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Abstract. We consider one dimensional systems described by many body
potentials with finite first moment and prove that the correlation functions are
analytic in the interaction parameters. This result is not new (Dobrushin, 1973)
but our proof is simpler and physically more transparent. We show that by
introducing suitable blocks and averaging over the variables associated to a
subset of the blocks (decimation procedure), the resulting effective interaction
is such that the system can always be dealt with as a high temperature system.

1. Introduction

In this paper we will deal explicitly with the lattice gas case only the extension to
other cases is considered in Sect. 3.

Consider the elements of Z as the sites of a one-dimensional lattice, each site
may be occupied by 0 or 1 particle. Call KΛ the product of one copy of the set
{0, 1} for each point of the set ΛtTL and /C={0, 1}Z. xΛe KΛis a configuration of
occupied and empty sites in A.

The energy of a finite volume A, when TL\Λ is empty, is given by :

XcΛ teX

where the potential Φ is a real or complex function defined on the finite subsets of
Z. In the sequel we will consider potentials belonging to two Banach spaces $ and
S'\S is the space of translationally invariant real potential with norm:

oo. (1.2)
XaO k^l

$' is the larger space of complex potentials with norm

XaO PΠ ίeZ
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In this paper we will show that the infinite volume correlation functions vary
analytically with the interaction parameters. This problem was already solved by
Dobrushin [1] using sophisticated estimates of mean values of exponential
functional of random processes. We present a new proof based on a specific
renormalization group transformation (the so-called decimation [2]) and the
cluster expansion [3-6]. For the sake of simplicity we state our results for the
pressure but the reader could easily work out the analogous properties for the
correlation functions by slightly modifying the proof.

Theorem. Let ΦeS and ψ.εδ' with ||| ̂ 111 = 1 z=l,2, . . . ,d and λ = (λi9...9λd)Gω9

where ω is a suitable sphere in <Cd centered at the origin. Then the limit

Λ/Z \Λ\

exists and is holomorphic in λ on ω.

The proof is given in Sect. 2 in the sequel we will briefly sketch the general
strategy of our approach. We start by grouping the sites of the lattice in alternating
blocks of different sizes L and M with, say, M^L. It follows from (1.2) that

i) The interaction among consecutive blocks satisfies a bound uniform in L
and M.

ii) The interaction among more than two consecutive blocks or any number of
nonconsecutive blocks goes to zero as L and M->oo.

If we call af(j8f) the configurations in a block of size L(M\ the partition function
of the system can be written in the following way

Z = Σ Π eφ

α > j βj

where, roughly speaking, J contains the interactions among nearest neighbor
blocks and W the tails of the potential and perturbations which are small for λeω.

For a precise definition of the various terms see (2.1)-(2.3).
The next step is to perform the averages over the /Γs (i.e. the x/s in the blocks of

size M), so that we are left with an effective interaction among the α's where we can
distinguish three different kinds of contributions:

a)

c) log {Σ Π[eχp^/Σ eχp Ί
The terms in a) can always be made as small as we please for M sufficiently large
[cf. ii)]. If we subtract from b) the one body contributions, the resulting two body
potentials go to zero when M->oo (see Lemma 3). The quantity in c) can be
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thought as the log of the partition function of a spin system on a lattice where on
each site a spin of size 2M sits, and where the interactions among different sites can
be made very small for L sufficiently large uniformly in M.

A standard way to study these systems is by a cluster expansion that allows us
to express the log of the partition function as a convergent sum of local terms. We
make estimates (see Appendix A and B) allowing us to apply the general formalism
to our case. We show not only that the contributions from c) to the effective
interaction go to zero for L->oo, uniformly in M, but also that they depend
analytically on the /Γs in a suitable neighborhood of the origin (cf. Lemma 2).

In conclusion we obtain, by the decimation procedure, an effective interaction
among the α's that for L and M sufficiently large is as small as we please.

2. Proof of the Theorem

Let L, M, and p be three positive integers, L and M are both odd and p is arbitrary,
Λp is the interval centered at the origin : \Λp\ = 2pL + (2p + l)M. Consider now the
decomposition of Λp into consecutive blocks B_p, A_p+ί, B_p+ί, ...,J3p_1, Ap, Bp

where \At\=Land \Bt\=M.
Letfjf be the set of all ̂  blocks contained in Ap\Γp

i = {Ai,i = — p+1, ...,p} and
analogously for the ^-blocks : Γp = {Bt, ί=—p,...,p}. The decomposition of Ap in
A and B blocks in the limit p-»oo induces an analogous decomposition in 2£.
Γ£(Γ%) is the set of all ^-blocks (^-blocks) contained in TL.

Call α . = XA and β. = XB. the configurations in the blocks At and Bt and set a
= 0 = (0, ...,0, .!.,0). For FdΓ^uΓ* we denote by βv(av) the configuration in

). More precisely:

we still use the notation αf for aA. (βt for /^).Now rewrite the Hamiltonian (1.1) so
that the interactions among blocks are made explicit

P

Σ
ι = -p

+ Σ Σ w?11...x.((«i1 «P<)+ Σ Jΐ(β»wlt^2{Aίί...Aιe}CΓA -
*{Ai,Aί+ 1}

+ Σ Σ
..Aj}cΓp1 9

with α_ p = α^+1=0. Γp consists of all the sets C = Ajί...Aj, B^...Bi{\
BikeΓp such that

CnΓ/Φ0,
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namely Γp collects all the sets of A and B blocks which are not considered in J

*?(«*)= Σ
teX

U J U U YJ.

Π Π x, Π Π *,

teX

Consider now a potential of the form Φ + Ψλ with Ψλ= Σ ̂ i where Φe<ί,

Ψ^δ' with |||y£||| = l, i = l, ...,d and As(A 1 ? ...,^)e(Cd and define the effective
Hamiltonian obtained via the decimation transformation by

Σ Σ
^l{B,,...XJ,}eΓp

or in more compact form

ΪJΦ + Ψλ(n \ _ V Λ~nΛp \ar^)— L aί
i = — p + 1

+ Σ Σ

i = - p

with

Π

(2.3)

(2.4)
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Definition i. Given an arbitrary set G, let G be an arbitrary subset of G and ̂  the
collection of all finite subsets of G. We will call any Qe^ a bond. C. will denote the
union of the elements of G belonging to Ct.

Definition 2. A set of bonds C1? ..., Cfce^, QΦ0, is a polymer jR if for any choice of
C t; CSE£ 3QΓ..QreK with Cίl = Ct, Cir = C aand C ί h nC i h + 1 Φ0-Λ=l, ...,r-l.

fc
 /c

Let ̂  be the set of all polymers. For R = C19 ...,Cfc, let # = (J C , # = (J Q.
i= 1

The activity is a function £:^->(C. A system of polymers in FcG with activity ζ
and hard core interaction is described by the partition function :

sF(ί)=ι+ Σ Σ ΓU(«t). (2-6)
n ^ l _ Rι...Rn i = l

R t C F . E ^ R j ^ O

Lemma 1. Gffen α polymer system, if the activities are such that

φc (2.7)
CeR

with

SUP Σ Φc = ̂
αeG Caα

the following relations hold:

su
σ(eχp^ 11. _ σ(QXpK~ L)

Σ ΣL-ι Lu
n^ 1 Rι...Rn:

exp[G(K,

l-]/σexp[G(K,]/σϊ]

Wit/!

Σ (-l)*^eβin«>, (2.90

where ^n(Rl...Rn) is the set of connected graphs with n vertices (1,..., n) and edges
(ij) corresponding to pairs R^ Rj such that R^Rj^ί). We set the sum equal to zero if
3?n is empty and one if n = 1 and finally

Σ Σ
«^3 _

RiCF
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Proof. (2.9) and (2.10) can be deduced by standard methods from (2.8) [3]. The
proof of (2.8) is given in Appendix B.

Lemma 2. Set G — Γ^uΓ^, G = Γ^ and define the activities of the associated polymers
in the following way:

For

R = Cι,...,Ck with C^ for \Ct\>!9

C. eΓ* for IQH1,

r <Ώ\ V πίλ(R)= L 1 L
β& BISK

(2.11)

where UB=J*λ(βμμίJrJ and for Cφ£ί? CeΓ^ Uc(ac,βc)=W*+ψ*(ac,βc). For the
remaining polymers ζ(R) = ft.

Then 3L0 such that VM and for λ varying in a sufficiently small sphere ωM whose
radius tends to zero as M— »oo: H®+Ψλ(aΓA) of Eq. (2.5) is given by the following
expression

W^+^(aD), (2.12)

RJ ΠW^), (2.12')
Rί...Rn ι = l

n

where Σ° zs a sum over all tne clusters of polymers such that Y[ ζ(Ri) is a function of
ί=l

all the variables a f l . . .af bwί rfoβs not depend on any other a. Moreover \Mp, D Cylp,
VaD. H^+lpA(aD) /5 a holomorphic function of λ in ωM.

Proof. Setting G = Γ^uΓ^5 G = Γ*, it is easy to check that

exp[-tf*;^(αr,)] = 1 + Σ Σ Π CA(K|) (2 13)
n ^ l Rι...Kn i = l

^C/^uΓ?
^tnjRj = 0

In Appendix A we will show that for R = C^ ..., Ck, jBίι? ...,^ίh,

^β1*1 Π 2||P^s

+^|| Π 2||JΓΛ | |, (2.14)
l < f = l

where
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and we denote by ||/|| the sup norm of the continuous function / We have:

sup Σ | |Wc

φ + l p Λll = ε(L)^^0 (2.15)
i CBBt

 L °°

uniformly in M.
Equation (2.15) is an immediate consequence of the fact that for the potentials

belonging to $ [see Eq. (1.2)], the interaction between two consecutive halflines is
finite. Furthermore if λeωM, i.e. λ:

sup l ^ - - m m C U o g t l p - l ) ) - 1 ] , (2.16)

it is easily seen that for L sufficiently large the conditions of Lemma 1 are satisfied
and (2.12) holds.

Since each ζλ(R) is an analytic function of λ and the series (2.12X) is absolutely
and uniformly convergent for AeωM, it follows that \Mp, VDCΛp, VαD, W^+Ψλ(^D]
is analytic for λeωM.

Lemma 3. VL < oo

\7ai,*i + ι(<b}. 7Q,°(<f>\
= 0. (2.17)

M->oo α t ,α l + i

Proof. The proof, a simple application of Theorem 3 of [8], is given in Appendix C.

Proof of the Theorem. Using definitions (2.1), (2.3), and (2.3;) we get:

Σ Π Π
αr/ i = - p + ι

where

loβ-£fr

and for Aίί...Au^AiAiJr^, A(

lι ...A,(*h Λίf } =VAl



262

Now setting

we get

n^ = G (see Definition 1) and

Θλ(S)=ΣH

M. Cassandro and E. Olivieri

(2.20)

ZΛp(Φ+Ψλ)= Π

Σ Σ

Using Appendices A and B we obtain that

sup \
i SsA,

when

(2.21)

(2.22)

(2.23)

1 and

>,M)S sup ]

ΣD

-—
i y Q

i=ί V y Q]

(2.24)

Notice that the bound (2.22) is independent of p. Now, VK>0 we have
i) VΦe<f and VL it follows from Lemma 3 that 3M0(L): VM^M0(L)

-sup
.

δ 7«o.θί

<τ
(2.25)

sup Σ ΣD

ii) from the proof of Lemma 2 it follows that 3L0: VL^L0, VM, MλeωM

A(R.)|<—, (2.26)
in Γ=~ι\[/ρ/ 3

K

Then for λeωM where M^maxCL^Lo), M0(L0)] we have K(λ,L0, M)<K. Now if

K<min[ilog(ρ1/8(2-ρ1/8))-1]
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from (2.8), (2.9) we see that for L = L0,M = M

g sup sup Σ Σ kMSj . sj l

For real Φ the existence of the limit

,.
lim
Λ^/Z p

is a standard result. Then from the uniform bound (2.28), using Vitali's theorem we
conclude the proof.

3. Conclusions

In the previous sections we have discussed only the case of a lattice gas, but our
approach has a much wider validity. For instance if we consider a continuous
system of particles with hard core and finite first moment interactions, then under
very reasonable smoothness conditions for the potentials the theorem given in
Sect. 1 holds. In fact if we consider cells of size a (where a is the hard core range)
and construct alternating blocks of size La and Ma, we can repeat the same steps
of Sect. 2, where now the analog of Lemma 3 will be a consequence of Lemma 6 of
[8] and the analog of Appendix A can be easily obtained if the long range
potential is uniformly bounded.

To extend these results to more general systems we think it worthwhile to
remark that if we consider a potential ΦeS* which, for some positive r makes the

norm |||Φ|||r— Σ £r'*ΊΦ(^OI finite, then the proof given in the previous section is
X3θ

greatly simplified because :
a) An estimate analogous to (2.14) is trivially obtained for σ = e~r.
b) The effective potential VD(aD) for L and M sufficiently large is such that the

norm

can be made small enough in order to apply IsreaΓs analiticity theorem [9]. So
that, assuming the analog of Lemma 3, our theorem holds also for a bounded spin
lattice system where the potential Φ is such that for some r > 0

X a O
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The above discussion suggests the conjecture that our approach should be valid
also for unbounded spins and continuous systems of particles, without hard core, if
some suitable superstability [10] conditions are satisfied.

Appendix A

We have, for Λ = C1...Ct. B,eΓ£,

) = Σ Π
βn ίεR

(Al)
k

Π +lf>Cs, βc))-1] Π

Recalling that |ez — 11 :£ 2|z| for ze C, |z| < ̂ , for A varying in a suitable neighborhood ω
of the origin on <Cd and L sufficiently large [cf. Eq. (2.15)]

^ Σ Π .
Σexp(J*(|Sί,αί,αί+1)

(A2)

Expressing each W and J in terms of the original occupation numbers xt and
performing the products ]Q and J~|, we get a sum of terms of the form

s £
Λ + fc

Φ(/ U . ..U/ f ) . ..Φ(/ .+ j _ U . . .U/ )...Φ(/ ί + 1 U . . . U / l + ) J [̂ O^ί
ii ιPl Pj j + i ϊh + k - ι h + k r = l ί e /^ (A3)

Noticing that from the definition of a polymer, it follows that each term of the sum
contains at least one factor xt for each block B belonging to R,

k h

ρ^ ΓT 2||H^+li/A|| Γf 2||J^||, (A4)
s=l S i=l

ρ = sup sup sup
i / C B l α l , α l + 1

(A5)

The last estimate follows from

xB,\ f reY

exp
XB,\t \YCB1

i n f e x p ( Σ
*B,\I \yc-B,

Π^+ Σ expf Σ
reY ] xBι\t reY
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where

An analogous argument works for the polymers S introduced in the proof of the
theorem. We have :

= Σ Π Π exp[FDK)-l]. (A6)
DCS

The difference with the case previously discussed lies in the fact that the interactions
contributing to the Ks can be of different form. For instance, we have now terms like

n

. . .Rn) Y\ ζ(Rί) where the dependence on the configurations can be [cf. (A2)] :
i = l

i) via the terms Wφ+Ψλ and Jψ\ that is of the form ^Φ(X) Π *t as before;
teX

ii) or via the factors exp(Jφ(jβt.,α/?α.+ 1)) /Xexp(Jφ()8ί,αί,αί+1)), where our pre-

vious arguments do not apply.
Given a block A let us classify the interactions involving this block in three

classes :
a) interactions where the dependence on the configuration XA. is of the form

X teX

b) the two body terms of the form

c) terms coming from

φτ(R1...Rn)flζ(Ri),
i = l

where the dependence from XA. is only via the factor

exp(JΦ03t, α,, ai+l}) /Σ exp( JΦ(β t, αί? ai + 1 ) ) .

For the interactions of the class b) we can always put

C/(α f,α f + 1) = ρί/(αί,αί + 1), where ί/(α ί,α ί+1)=l/(α ί,α ί+1)/ρ (A7)

can be made arbitrarily small for M sufficiently large (cf. Lemma 3). For the
contributions of the class c), considering that in a given polymer R there are at most
2\R\ y4-blocks involved via the ej/^ej factors we can write:

I^Ri.-Λ)! Π \ζ(R^(]/Q)F/2\φτ(Rι ..Rn)\ Π ICWI, (A8)
ί = 1 i = 1

where F is the number of the ̂ -blocks nearest neighbor of the β-blocks in the chain of
polymers R19 ...,Rn and

/ 1 \ l
7=)

l/ρ/
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Now writing down the analog of Eq. (A3), we recover the ρ factors coming from the
interactions of the class a) in the usual way, meanwhile the blocks associated only to

interactions of the class b) or c) carry their own damping factor j/ρ and ρ1/4

respectively. So we get

γiφD, (A9)
DCS

where for

for

A»φD=sup || αfΛ ||-==,

ι ι + ί

In all the other cases

ffί _ || WΦ + ̂ Λ|| _L \\wΦ + Ψλ\\
ΨD ~ II VVD II ̂  II VVD I I '

where W is the analog of W [cf. (2.19")] where we consider ζ(R) instead of ζ(R).

Appendix B

In this appendix we want to prove Eq. (2.8). For the definitions of the quantities that
will appear in the sequel we refer to Sect. 2. We assume that

CeR

with

0 < σ < 1 , sup Σ 9c = & -
a^G Caα

We will need some more restriction on σ, K [see (2.7), (2.8)].
We want to evaluate

For a given polymer C1? C2,..., Ck such that R3a, call C0 an arbitrarily chosen bond
(C passing through α (i.e. such that C03α).

Now we will classify the bonds of a generic polymer containing C0 in a
"hierarchical" way. Call C{, C\,..., C^ the set of all the bonds in R such that

Vί=l ,2, . . . , fc 1 ,C/nC 0 Φ0.

We will refer to {C/, i = 1,2,...,/c1} as the "first generation". Notice that the first
generation can be empty iff JR reduces to C0.

We define the "second generation" (if any) Cj, C\,..., C 2̂ as the set of all bonds in
R such that

/ J C 1

1 ) Φ 0 j=l,2, . . . , fc 2 , (Bl)
i = l /
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i.e. the set of all bonds passing through the "first generation". It is implicit in the
definition that

C?nC0=0 j=l,2, . . , fc 2 . (B2)

We can define recursively the hlh generation C\, C\,.. .C£h as the set of all bonds in R
such that

= 0 (BIO

\ i = l /

with

= 0. (B2')

For any given polymer R containing C0, a finite integer ί^O, will be uniquely
determined expressing the number of generations present in R.

We can then write :

Σ !£(*)! = Σ Iί(c0)l
R R^a CQ3a

oo oo oo

+ Σ Σ Σ Σ - Σ Σ !£(«*)!, (B3)
c09θ ί=ι fc! = ι ci...^ fet=ι cί...cv'f

where the sum in the right hand side of (B3) are performed with the constraints
specified by (Bl7), (B2') and #* is the polymer C0, C}5 ...,C^, ...,6^, ...,C*fct.

Now for a given ί let us start summing over the ίth generation supposing all the
other bonds belonging to the previous generations to be fixed. It is easy to convince
oneself that

Σ Σ lί(**)l
kt=l Cί...c£ t

g^K.^i-.-.i'fl ftφ π [ΣfΣΦc) ' i- ι ]
! L» = 0 \Caβ / n ' J

I-1], (B4)
j=ι « f = ι ^

where

4= UQUJ' cr1, ί=ι,..,ί.
Λ = l Λ = l

Now summing over the ί— 1th generation we obtain

Σ Σ Σ Σ lί(κ*)l
fct-ι = l CΓ1 ...Cί^'j fct=l Cί . . .Cfc f

' o Σ (

1 Σ Σ* π c - , (β5)
fct-ι = i c;-1...^,^ <f= i
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where the * sum is over all the sets of bonds C\~ l . . .Cj^, such that \ A t _ 1 \ = Nt_ί and,
of course, the condition (Bi') is satisfied. Now relaxing the condition we can proceed
exactly as in (B4) and obtain :

OO 00

Σ Σ Σ Σ
Λ t - ι = l CΓ1 ...Cl~_\ kt = l C[...Cί,

t-2 kj

1| + ... + Mt-3 |

j = i ' = ι ' Jv t -! = ι (B6)

Iterating this procedure we finally get :

Σ \ζ(R)\£ Σ °<Pc0+ Σ <PCoσ
|

R Rsa CQBCI Coaα

ί = l

V " / J^Kσ

if

expK<[σ(2-σ)]~1.

Appendix C

Proof of Lemma 3. In this proof we will use not only the notations but also the
equations of Ruelle's paper and denote them by ( , R). Let

+) = Banach space of real continuous functions on K +. For xN+eK+ and

call

W(xA-\xN+) =

If

define (xyl+,x i v+) = (x^+, ΓLxN+), where T is the operator that translates the
configuration in K+ by one unit to the right [cf. (1.16R) and (2.1R)] and put

It is easy to see that

Zg;
g

=1
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where $£ is the operator on Ή(K+) defined by (2.3R), then the thesis follows
immediately from Eq. (2.6R).
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