | ρ - ρ T || Vδz\\s. By (4.49)-(4.56), the contribution of the second term has the same
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upper bound. To estimate the contribution of the third term, we proceed as in
(4.49)-(4.53) and replace (4.54) by

[ dq θfQ ~f (ρ - q) Vrfβ + iσ) ̂ * (Vz(ρ + iσ) - Vz(ρ' + iσ))Ωe{q + iσ)

{α, a} (ρ + iσ, q + iσ) — j/{a, a} (ρ + iσ, (2 + iσ)}

- j d q ^Iρ'qf U ρ " g ^ Ξ f
+ iσ)

- Ωe{ρ + iσ)(j?/{a, a} -si{&, a})(ρ + iσ, <? + iσ)}. (4.81)

We then use

j/{a, a} - ^{a, a} - «β/{2, a

a}-#{a,a})(a-a), (4.82)

where $ is defined by:

^{a, a} - j/{a, a} - (a - a)(f {a, a}. (4.83)

S is bounded and satisfies

(4.84)

with J^ and 0 bounded. Consequently

i σ ) | ^ | ρ -

The integrals of (4.81) are thus bounded by C |ρ-ρT II ^ Z I L W e finally turn to the
last term of the right hand side of (4.80)

s. (4.86)

Defining

We write

j/{α, a} — &

= Σ #/(-

A2{ot,a} = (x + a

^3{α,α}=(l+α2)

ΛJα,αH{(l+α2

?{oc, a} — j / {α, a} + <s/ {ι

4 i-i i-^;+i;.)+%, 0

-3/2 ( 1 +

) 1 / 2 + (l

δ',α'}

α 2 ) " 3 / 2

+ α 2 ) 1 / 2 Γ 1 .

Aj~A'h + 9i

(4.87)

} - A), (4.88)
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where J^, %j9 and Q}^ are bounded. We have

\Vδz\^

( | ^ ) (4.89)

\AJ-A'j\SC(\ΰ-δi'\ + \a-a'\)ίC['-^-^-+\ρ-ρT).

Finally,

\At -A - A\ + A[\ ̂  C{\δa - δot'\ + |δα - δa'\,

lα-αΊ + lα-αWαΊ + ίlα-αΊ + i a - S Ί J ^ Ί l ^ c ί ^ ^ (4.90)

The contribution to |[/{Ω,δG,z}(ρ + iσ)- C7{Q,5G,z}(^ + iff)| of the last term of
the right hand side of (4.80) is thus bounded by C\ρ — ρΊα||P(5z||s. This completes
the proof of estimate (4.65). Proceeding as in Lemma 4.2 and using (4.68), we
readily obtain the estimate (4.66).

Lemma 4.4. // z and z satisfy the hypothesis of Lemma 4.2 with \\\Ω\\\S bounded, we
have:

\\U<»{Ω9G,δz}\\aίC\\Vδz\\a9 (4.91)

||(7(2){Ω,G,fc}||s^C||F(5z||s. (4.92)

The proof is identical to that of Lemma 4.2.

Proposition 4.4. // (Ω,z) satisfy | ImPz| s <l, and |||Ω|||S, |||Pz|||s, \z\s are bounded, and
if similar conditions hold for (Ω, z), the analytic continuation of V to complex space
variables satisfies

i -z) | | | s + | z-z | s } . (4.93)

Proof Using the decomposition (4.24), and defining

G = G - 1 ,

we distinguish the contribution to V{Ω, z} — V{Ω, z} of

W,{Q + iσ) = j f^\δΩM + iσ)dq, (4.94)
R2 \Q~ I]

θfQf - qj)G(ρ + iσ,q + iσ)δΩ,(q + iσ)dq, (4.95)

f (z(ρ + iσ)-z(q + iσ))G{ρ + iσ,q + iσ)δΩ({q + iσ)dq,

(4.96)
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(4.97)

(4.98)

We readily have

WWJ^CWδΩWy. (4.99)

Defining

we rewrite W^Xρ + iσ) on the form

iσ)= J Θf
\ρ
ffψjAδΩ9G9g9
\ρ — q\

(j=ί92;S=l9293)9 (4.100)

with [see (4.31)]

ψjtiδΩ, G, g, z} = (δΩ^q + iσ) - δΩ^ρ + iσ))(ρ7 - ^)^(ρ + ίσ,q + iσ)

+ (G(ρ + iσ, ̂ f + iσ) - g(ρ + iσ, q + iσ)) (ρ̂ . - q^ δΩ^q + iσ).

(4.101)

If the hypotheses of Proposition 4.4 are satisfied, we have

\g(ρ + iσ, q + iσ)\ S C\ Vz{ρ + iσ)\

\G(ρ + iσ, q + iσ) - g(ρ + iσ, q + iσ)| ̂  C|ρ - ^Γ. (4.102)

Consequently

\]R2I^-^I /

f l ( l ρ " J } ) 2 (4.103)

In the last integral we use the Cauchy-Schwarz inequality in the form

(4-104)
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Substituting in (4.103) and using the Fubini theorem, we finally obtain

i (4.105)

To estimate || W2

2)\\Lp we notice that

Thus

R2

= \ dρ
R 2 \ R 2 \ρ~q\ / \R2

Using (4.31), P03

υ is rewritten

|yα>(g + ίσ) = J g ^ ^ " ^ φ3^{^Ω, G, g, z} (ρ + iσ, q + ίσ)dg, (4.108)

with

(4.109)

Thus

L|= J I s\) |ρ_g|2-αy

/ f) (\n~n\\ \21
(4.110)

| | L | is readily bounded:

? 2 ^ f ^ f dq-j 7~—\δΩs(q + iσ)\dq) ^\\δΩ\\* . (4.111)
R2 \IR2 l^~"^l /

iσ) reads

W^4^ + ia)= J -r^—j^-ψjA^δG,δg,z}(ρ + iσ,q + iσ)dq, (4.112)

with

(4.113)

Thus

,. (4.114)
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ύQδz\2

s. (4.115)

Finally, proceeding as in the estimation of ||W(

3

fe)||L2, we obtain

This completes the proof of Proposition 4.4.
We thus have obtained that, if Ω, Ω, z, z, Vz, Vz belong to Bs with |Im Vz\s < 1

and | ImFz | s <l , we have:

s S)|||s}. (4.117)

So, we can apply Nishida's theorem to the system

^Vz=-V{zxV1+z,V2-V3) (4.118)

l f l — Uavj U
dt dx ι dy

and obtain the

Theorem 4.2. For initial conditions such that the analytic continuation of z0, Fz0, Ωo

belong to BSo with | I m P z o | S o ^ C < l , there exists a constant a such that for
| ί |<α(s — 50) the system (3.1) and (3.2) has a unique solution (z,Ω) which is a
holomorphic function of t with value in {Bs)

4.

5. Existence in the Large for a Two-Dimensional Flow with Initial Discontinuous
Velocity

In two dimensions, it is possible to give a meaning in the weak sense (for all time)
to the Euler equation with initial condition u0 which is irrotational in each of the
two domains of IR2 separated by an analytic line {r = r(x) = (x,f(x))} and
discontinuous across this line. Using the notations of Sect. 2, we have

(5.1)

We assume u0 bounded in L 2 (R 2 ) 2 and Ωo bounded in //(IR).
We consider the regularized problem with initial condition

uε

0 = ρε*u0, (5.2)

where the regularizing kernel ρε is given by

) 2 j ') (5.3)
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with C such that J ρε(r)dr=l. The initial vorticity reads
R2

ωε

0 = Curlρε*u0 = J Ω0(x)ρε(r-r(x))dx. (5.4)
IR

This problem has a unique smooth solution (u\pε) (Wolibner, 1933; Kato, 1967)
such that uε and ω ε = Curlwε remain in bounded sets of L°°(0, T; L2(IR2)2) and
L°°(0, T; L^JR2)), respectively. In addition

«''ί)= - Yn W*^'ί)Ξ - Yn I V^ Λ ^'' t ) J ί" (5 5)

Lemma 5. If ωε is in a bounded set of L°°([0, T[, L^R2)), there exists a subsequence
uη of uε which converges in Lloc([0, T[ x IR2) and thus almost everywhere in r and ί,
when η^O.

Proof ωε is in a bounded set of L°°(0, ^ L ^ I R ^ C L 0 0 ^ T[, P F " 1 ' 3 / 2 ^ 2 ) ) . Thus a
subsequence α/* exists which converges in L°°([0, T[, V F " 1 ' 3 ^ ^ 2 ) ) weak star.

Let θα(|r|) be a smooth function with support {r/\r\ ^1}, bounded by α, and let
K be a compact set of IR2

OK OK r
Ώ (r t\ CIΊ (r π l

τ r

\n
(5.6)

The first term of Eq. (5.6) is bounded by 4παT|£20|Li(]R) and is thus made arbitrarily
small by a convenient choice of α. In the second term ωη(r, t) is a Cauchy sequence
in the L°°([0, Γ[, F Γ " 1 ' 3 / 2 ^ 2 ) ) weak star topology. Since for fixed r,

(1 —θα(|r-rΊ))τ^£^p- belongs to

(5.7)

is a Cauchy sequence for fixed r and t. Thus φ*7 converges almost everywhere in r
and ί. In addition

| V O I ^ C | Ω | l ( R 2 ) . (5.8)
It follows that φ^ converges in L1([0, T[ x K) and the second term of (5.6) can be
made arbitrarily small by taking η and η' small enough.

Using the lemma, we can pass to the limit in the Euler equation written in the
sense of distribution and obtain the

Theorem 5. For initial velocity bounded in L2(1R2)2 irrotationnal in each of the two
domains of IR2 separated by a smooth line, and discontinuous along this line with
vorticity density bounded in 1/(111), the two dimensional Euler equation has a weak
solution in L°°(IR+,L2(1R2)2).

Remark. We do not know if this solution is unique: uniqueness of solutions to the
two-dimensional Euler equation is established only if the initial vorticity belongs
to L00 (Yudovich, 1963 Bardos, 1972).
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6. Extension of Birkhoff Equation to Three Dimensional Kelvin Helmholtz
Instability

To describe the development of the instability and the possible occurrence of
singularities, it is of interest to get a representation of the vortex sheet which
permits rolling up of the interface. It follows from Eq. (2.25a) that there exist two
functions f(λ, μ, t) and g(λ, μ, t) such that

μ (6.1)

Let λ(a, β, t) and μ(α, β, t) be solutions of

λt=f{λ,μ,t)

μt=g(λ,M

~λ{β0)

We consider the point Λί(α, ft t) which satisfies:

dM
— (α, β91) = φ , ft ί) = V{Mμ9 ft ί), μ(α, ft ί), ί)

M(α,ftO) = r(α,ftO). (6.3)

It thus follows, from (6.1) and (6.2) that

j t {M(α, ft ί) - r(X(α, ft ί), μHμ9 ft ί), 0} = 0. (6.4)

So, the point M(α, ft ί) remains on the vortex sheet

M(α, ft ί) = r(I(α, ft t), μ(α, ft ί), ί) (6.5)

and V identifies with the vortex sheet velocity. Using (6.3), (6.4), and (2.25c), Eq.
(2.25b) is rewritten:

1 dV
Ωt + λtΩλ + μtΩμ + Ω(fλ + gμ) = ? ^ ^ — {|rμ|

2(ί2 rλ) - (rλ rμ)(fl rμ)}

To estimate (fλ + gμ) we write [from (6.2)]

5 ~ dλ dp,

dot * λdoc μ doc'

5 d ~ d
and similar equalities for —/L τr7;λv — μvda op op

After linear combinations of these equalities, we obtain

4. (6-8)
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where

dλ dμ dλ dμ
= da"dβ~dβΊfo
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(6.9)

is the Jacobian of the transformation (α, /})H»(1, μ). Thus, the left hand side of (6.6)

identifies with — - (JΩ). In the right hand side, we express —- and ^— in terms of
J dt dλ dμ

dv dv , „ dM Λ dM _ ^ .
— and — and r, and rn in terms of -r— and ^—. Defining
da dβ λ μ da dβ

and noticing that

we finally obtain

dΞ _

lt =

S(α, β, t) = J(α, β9 t)Ω(λ(a, β, ί), μ(α, /f, t\ t)

dM dM

la~A~dJ

(6.10)

(6.11)

dM\\

δM'

da

dv_

dβ

dM dvίdM dM\)

'da\jfo'ljf)}'
(6.12)

Proposition 6. Using α Lagrangian parametrization of the interface with initially
M(α, β, 0) = M0(α, /?), ί/ie equations which govern the motion of a vortex sheet in a
genuine three-dimensional ideal fluid read

dM

Ί)Γ{

d 1 ίdvίdM ^ dM dM\ dv (dM „ dM dM

dM dM

~da

(6.13)

where

v(
*Rt\ l r M(aJ,t)-M(a\β\t)

is f/ze velocity of the current point of the interface and Ξ is the vorticity density
defined by (φe(^(IR3))3)

<ω, φ) = J 2(α, /?, ί) φ(M(α, /ί, ί))dαdj8.

In two dimensions, the Lagrangian description of the Kelvin-Helmholtz
instability simplifies considerably. We start from system (2.26) and proceed as
above we obtain that v identifies with the velocity of the vortex line and that the
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vorticity density relative to the Langrangian coordinate α, JΩ is conserved along
the trajectories (J = dλ/da). It follows that the current point ra(α, t) of the interface
satisfies

d m < . . ^ 1 " 7 ° m(cc,t)~m(oc',t) , „ , „ , ,

Or using the complex representation (overbar denotes complex conjugate)

Z = mί(oc,t) + im2(a, t)

which is the equation proposed by Birkhoff (1955, 1962) for the two dimensional
Kelvin-Helmoltz instability.

An asymptotic study of the Birkhoff equation in the case of an initially
sinusoidal corrugation of the interface of small amplitude ε has been done by

Moore (1979) who obtained a singularity at a time ί ^ l n - . As noted by the
o

author himself, this analysis is not rigorous because the asymptotic expansion does
not remain valid in the neighborhood of the singularity. Nevertheless, an
interesting property of Moore's solution is that at the instant where the singularity
forms, the interface is still slightly distorted. There is no sign of rolling up as
suggested by numerical calculations based on a representation of the vortex line by
discrete point vortices, a method which is poorly adapted to study the occurrence
of singularities. Recently, the Birkhoff equation for a periodic vorticity density
concentrated on a straight line has been numerically investigated by computing
the Fourier components of the interface corrugation as the sum of the temporal
Taylor series (Meiron et al., 1980; Morf et al., 1980). Occurrence of a singularity is
obtained after a finite time, in qualitative agreement with Moore's asymptotic
result. Extension of the above asymptotic and numerical analysis to the three
dimensional problem is under investigation.

Appendix

In this appendix, we derive from the equalities (V-u)+=0 and (curlw)±==0, the
relations

Ϊ Γ Λ - ^ ^O, (Al)

Using Eq. (2.14), we have,

0=||iV||2(F.«)± = ||ΛM|iV m +[ru>N,^r\-[rifN,^-\, (A3)
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NΛ \— '— : N\r +\ N\rλ + N\ -rμ rλ\, (A4)

and Eq. (Al) follows by writing that the normal component in Eq. (A4) vanishes.
Substituting Eqs. (A3) and (A4) in the identity

(A5)
\on) \ \onj i \ \uπ) i

we get

(A6)

which we rewrite

=(A N)N-NΛ(NΛA), (A7)

dn

with

We thus obtain Eq. (A2).
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