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Abstract. We consider one dimensional systems described by many body
potentials with finite first moment and prove that the correlation functions are
analytic in the interaction parameters. This result is not new (Dobrushin, 1973)
but our proof is simpler and physically more transparent. We show that by
introducing suitable blocks and averaging over the variables associated to a
subset of the blocks (decimation procedure), the resulting effective interaction
is such that the system can always be dealt with as a high temperature system.

1. Introduction

In this paper we will deal explicitly with the lattice gas case only; the extension to
other cases is considered in Sect. 3.

Consider the elements of Z as the sites of a one-dimensional lattice, each site
may be occupied by 0 or 1 particle. Call K, the product of one copy of the set
{0,1} for each point of the set ACZ and K={0,1}*. x,e K, is a configuration of
occupied and empty sites in A.

The energy of a finite volume A, when Z\A is empty, is given by:

Ho%x )= > oX)[]x,, (L.1)
XcA teX

where the potential @ is a real or complex function defined on the finite subsets of

Z. In the sequel we will consider potentials belonging to two Banach spaces & and

é':& is the space of translationally invariant real potential with norm:

diamX +1
loll= Y. —— o)< 0. (1.2)
Xs0 le
&' is the larger space of complex potentials with norm
diamX +1
ll@ll= ) ——supl®X +1). (1.2)
Xs0 IX' teZ

0010-3616/81/0080/0255/$03.00



256 M. Cassandro and E. Olivieri

In this paper we will show that the infinite volume correlation functions vary
analytically with the interaction parameters. This problem was already solved by
Dobrushin [1] using sophisticated estimates of mean values of exponential
functionals of random processes. We present a new proof based on a specific
renormalization group transformation (the so-called decimation [2]) and the
cluster expansion [3-6]. For the sake of simplicity we state our results for the
pressure; but the reader could easily work out the analogous properties for the
correlation functions by slightly modifying the proof.

Theorem. Let @& and V,e&' with ||Pll=1 i=1,2,...,d and A=(4,; .., )cw,

where w is a suitable sphere in € centered at the origin. Then the limit

d
) T _

F(¢+ i=zl Ai‘Pi> = lAIETZlﬁlog(‘czA exp[ HA(xA)])

exists and is holomorphic in A on w.

The proof is given in Sect. 2; in the sequel we will briefly sketch the general
strategy of our approach. We start by grouping the sites of the lattice in alternating
blocks of different sizes L and M with, say, M = L. It follows from (1.2) that

i) The interaction among consecutive blocks satisfies a bound uniform in L
and M.

ii) The interaction among more than two consecutive blocks or any number of
nonconsecutive blocks goes to zero as L and M — 0.

If we call o(f,) the configurations in a block of size L(M), the partition function
of the system can be written in the following way

Z=Y1e [1 X explI(B; ;o5 )] exp[ZW(et)]

Jj Bj

’ Z{n [exp[](ﬁi, %, 1)]/2 exp[J(B0;41)]
B 5

-exp[}) W(a, B)]} ;

where, roughly speaking, J contains the interactions among nearest neighbor
blocks and W the tails of the potential and perturbations which are small for e w.
For a precise definition of the various terms see (2.1)—(2.3).
The next step is to perform the averages over the f’s (i.e. the x,’s in the blocks of
size M), so that we are left with an effective interaction among the «’s where we can
distinguish three different kinds of contributions:

a) ) W)
b) Z log [ﬂZ J(Bio ;4 1)]

c) log {; n[epr/z expJ]-exp[y. W(aﬁ)]}.

The terms in a) can always be made as small as we please for M sufficiently large
[cf. ii)]. If we subtract from b) the one body contributions, the resulting two body
potentials go to zero when M— oo (see Lemma 3). The quantity in c) can be
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thought as the log of the partition function of a spin system on a lattice where on
each site a spin of size 2™ sits, and where the interactions among different sites can
be made very small for L sufficiently large uniformly in M.

A standard way to study these systems is by a cluster expansion that allows us
to express the log of the partition function as a convergent sum of local terms. We
make estimates (see Appendix A and B) allowing us to apply the general formalism
to our case. We show not only that the contributions from c) to the effective
interaction go to zero for L— oo, uniformly in M, but also that they depend
analytically on the A’s in a suitable neighborhood of the origin (cf. Lemma 2).

In conclusion we obtain, by the decimation procedure, an effective interaction
among the o’s that for L and M sufficiently large is as small as we please.

2. Proof of the Theorem

Let L, M, and p be three positive integers, L and M are both odd and p is arbitrary,
4, is the interval centered at the origin: [4,|=2pL+(2p+ 1)M. Consider now the
decomposition of A4, into consecutive blocks B_ , A_,.,,B_,.,,...B,_{, 4, B,
where |4;/]=Land |B;|=M.

Let I;? be the set of all 4 blocks contained in A,,:I'={4,,i=—p+1,...,p} and
analogously for the B-blocks: I;B ={B;i=—p, ..., p}. The decomposition of 4, in
A and B blocks in the limit p— oo induces an analogous decomposition in Z.
TAT®) is the set of all A-blocks (B-blocks) contained in Z.

Call o;=x,, and f;=xp, the configurations in the blocks 4; and B, and set g,
=0=(0,...,0,...,0). For VCIAUI'? we denote by f,(x,) the configuration in
VAaL2(VALY). More precisely:

By {x,, te A,Cuxl'é Ai}, oy {xt, te B,cunrgg Bi},
we still use the notation o for a,, (B, for ). Now rewrite the Hamiltonian (1.1) so
that the interactions among blocks are made explicit

p

—Hf (x4)= Y al()

i=—p+1
we C o
+ ) ) A,‘I.A.A,é(ail"‘ap()_‘_ > JPBro 2 y)
£22 (A .. A, T4 i=—p
F{di, Aiv 1}
+ ) Wa by a, (Biye ) (2.1
55(1) {Bi,...By, . A; ...4, )T

with o_,=a,,,=0. I, consists of all the sets C=4; ...4;, B, ...B, ; A, el}},
B, I'? such that

CATP+0, C+ABA,,, C+AB,
C+Bd;.y, C#*B,
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namely I_";, collects all the sets of 4 and B blocks which are not considered in J

agib(o‘i) = Z D(X) H Xy

XCA; teX

Wl({ ..B,,A; ..A, (:Bil-“o‘jq): > (p<<
! o ‘ 0%X; CBi .0 %Y, 4, k

4 q

H szl_[ ﬂxz

k=11eX;, h=11e¥,

s
i
<z
-
= _
Ce
<
N
Se—"

TP(Boron s 1) = Y PO x+WE o).
XCA;-1UB;UA, teX
XnB;#+9

d
Consider now a potential of the form @+ ¥, with ¥,= ) 1,¥, where €6,

i=1
Y.e& with ||P)l=1, i=1,...d and A=(4,,...,4,)eC* and define the effective
Hamiltonian obtained via the decimation transformation by

p

exp(— A" (e a)) =exp { Y A Hw)

i=—p+1

FY S W )|

£22 (A, A F Ak 1)

P
: Z eXp{ Z J;I)(Bi’“ia“iﬂ)+J:'P'l(ﬁi’°‘i’°‘i+1)

Bre i=-p

X Walli (B, ---,och)}, (2.3)

LB, Ay, )elp

q

g

+

R
viv

or in more compact form
o +¥ : D+
+ -
—Hy, " Horg)= i _§;+ ) a; o)
+¥,
+ ) Y Wor e (o 0q,)

22 {A, ... A F{AiA 4+ 1}

p ~
+ Y logZg® @)+ Hy " *ora)
i=-p
with '
Zg (@)= Y exp{J (B o iy 1)} (2.4)
ﬂl

. exp(JP(Bo; 4 1)
_Hi:'l'a(ocrg)zlog y p( z((pﬁlalaw V) ‘l
Brei=-p+1 ZSXP(Ji (Biorot; + 1))J

B-

1

: H exp[ WE* ¥ *(acBe)] 11 explJF*(Biono . )]

Cel'yp i=—p
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Definition 1. Given an arbitrary set G, let G be an arbitrary subset of G and ¥ the
collection of all finite subsets of G. We will call any C;e% a bond. C; will denote the
union of the elements of G belonging to C,.

Definition 2. A set of bonds C, ...,C,e¥%, C +#, is a polymer R if for any ch01ce of
C,; C,eR 3C;,...C; eR with C;, Ct,C C and C, mC,“#:ﬂ h=1,..,r—1

Let Z be the set of all polymers. For R=C/, ...,C,, let R= U C,R= U C,
The activity is a function {:Z—C. A system of polymers in F C G with act1v1ty 4
and hard core interaction is described by the partition function:

n

EfD=1+ % )y [1UR). (2.6)
nzl Ri...R, i=1
R,CF,R,r\Rj=0

Lemma 1. Given a polymer system, if the activities are such that

KRI=a® TT oc 2.7)
CeR
with
O<o<l, @c>0, sup) @.<K
aeG Csa
then, when

expK<[}/o(2—/0)]"*

the following relations hold :

sup Y LR < Ko

aeG R:Rsa _ o(expK —1)
(I—gexpK)(1—o)

=G(K,0), 2.8)

nz1 R;...R

Y% lonlR, R T HR)

SRiSR
<(¢(r)_PLOK. V/9IR]
- 1— ]/Eexp[G(K, ]/;)]
with
1 ,
¢r(Ry, . R)=— Y (—1rCesing, (2.9)

M. ge9n(Ry...Rw)

where 4 (R, ...R,) is the set of connected graphs with n vertices (1, ...,n) and edges
(i, j) corresponding to pairs R;, R; such that R,NR ;= 0. We set the sum equal to zero if
4, is empty and one if n=1 and finally

n

ZO=ep| L T orlR, R [TUR)). (2.10)

n=1 Ry. i=1
RCF
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Proof. (2.9) and (2.10) can be deduced by standard methods from (2.8) [3]. The
proof of (2.8) is given in Appendix B.

Lemma 2. Set G=TAUI'%, G =T and define the activities of the associated polymers
in the following way :
For
R=C,,..,C, with Ciel, for |C|>1,
Cel® for |C|=1,

eXp[«’?(ﬁia o %4 1)]
B& BieR ZCXPEJ?(ﬁb o %y 1)]
B

CA(R) =

[T lexpUc (o, Be)— 11, @2.11)
s=1

where Up=JF*(Boe;, ;) and for C+ B, Cel,, Uclac, Bo) = WE ™+ **(ac, Bc). For the
remaining polymers [(R)=0.

Then 3L, such that VM and for A varying in a sufficiently small sphere w,, whose
radius tends to zero as M— oo : H‘fl’:""‘(arg) of Eq. (2.5) is given by the following
expression

—HY o= Y WAy, 2.12)
Dcrg
W (0) = 22 orRy R TTGRy, (2.12))

n
where )P is a sum over all the clusters of polymers such that || {(R;) is a function of
i=1
all the variables o, ...a; . but does not depend on any other o. Moreover VA, DCA,,
Vo, W2 (ap) is a holomorphlc function of A in wy,.

Proof. Setting G=TAUI®, G=T2, it is easy to check that

exp[—HS e )]=1+ Y Y [T GR). (2.13)
ity
R,nR =9

In Appendix A we will show that for R=C,,...,C}, B, ..., B, ,
Cel, s=1,..k, ¢=1,.,h

ok h
CRI =™ [T 20WE ™0 TT 21771 (2.14)

where

e=(+exp(—lieln™*,
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and we denote by || f| the sup norm of the continuous function f. We have:

sup Y, [WE | =¢(l) O (2.15)
i CsB; ®
uniformly in M.
Equation (2.15) is an immediate consequence of the fact that for the potentials
belonging to & [see Eq. (1.2)], the interaction between two consecutive halflines is
finite. Furthermore if A€ w,,, i.e. 4:

1

4Mdmin[1,1og(1/5(2— Vo) 1, (2.16)

sup |4 =
..... d
it is easily seen that for L sufficiently large the conditions of Lemma 1 are satisfied
and (2.12) holds.

Since each {,(R) is an analytic function of 1 and the series (2.12') is absolutely
and uniformly convergent for A€ w,,, it follows that VA, VD CA , Vo, W2+ ¥2(otp)
is analytic for Ae w,,.

Lemma 3. VL < o0

Zi (@) 25 @) (2.17)

lim sup lo : P
Mo anms O |25 0(®) 23 (@)

Proof. The proof, a simple application of Theorem 3 of [8], is given in Appendix C.
Proof of the Theorem. Using definitions (2.1), (2.3), and (2.3") we get:

Z,(@+¥P,)= ) exp[—H} "(x, )

»

= ¥ expl— A )= [] Y expla®()]

arg i=—p+1 o

o expla®(e)]
. expla®(o)] .
L Stz otk P

oy

where

Z% % AL ()

_._B(;L_OQ +loglgl—‘01(_),
Z5, (D) Zg," (P)

VA,.(‘Xi) = a‘iyl(o‘i) >

(_Zd)(o‘i) = a(p(“i) +log

Vi, ,(O‘io‘H )= W:{:,AA, (o),

Zym (@)-25° (@)

it1

Z5:2(@) Zg (@) |

+ log

and for 4; .. A, + AA, |, A,
Vo oa, @ -0) = Wt (ocil...oci[)—|—l7fo";’"'

e

(0,4 (2.19)
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Now setting G=I'=G (see Definition 1) and

exp[a®(e;)]
O,(8)= i e I l V,—
5= dzs:Al,_eIS E exp[a®(a;)] pes (oxp b, (220

we get

Z,(®+¥)= Ipl Y expla®(a;)]

i=—p+1 o

.<1+z D f[@l(si)). (221)

nz1{S;...8,}i=1
Using Appendices A and B we obtain that
sup Y |0,(S)ISGLK(4, M, L),0"*] (2.22)

i Ss4;

when

K(, M, L)<log (2.23)

1
with g =[1+exp(—||®|)] ! and

KU, LM)S sup ¥ {2IIW{§’+”H

Ael'd DA
noq IR
+ T 32 o', R)tnl(%) IR}
2 WLEALY

+su i(|a‘“[|-|-zsu
" 21|z o(0) Zg (@)

13
i 1/5 @ «oay

Notice that the bound (2.22) is independent of p. Now, VK >0 we have
i) Y@e& and VL it follows from Lemma 3 that IM (L): VM =M (L)

Zg (D) 25" (D) i K
<5,
3
(2.25)

zy: 5(P)- ZO ()
ii) from the proof of Lemma 2 it follows that 3L,: VL= L,, VM, Vicw,,

(2.24)

log

—sup

Q apay

log

n 1 |Ri| K
up ¥ 3P loTR, R T[] RA<T. 029
AeT'4 D54 Ry...R, 1 l/& 3

iii) for L=L, AL (Ly):Viewy 1, VM ZL,(Lo)
(2.27)

Ael'2 psa

Then for Ae wy where M = max[L (Lo), My(Ly)] we have
K <min[}, log(e"/%2—¢"#)™"]

S
sup—ua%n+ sup Y7 2| Wi < 5
K

, Lo, M) < K. Now if
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from (2.8), (2.9) we see that for L=L,, M=M

sup |4,/ logZ , [P+

Aewiar
< sup sup ) Z lpr(S;...S,) Hl@”(S
Aewsr i SsA, 51
3s, —S
1 G(K,0"'®)

+ Mbg {Z exp(&"’(oc))] = 1-0'"®G(K, o'®)

— log [Z exp(a ))}

For real @ the existence of the limit
logZ , ()
Az |4,

is a standard result. Then from the uniform bound (2.28), using Vitali’s theorem we
conclude the proof.

3. Conclusions

In the previous sections we have discussed only the case of a lattice gas, but our
approach has a much wider validity. For instance if we consider a continuous
system of particles with hard core and finite first moment interactions, then under
very reasonable smoothness conditions for the potentials the theorem given in
Sect. 1 holds. In fact if we consider cells of size a (where a is the hard core range)
and construct alternating blocks of size La and Ma, we can repeat the same steps
of Sect. 2, where now the analog of Lemma 3 will be a consequence of Lemma 6 of
[8] and the analog of Appendix A can be easily obtained if the long range
potential is uniformly bounded.

To extend these results to more general systems we think it worthwhile to
remark that if we consider a potential e & which, for some positive r makes the
norm [|®ff,= Y "¥l|@(X)| finite, then the proof given in the previous section is

X>0
greatly simplified because:

a) An estimate analogous to (2.14) is trivially obtained for =€~
b) The effective potential V; (o) for L and M sufficiently large is such that the
norm

r

V0= sup D, el supIV (0p)]
Ael'd DsA
can be made small enough in order to apply Isreal’s analiticity theorem [9]. So
that, assuming the analog of Lemma 3, our theorem holds also for a bounded spin
lattice system where the potential @ is such that for some r>0

Y e¥l(diamX + 1) || Pyl < 0.

Xs0



264 M. Cassandro and E. Olivieri

The above discussion suggests the conjecture that our approach should be valid
also for unbounded spins and continuous systems of particles, without hard core, if
some suitable superstability [10] conditions are satisfied.

Appendix A
We have, for R=C,...C,, B;,...B, ; C,el,, B, T2,

l;.’

GIR)=3 H I:exp[J (B %5 %1 1)] }

B ier | Y exp(JO(B, o ;4 1)
(A1)

k h
: 1;11 [eXP(ngf liu'l(o%sa .Bcs)) —1] fl]l [eXP(J?,'*(ﬂi; &% 4 )—11.

Recalling that [e* — 1| < 2|z| for ze €, |z <1, for Avarying in a suitable neighborhood @
of the origin on €¢ and L sufficiently large [cf. Eq. (2.15)]

RIS Y FL[ exp(I (B 0 % 1) )}

Bit BieR ZeXP(J(D( i O &4 g

(A2)
k
1:_[ IWE 4o, Be,) H AT By o 2ty -

Expressing each W and J in terms of the original occupation numbers x, and

performing the products [[ and [], we get a sum of terms of the form

s 2
h+k

oI, u...0l; ) D, oI, ) 0O ) IT11x- (A3)

r=1tel,

Noticing that from the definition of a polymer, it follows that each term of the sum
contains at least one factor x, for each block B belonging to R,

k h
e e (Ad)

exp(J 2By, o, ;.1 1)
o=sup sup sup y []x, o 1
i ICByonasy By tel ZCXp(J (ﬁi, 0y O 4 1))

<(1+exp(—iofh) . (A5)

The last estimate follows from

Z\ exp(y% [&(Yut)+D(Y)] l_!/x,)
Z\ exp(yZB [D(Yut)+(Y)] H/x,) + Z\ exp(y}% DY) ny,)

{1+ inf eXp( Y, o(Yur) ) x )] P<(t+exp(—loihlt,

xp,\t YC B, rcY
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where
B,=B,uA,LA; .

An analogous argument works for the polymers S introduced in the proof of the
theorem. We have:

exp[a®(x,)]
0S)= Y [T o P 20 T explVp(op)— 11 (A6)
a3 4,5 Y expla®(e,)] pcs
The difference with the case previously discussed lies in the fact that the interactions
contributing to the V’s can be of different form. For instance, we have now terms like

o7(R;...R,) [] {(R,) where the dependence on the configurations can be [cf. (A2)]:
i=1
i) via the terms W®*¥+ and J¥4, that is of the form ) ®(X) [ ] x, as before;

teX
ii) or via the factors exp(J®(B; o ;4 1)) /Z exp(J®(B;» o, ;4 1)), where our pre-
B

vious arguments do not apply.

Given a block A let us classify the interactions involving this block in three
classes:

a) interactions where the dependence on the configuration x, is of the form

;cD(X) [1x.

teX
b) the two body terms of the form

Z%l:au {P)- Zg;O(Q))
2 @)-Z5 (@)

Ulo; 1 1) =log
c) terms coming from
0o(R,- R [TUR).
where the dependence from x, is only via the factor
exp(J (B, o ;4 1)) / ; exp(J (B, 0, ;1 1)
For the interactions of the class b) we can always put

Ul 04 1) = QU(O(i, ®;+q), where U(aia oy 1)=Ulo, 04 1)/0 (A7)

can be made arbitrarily small for M sufficiently large (cf. Lemma 3). For the
contributions of the class c), considering that in a given polymer R there are at most
2|R| A-blocks involved via the '/} e’ factors we can write:

(02, R TGRSV 2lorR, R TR, (A8)

where F is the number of the A-blocks nearest neighbor of the B-blocks in the chain of
polymers Ry, ..., R, and

R)= (—l}—é)m' R
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Now writing down the analog of Eq. (A3), we recover the ¢ factors coming from the
interactions of the class a) in the usual way, meanwhile the blocks associated only to

interactions of the class b) or ¢) carry their own damping factor /¢ and @'/
respectively. So we get

O =" [T ¢p, (A9)
DcCS
where for
D=, pp=sup "] —=,
i Ve
for

2
DzAi’Ai-l»l’(pD:'Q_H Vi -

In all the other cases
op=I1Wg A+ W52
where W is the analog of W [cf. (2.19”)] where we consider {(R) instead of {(R).

Appendix B

In this appendix we want to prove Eq. (2.8). For the definitions of the quantities that
will appear in the sequel we refer to Sect. 2. We assume that

KRN <R TT o

CeR
with

0<o<1, sup ) ¢ <K.
aeG Csa
We will need some more restriction on g, K [see (2.7), (2.8)].
We want to evaluate
DI
R:Rza
For a given polymer C,, C,, ..., C, such that R>a,call C, an arbitrarily chosen bond
C passing through a (i.e. such that C,3a).
Now we will classify the bonds of a generic polymer containing C, in a
“hierarchical” way. Call Ci, C3,...,C;, the set of all the bonds in R such that

Vi=1,2,..,k,,C}nCy+0.

We will refer to {C}, i=1,2,...,k,} as the “first generation”. Notice that the first
generation can be empty iff R reduces to C,,.
We define the “second generation” (ifany) C3, C3, ..., Cf, as the set of all bonds in

R such that
Cin (i

i

@g) w0 =12k, (B1)
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i.e. the set of all bonds passing through the “first generation”. It is implicit in the
definition that

CnCo=0 j=12,...k,. (B2)

We can define recursively the i generation C/, C4,...C} as the set of all bonds in R
such that

~ kn-1 o
C;fr\(i!l ct 1) *0 (B1)
with
(P2 ke
Cj(‘\( ‘ C.') =0. (B2)
£=1i=1

For any given polymer R containing C,, a finite integer =0, will be uniquely
determined expressing the number of generations present in R.
We can then write:

Z KR)I= Y [K(Co)l

R:Rsa Co2a
+ X Z Z Z : Z Z IC(R*)I (B3)
Co30 t=1ky;=1 Cj.. ke=1 Ci..

where the sum in the right hand side of (B3) are performed with the constraints
specified by (BI), (B2') and R* is the polymer C,, C},...,C; ,...,C, ..., Ci.

Now for a given ¢ let us start summing over the ¢ generation supposing all the
other bonds belonging to the previous generations to be fixed. It is easy to convince
oneself that

Z Z |C(R*)i

ke=1 Ci..
t—1 k,;
S| oc, 1] [Z (ch} n! }
j=1¢=1 BeAc 1 Ln=0\C>B :
t=1 k
§6|A1|+~~+Mt 1l U I_—[ c][CXpKIAt 1] 1]’ (B4)

where

ks . ks—1
=hU UG os=1,.,t.
=1

Now summing over the t— 1'® generation we obtain

S OY Y Y ke
ki-1=1C7' .C7Y k=1 C{..CE,
t—2 k; =)
<GM1|+ el H H(PCJ Z (eXP(KN:~1)”1)
j=1¢= Ne-1=1
0 ke -1

AR YDV | KSR (BS)

ke-1=1Ci-1.Cl7Y ¢=1
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where the * sumis over all the sets of bonds C{™*...C} ! ;such that|4,_,|=N,_, and,
of course, the condition (B1') is satisfied. Now relaxing the condition we can proceed
exactly as in (B4) and obtain:

o0

DI iﬁﬁwn

ke-1=1Ci" .G ke =1 CL..CE,
t—2 k ©

Sttt sl TT T g exp(Kld,o)—=1) Y (exp(KN,_,)—1)a™.
j=1¢=1 ° Ne—1=1 (B6)

Iterating this procedure we finally get:

2 RIS Y 09c,+ Y 9,0l exp(KIC,)—1)

R:R3a Co3a Co3a
- 2, [lexp(Kn)—1)a"]
t=1
expK—1
<Ko|l B7
=50 +1+02epr—2aepr (B7)
if
expK<[o(2—0)]"!.
Appendix C

Proof of Lemma 3. In this proof we will use not only the notations but also the
equations of Ruelle’s paper and denote them by (-, -R). Let

N*={ieZ:i>0}, K'={0,1}"",
C(K*)=Banach space of real continuous functions on K. For x,.€K™* and

X, €{0,1}5 A" ={teZ —L+1<t<0}

call
Wxy-Ixy)= ) @xvY) [] x,
0+XCA™ teXuY
0 +FYCN™*
S €BKT):f, (xy)=expWix,-|xy.).
If

Xy CK™,

define (x4, Xy+)=(x44, T*Xy.), where T is the operator that translates the
configuration in K* by one unit to the right [cf. (1.16R) and (2.1R)] and put

xo=(0,..,0,..)eK".
It is easy to see that
Zgm (@) 23(0)
Z30 (9)- 27 (@)
~log (jMfal) (0t 1 15 Xo) (£M1) (xo) ,
(nga,-) (%) - (LM1) (01,4 1, X0)

log
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where % is the operator on (K*) defined by (2.3R), then the thesis follows
immediately from Eq. (2.6R).
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