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Abstract. Given a connected Lie group G with an Abelian invariant Lie
subgroup and a continuous unitary representation of G on the Hubert space
ffl, we investigate a relationship between the first cohomology group Hl(G, 3?)
and classes of sectors, determined by coherent states with a projectively
G-covariant Weyl system. This result is applied to calculate H1(G,J^>), if the
group G has in addition a compact subgroup with certain properties.

1. Introduction

In a discussion of the coherent states of the free electromagnetic field Roepstorff
[1] stressed the use of cohomological methods. In Proposition 2 of [1], necessary
and sufficient conditions were derived such that the automorphisms of the space-
time translation group IR4 in the GeΓfand-Naimark-Segal (GNS) representation
(JΓ0, W,ΩQ), corresponding to a given coherent state, are implemented by a
strongly continuous unitary projective representation U of the translation group
IR4 on Jf0. Such a Weyl system may be called a projectively covariant Weyl system.
In proving these necessary and sufficient statements, 1-cocycles on the translation
group with values in the 1-photon Hubert space Jf, carrying a continuous unitary
representation V of the translation group, seemed extremely useful.

For the Poincare group, Basarab-Horwath et al. [2] recently have shown the
existence of an injective mapping from classes of sectors, defined by coherent states
admitting a GNS representation with the above mentioned properties for the
Poincare group Pτ

+, into the first cohomology group Hl(P\,2tf\ With an
extension of these notions to a connected, ^-dimensional Lie group G, we will give
a condition for this injective mapping to be bijective. For a group G with a
structure, which resembles that of the Poincare group, the first cohomology group
Hl(G,^f) can be calculated.

2. Sectors and Cohomology

Let Jf be a complex Hubert space, L a dense complex-linear subspace of Jjf and
Lx the algebraic dual of L. The pair (L, σ) is a symplectic real-linear space with
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) = Im(f,g)JpVf,g€L. For an account of the definitions omitted below the
reader is referred to [1, 2]. We define the Fock state E0 on L by E0(f)
= exp(-^||/||2) and a coherent state EF on L by EF(/)-E0(/)exp(iImF(/)) (/eL,
FeLx). As the corresponding GNS representations we take (Jf0, VP0,Ω0) and
(JΓ0, Wp, Ω0) with Wp(/H W0(f) exp(i ImF(/)) V/eL Jf0 is the Fock space over tf ,
FF0(/) = exp(/(α(/) + fl(/)*))/eL, α(/) is the usual annihilation operator on JΓ0, the
bar means operator closure, ΩQ is the vacuum vector in JΓ0. The Weyl systems are
defined with respect to the symplectic form σ on L.

Let G be a topological group and s-»F(s) (seG) a strongly continuous unitary
representation of G on J^ such that V(s)LcL VseG. Given FeLx and seG, the
map WF(f)-* WF(V(s)f) defines an automorphism of the Weyl system (JΓ0, WF). Let
LX

G be the set of all FeL* such that there exists a strongly continuous unitary
projective representation UF of the group G on JΓ0, which implements the
Weyl automorphisms VseG (i.e. Wi,(F(s)/)=l[7F(5)ί^F(/)C7F(s)-1 V/eL, VseG). In
the complex-linear space Lx the operator V(s) induces an operator F(s)x ,
defined by (V(s) x F)(/) = F(V(s)f) VFe L x and V/e L. A 1-cocycle on G with values
in jf with respect to the strongly continuous unitary representation V of G on Jf
is a continuous mapping ξ:G->Jf such that ξ(s) + V(s}* ξ(t) = ξ(ts) Vί, seG. The
complex-linear space of such 1-cocycles is denoted by Z1(G, Jf). A 1-coboundary
on G with values in J^7 is a mapping ξ:G-»^f of the form £(s)= F(s)*^ — ξ with
ξeJf. The 1-coboundaries determine a complex-linear subspace Bl(G,^} of
Z^G, jf ). The 1-cohomology group H\G, Jf )-Z1(G, Jtf)l&(G, Jf7) is a complex-
linear space; an element of H\G9 3?) will be denoted by ξ (ξeZ1(G,

Lemma 1. Gii βπ FeLx , ί/ien FeL*G if and only if there exists a ξeZ1(G, J f ) swc/z ί/zαί
F(f) - (F(s) x F) (/) = 2(ξ(s), f)x Vse G, V/e L.

T/ie i-cocycle ξ is uniquely determined and LX

G is a complex-linear subspace of
L\

Proof. The proof is analogous to that of Proposition 1 in [1] and Theorem 2c in
[2]. LX

G is a complex-linear subspace of Lx because Z1(G, Jf) is a complex-linear
space.

Let Jf* be the topological dual of Jtf '; Jf7* is a complex -linear
subspace of L .̂ The elements of LX

G/J#** are in one-to-one correspondence with
sectors containing a coherent state EF with FeLx

G. All states in such a sector
trivially induce projectively covariant Weyl systems. It is obvious that these
coherent sectors depend on the given group G and the representation (jf , V) of G.
Because for a given FeLx

G the 1-cocycle ξ in Lemma 1 is uniquely determined, one
can consider the antilinear mapping F-+ξeH1(G,J#'). This mapping induces an
antilinear mapping F-^ξ from LG/3f* into H^(G, tf\ Let InvGL be the set of all
G-invariant complex-linear functionals on L; InvGL is a complex-linear subspace
of LG and so lήv^L is a complex-linear subspace of LG/^f *. The elements of
(Lς/3tf *)/Inv^L={££} are denoted by EF; to an element EF corresponds a class
of coherent sectors. Again an antilinear mapping EF-»| is induced. The element
EQ defines even covariant Weyl systems.
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Theorem 2. The antilinear mapping {E^}-^Hl(G,^f} is injective.

Proof. Let E^ and Ep2 be elements of (L*G/J#'g)/Ifίv^L and suppose that ζ± =|2.

Then ξi — ξ2eBί(G,Jί?)9 i.e. 3£<Ξ^f such that ξ1(s) — ξ2(s) = (t—V(s)*)ξ VseG. The
linear functional β, defined by £(/) - ̂ (/) - F2(/) - 2(ξ, /)^ V/e L, is G-invariant.
This implies Fl-=P2 + B. Because F^eE^ and F2 + BeE%2 it follows that E^

The next theorem relies on results of [3] we collect a few definitions and single
out some statements, whose proofs can be found loco citato.

Let G be a connected n-dimensional Lie group; choose /ze^(JR) such that its
00

Fourier transform h(p)= j elpth(f)dt has the following properties: /!(0)=1,
— oo

VpeIR\{0} 0^ft(p)<l and Λ"(0)ΦO. Let {X^...,Xn} be a basis for the Lie algebra
oo

of G and define the strong operator integral K(Xk) = i— { F(exρ tXk)h(t)dt
— oo

n

(fe=l,...,n). These properties imply that the operator K= ^ K(Xk) is
fe=l

a bounded positive operator on Jf with spectral projections E(Λ) (A a Borel
set in IR). The operator k: = KI (1 — E(0)) J^ is a bounded injective positive
operator on (i —£(0))Jf. On the domain, respectively the range of the operator
kί/2 the following norms are introduced:

VfeD(k1/2) = (ί. — E(0))^f 11/11 + : = ||fe1/2/||^, respectively \/feD(k~1/2)
11/11 _ : = \\k~~ Il2f\\^> We denote the corresponding normed linear spaces by
£ + (G), respectively D_(G) and the completion of D + (G) in its norm by D + (G).

Lemma 3. Under the above mentioned conditions the following statements hold.

2. As topological linear spaces, the spaces D + (G) and D_(G) do not depend on the
choice of the function h and of the basis {Xv ...9Xn} in the Lie algebra.

3. k is an isometry from D+(G) into D_(G); its bounded extension to D + (G), also
denoted by k, is an isometry from D + (G) onto D_(G).

4. The mapping /, g-+(f,g)#> is a bounded bilinear functional on D+(G) x D_(G),
and can be extended to a non-degenerate bounded bilinear functional ( , •) on
ΓΓ^G)xD_(G) having the property (f,g) = (kf,g)_ V/eZ>7(GJ and VgeD_(G).

5. VseG V(s) — i is a bounded operator from J f into D_(G).

If A is a bounded operator from 3tf into Z)_(G), then the adjoint A+ may be
defined as a bounded operator from D + (G) into Jf7 if in addition the operator A*,
restricted to D+(G), is a bounded operator from D + (G) into D + (G), then A+ =A*9

where the bar means operator closure in the Hubert space D + (G).

Motivated by the structure of the Poincare group, we assume in addition that
there exists an invariant Abelian connected Lie subgroup H of G; for the
representation V of G we demand that the representation V \H on Jf does not
contain the identity as subrepresentation. The statements of the lemma can be
improved [3]:
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6. {0}=D0(H)^D0(G) and ̂  = D + (H) = D_(H)^ for the underlying sets of the
complex-linear spaces ^f, D + (H) and D_(H). For all seG V(s) (suitably restricted)
is a bounded operator from D__(H) into D_(H) and from D+(H) into D + (H) and
i — V(s) is a bounded operator from jtf* into D_(H).

7. VξeZHG,^) 3ηeD~^(H) such that ξ(s} = (t- V(s))+η VseG. η is uniquely
defined if and only if the representation s-^V(s) does not contain the identity as
subrepresentation.

With the foregoing Lemma we can now formulate a sufficient condition for the
injection in Theorem 2 to be a bijection. If H1(G,J#y)={0}, this injection is
automatically a bijection and Theorem 4 is superfluous.

Theorem 4. Let G be a connected, n- dimensional Lie group, (&?, V] a strongly
continuous unitary representation of G, H an invariant Abelian connected Lie
subgroup ofG such that V\ H on ̂  does not contain the identity as subrepresentation
and L a dense complex-linear subset of &, invariant under G.

If LcD_(H\ then the injective mapping in Theorem 2 is surjective.

Proof. For ξeZ1(G,Jf) there exists by Lemma 3.7 an ηeD + (H) such that ξ(s)
= (t-V(s})+η VseG. Define F(f) = 2(ηJ) V/eL. Then FeLx and F(f}-(V(s)x F)
(f) = 2(ξ(slf)# V/eL. Hence FeLx

G by Lemma 1.

3. Calculation of a Cohomology Group

The coherent states seem to be suitable to establish the cohomology group of a Lie
group G, whose structure is analogous to that of the Poincare group.

Theorem 5. Let G, H, (.??, V] be as in Theorem 4. Let R be a compact subgroup of G
such that V\R on D + (H) does not contain the identity as a subrepresentation.
ThenH1(G,34?) = {Q}. _

(As to the possibility of defining the operators V(s) VseG see Lemma 3.6.)

Proof. The complex-linear subset L = D_(H) is dense in Jf7 and is invariant under
the group G (Lemma 3.6). Theorem 4 proves the existence of a bijection from {Ef }
onto H\G,3tf). The subgroup R of G gives a linear mapping Ef-+E* from {E%}
into {Ep} this mapping is well defined because R C G. We prove that this mapping
is faithful. Let E^ and E^^ be two elements of {££} such that E^ = E^2. Choosing
for F.(i=l,2) the representatives Fi(f) = 2(ηί,f) (i=l,2) with η.eb + (H)9 this
implies the existence of an R-invariant complex-linear functional b on L and of an
ijejf such that F ί ( f ) - F 2 ( f ) = b(f) + 2(ηJ)^ V/eL. Hence (ηί-η2-η,
(i— F(s))/) = 0 V/eL, VseR and so one gets ηl—n2

 = n^ i e E^=E^2. Theorem 2
gives an appropriate injective antilinear mapping from {Ep} into H1(R,J^).
We now have an injective linear mapping from H ί ( G , ^ f ) into Hl(R,3f). Because
R is a compact group, one has H\R,tf) = {ϋ} and therefore H\G, Jf) = {0}.

This theorem can be applied to calculate the cohomology group #1(G,J(f)>
where G is the Poincare group Pτ

+, Jf7 the carrier space of the representation
[0, 1]0[0, — 1] of G, H the subgroup of space-time translations and R the
subgroup of rotations. The condition on the representation of R is fulfilled
(Lemma 2.1 in [4]). Using Theorem 5 one gets Jf/1(G,^) = {0}. This implies that
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the interesting sectors are those sectors containing a coherent state EFσ(σeΣ) with
Fσ a G-invariant complex-linear functional on L and Fσί — Fσ2 an unbounded
complex-linear functional on L Vσ 1 5 σ2eΣ with σ t φσ2.
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