
Communications in
Commun. Math. Phys. 79, 341-351 (1981) Mathematical

Physics
© Springer-Verlag 1981

Conserved Densities for Linear Evolution Systems
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Abstract. A general discussion of the conservation laws for simple linear
evolution systems is presented. The analysis is based upon an extension of the
GeΓfand-Dikii symbolic algorithm to cover pseudo-differential operators.
These techniques are applied to obtain all the conserved densities ρ\u] for the
free Klein-Gordon and Dirac equations with nonzero mass.

1. Introduction

In previous papers [1-3] we have discussed the polynomial conserved densities for
a single (linear or nonlinear) evolution equation. However, many other relevant
equations in mathematical physics such as the Klein-Gordon equation, wave
equation, and more generally, evolution systems like Dirac's were not covered by
such analysis.

The aim of this paper is to present a full treatment of the conservation laws for
simple (i.e. diagonalizable) linear evolution systems which greatly generalize older
results [1]. This is accomplished by enlarging through Fourier techniques the
GeΓfand-Dikii symbolic calculus [4] and allows us to use pseudo-differential
operators. As an important byproduct, it is shown that all conserved densities for
simple linear evolution systems are at most quadratic in the field variables barring
the exceptional cases where one or more of the diagonalized evolution equations is
of the form vt = (a Ό + b)v, a, b constant. In particular, there it follows that for the
free Klein-Gordon equation [5] and Dirac system with nonzero mass, any
conserved density is quadratic in the fields.

In Sect. 2 we briefly expose the Fourier-GePfand calculus. Section 3 contains a
detailed discussion of the conserved densities for simple linear evolution systems
and Sect. 4 applies these results to linear evolution equations, to wave-like
equations and to the Dirac system.

Appendix A contains two illustrative examples of some peculiar situations.
Finally, Appendix B establishes the relationship between linear evolution

systems and individual partial differential equations (PDE's) for each field
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component. Such a result shows in particular that given a second order linear
PDE, utt = a( — ϊD)ut + b( — iΌ)u, an associated simple linear evolution system does
generically exist which falls within the range of application of Sect. 3.

2. A Fourier-GePfand Calculus for Pseudo-Differential Operators

Let °U stand for the set of (C-valued functions w(x, t\ xeIRm, ίeIR, whose Fourier
transform w(k, ί) is CQ as a function of k, and sufficiently smooth in t (actually, C00

in t will serve our purposes). By %N we shall denote the set of iV-ples u = (uv ..., % ) ,

Let ^ΞC°°(IRm). Given two multi-indices α = (α1? ...,α2V) = α 1 e 1 + ... + ocNeN,
β = (βv ...,βN) = βίe1 + ...+βNem Maβ will stand for the set of C-valued functions
r{k'a\kβ\ C00 in the variables

^ α Ξ ( k i i > •• ? k l α i , ^ 2 l 5 . . . , k 2 α 2 , ...,kN1, . . . , k N α 2 v ) , kβ = [k11, ...,kNβN),

and symmetric in the arguments {kf

n, ...,kjα.}, as well as in {kjv ...,kj/?.}, for all

U j-
The elements of M^β will be called symbols.

Definition 1. Given ue%N, re&^β we construct the following pseudodifferential

map <%N-^><%:

u(x, ί)-^(r[u]) (x, ί) Ξ (2π)" ( | α | + m)m/2

.$r(k'a;kβ)(Πaύ*)(k'Ά,t)(Πβύ)(kβ,t)

.[expiχ.(Σβk-Σak')-]dKdkβ, (1)

where

(2)

i = i L j = i "J i = i U = i lJ-

and similarly for the α-terms.

Remarks, (i) The assumptions on %N and &a β guarantee that r [ u ] e ^ . Therefore
r[u] is C00 and of fast decrease in x, as well as smooth in t.

(ii) The above definition originates from the GeΓfand-Dikii symbolic
calculus [4]. When JV=1 and r is a polynomial in &On, then r[u\ is just that
homogeneous polynomial in u and its spatial derivatives which has (— i)nr as its
GeΓfand-Dikii symbol.

(iii) The term pseudo-differential operator has a precise meaning in the
mathematical literature [5] on PDE's. The simplicity* of the differential systems
envisaged in this paper has allowed us to relax some usual technical restrictions on
the symbols r as well as to extend the scope to nonlinear maps.
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Definition 2. Any finite linear combination

ρ[u]=Σr.[u] , r e ^ (3)
i

will be called a density.
Since r[u] + r'[u]==(r + r')[u] when r, r'e&aβ, we will tacitly assume in the

sequel that all rf entering (3) belong to different ϋ%aitβι.
Each density has an associated charge

ρ ) ( χ , O Λ . (4)

Definition 3. Two densities ρ, ρ' are equivalent if their charges are equal:

Q~Q'oQQ = QQ', Vu,ί. (5)

If ρ~0, the density ρ will be called trivial.

Definition 3'. Two symbols r, r'e&a β are equivalent (r~rr) if

r(k>a;kβ) = r'(k'a;kβ) on JI β f / , = {fc'α,fc/ϊ:2;/?k = 2:αk'}. (5')

If r ~ 0 , the symbol r will be called trivial.

Lemma 1. Given two symbols r, r'e&aβ and their associated densities ρ = r[u],
o' = r'[u], the following assertions are equivalent:

(a) r~r'
(b) ρ~ρ'
(c) ρ - ρ ' e R a n D . D Ξ ^ DJ.

Proof. The equivalence a)<=>b) is clear, since the exponential in (1) gives rise, upon
integration in x, to δ(Σβk — Σak

f).

Assertion (c) means that 3s[u], s = (s l9 ...,sm), s{e0l^β, such that ρ — ρ'

^Sffu], where Dx. denotes the total derivative with respect to xv Therefore,
i

c)=>b) trivially. It will thus suffice to prove (a)=>(c). But as r, r' are C00, r~r' implies

(r - r') (k'a kp) = (^k - Γαk') s'(fci ^ ) (6)

with s'jE&a β. The choice s= —is' completes the proof. •

3. Conserved Densities for Simple Linear Evolution Systems

In this section we will apply the preceding formalism to obtain information on the
conserved densities of some special evolution systems.

Let

ut = ̂ [ u ] , ueWN (7)

denote a linear evolution system, where A is a pseudo-differential matrix with
entries A^EM. Since the entries of exp tA are also C°°[6], the set <%N remains stable
under the flow (7).
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Definition 4. The system (7) will be called simple if 3 an inversible matrix M which
diagonalizes A, and such that the entries of both M and M~ι belong to 01 \

M(k)A(k)M~ \k) = L(k) = diagί^k),..., lN(k)}. (8)

In terms of the new functions V Ξ M [ U ] , (7) can be reexpressed as a decoupled
evolution system

v, = L[v], i.e. (fi/k, t)\ = //k)0/k, ί). (9)

Definition 5. A density ρ[u] is said to be conserved under (7) if

- β ρ ( ί ) = 0, equivalent^, D tρ[u]~0 (10)

for all ue<%N satisfying (7).
Any density ρ[u] can be regarded as a density ρ[v], and conversely. It is finally

clear that ρ is conserved under (7) iff ρ is so under (9).
We shall denote by C(A), C(L\ respectively, the linear sets of conserved

densities under (7), (9).

Lemma 2. A density Q[y']=Σri[y'], r e ^ α . β., is conserved under (9) iff each rt[v] is
conserved.

Proof Due to the lack of coupling between different components Vj in (9). if v(x ,t) is
a solution of (9) the same is true for vλ = (λ1ι;1, ...,λNvN), V/l^eC Let ^^[v]Ξρ[vA].
Then

N

with λβi = Π λ]13, e t c τ h e constancy in t of QQλ(t) for all (λ19..., λN) requires Qr.{t)

to be constant. •
The search of conserved densities for (9), and consequently for (7) is thus

reduced to finding those symbols re0tΛtβ such that r\y~]eC(L\

Proposition 1. Given r e ^ α j S , r\y~]eC(L) iff rlaj~0, where la>β€&a>β is

U*i; V s Σ ί Σ h(Kj)+ Σ T(tyl (i2)

Proof By definition, r[v] is conserved oDtr[ ] ^ 0 . Differentiating r[v] [as given
in (1) after the substitution w~**ί;] with respect to t and using (9), one obtains

which completes the proof. •
The above proposition reduces the question of knowing which r[v], β

are conserved under (9) to finding those symbols r such that rlafβ~0. An
exhaustive classification of possibilities is afforded by the following
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Proposition 2. Let the system (9) and re 01^ βbe given. Let &(la4i) denote the interior of
the closed set of zeroes of /α β in Πa β. Then:

(a) &(lΛ ^) = 0 O V Γ [ V ] G C ( L ) are trivial

(b) i T ( O = Π α ^Vr[v]eC(L) .
(c) 0 φ^(/α^)φi7α>βo3 nontrivial r^eC^), and 3r

Proof (a) (=>): ^(/α / ?) = 0 implies that ζ ^ φ O on an open dense subset of 77α β.
Therefore, for r[v],to be conserved (i.e. rlaβ = 0 on Πa β, see Proposition 1) it is"
necessary that r vanishes on such a dense subset. The continuity of r makes r ~ 0.

(<=): Suppose ^(/ α j 3 )φ0. Then by choosing r nontrivial, and with
supprCiF(7α β), we would get a nontrivial conserved density.

(b) (=>): 'Trivial
(<=): Trivial (take r=l).
(c) It follows from (a) and (b). •
The possibility (b), i.e. lΛtβ~09 is the most important, since it guarantees that

the full set J>α β of symbols gives rise to conserved densities. We present next a
systematic criterium to ascertain when ζ ^ ~ 0 .

Criterium. The following statements hold:

(i) J β i O ~0,α = β

(iϊ) /β

i

0-0,α = ̂  + ̂  /

la β~ 0, α = ei9 β = ejolffk) + IJk) = 0, Vk.

p../ι(θ;θ)=o
(iii) .^ j

Proof (i) and (ii) are self-evident. As to (iii), it suffices to prove the direct
implication. Two essentially different cases can arise: |/J|^3, or \β\^2, | α | ^ l
(exchanging α with β and /. with If cover the remaining situations).

Let |j8|^3. Then lΛtβ~0=

Vk1?k2 (14)

whenever βh, βt, jg ΦO, and /(k) = /(k)-/(0). But (14) requires ΓΛ = ζ = ζ = ζ Γ(k)
+ /( —k) = 0, so that (14) becomes

Γ(k1+k2) = Γ(k1) + Γ(k2) (15)

which expresses the additivity of I This property, together with the continuity of Γ,
forces Γ to be a linear function: Γ(k) = λ k.

Now let | α | ^ l , \β\^2. The assumption lafβ~0 leads now to

ς t ( k 1 + k 2 ) + Γi(k1) + 7/k2) = 0,Vk15k2 (16)

if αh, βi9 βj + O. Therefore -l* = i. = l. = l with Tfulfilling (15), i.e. ί(k) = λ k.
Since |α| 4- \β\ ^ 3 ensures that one or several of the possibilities |α| ̂  3, \β\ ^ 3, |α|

^ 2 and |j8| ̂  1, |jS| ̂ 2 and |α| ̂  1, occurs, the proof is complete. •
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The mixed possibility (c) in Proposition 2 is automatically discarded in the
relevant case where all /.(k) are analytic functions of the real variable k.
Consequently, we have:

Corollary 1. Assume I. analytic. Then according to whether laβ fulfills the preceding
criterium or not, then either

(i) Vr[v], reMatβ9 belong to C(L)
or

(ii) \frl\]eC{L\ re&aβ, are trivial
When the analyticity cannot be invoked, (c) is a real possibility (see Appendix

A for a related example). However, it is rather remarkable that unless some Zf are
linear on certain open sets the system (9) admits nontrivial densities only when |α|
+ |/?|^2. This is a mere consequence of the following lemma and Proposition 2.

Lemma 3. Let f0, fv ...,/„, n^.2, be continuous functions o/keIRm, satisfying

(17)

for V(k1? ...,kn)eΩ (nonvoid open subset of(Km)Xn). Then f0, fv ...,/„ are linear,
with a common constant gradient, on some nonempty open subsets Ωo,
Ωv ...,ΩπClRm, respectively.

Proof Take (k l9 ...,kn)eΩ, and define τ^k.-k,, gfa) = ffa) - /<(£,), i=l,...,n,

^ o ( τ 1 + . . . + τJ = /o(k1 + . . . + k J - / o ( k 1 + ... + kπ). Then go(0) = gi(0) = 0, and

6f0(τ1 + ... + τπ) = 6 f 1 (τ 1 )+.. . + 6fn(τn) (18)

for Vτ̂  sufficiently small, say τ ίG^2 ( 5Ξ{τ:|τ|<2(5}, δ>0. Therefore go=gί

= ... = gn = g on W2δ, and the continuous function g is additive on Wδ. It is now
simple to see that this additivity implies g(ak) = ag(k) for all rational real numbers
a such that k, ake Wδ. Continuity completes the proof. •

Remark. If (17) holds for V(k1?..., kw)5 then one can take δ = oo in the above proof.
Therefore, Lemma 3 reproduces in particular the results of (iii) in the previous
Criterium.

4. Applications

This section applies the results so far obtained to some interesting situations.

4.1. Linear Evolution Equations

Let the single linear equation

ut = l[u\ (19)

with leM. Proposition 2, Criterium, and Corollary 1 permit a full discussion of the
conserved densities under (19). In particular, if I is a polynomial p, we can
immediately conclude the following result, which generalizes the final theorem of

[ 1 ] :
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Proposition 3. Consider the equation ut = p[u], p a polynomial Then:
(i) p(0) = 0<=>Vr[w], TEMQ V 01 ̂  0 are conserved.

(ii) podd<=>Vr[ι/], r e ^ 0 > 2 , 0t2fO are conserved.
(iii) p pure imaginaryo\Jr\u\ re0lγ λ are conserved.
(iv) p(k) = λ'ko\/r[u], re&On, &n0 are conserved.

p(k) a + ibk,breal }
(v) _i_nf ^ ^ M * rE^ni n2

 a r e conserved.
nγa* + n2a = 0, nl9 n2 ΦOJ u 2

Moreover, if 3 a nontrivial conserved density r[u], rs0tn n, then s[u]eC(p\ for
V ^ n i > n 2 .

For instance, the free Schrodinger equation
iut=-Δu9 A=ΌΌ (20)

has p(k)= — z/c2, which only satisfies the conditions (i), (iii). Therefore, the set C(iΔ)
of conserved densities for the Schrodinger equation (20) is given (modulo trivial
ones) by the linear span of u, u*, and u*s[u], seM.

4.2. Linear Wave Equations

Consider the wave equation

(21)

where / is a function of x, t and p, q are polynomials in D.
The substitution f = uv ft = u2 leads to the associated linear evolution system

When the discriminant q2(k) + 4p(k)φ0, Vk, that system is simple, and so the
conserved densities for (21) [or equivalently (22)] can be readily obtained through
Corollary 1 by inspecting the secular roots /1(k)J / 2 (k)e^ of A. Suppose, for
instance, the free massive Klein-Gordon equation

fu = (Δ-V)f. (23)

Now /x(k) = - Z2(k) = i[(l + /c2)1 / 2]. Let v be the field variables for the diagonalized
system. Then Corollary 1 allows us to conclude that the set of conserved densities
under (23) is, modulo trivial ones, linearly spanned by r[v], re&a β, with (α,β)
= ((0,0), (1,1)), ((1,0), (1,0)), ((0,1), (0,1)), ((1,1), (0,0)), once the variables v are
reexpressed in terms of u, i.e. /, ft. A simple calculation shows that the set CKG of
conserved densities for the free Klein-Gordon equation with non-zero mass is,
modulo trivial densities, the linear span of the following quantities (whose origin
from v is indicated):

ίίO 0) ίl n)^J^ 5 tΛ/ s M (24s)

lf*s[f]-f*sUtl
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where se& is arbitrary. In the above expressions ftt should be replaced by the r.h.s.
of (23).

Remark. Under the restriction m ̂  2, it has been proved in [7] that (24) span C κ G

for the real case. The techniques used in [7] are radically different from ours, and
their specificity to this example contrasts with the generality of the method
presented here.

Should the mass be zero, i.e.

ftt = Δf (27)

the associated linear system is no longer simple if m^2, since the roots /1(k) =
— Z2(k) = i|k| are not C00 around k = 0. However, as lt(k) are linear nowhere, the
remarks preceding Lemma 3 show that the set C κ G (0) of conserved densities r[u]
under the system (22) associated with (27) has not any nontrivial density with
symbol r e ^ α j 3 , | α | + | β | ^ 3 . [Otherwise there would exist nontrivial densities of
that type under the technical restriction that u vanish in some neighbourhood of
k = 0, and for these, the lack of differentiability of Z (k) at the origin becomes
irrelevant] Regarding the case |α| + |/?| = l, it is straightforward to check that the
only nontrivial r [u]eC K G (0), re<*βf/ϊ, have (α,j8) = ((0,l), (0,0)), ((0,0), (0,1)). In
summary, if m ̂  2, CKG (0) is linearly spanned, modulo trivial densities, by (24)-
(26) and ft, /*.

Let us finally consider (27), with m= 1. Now it is possible to choose as secular
roots Z1(fc)= — I2(k) = ίk, which are analytic, odd and pure imaginary. However,
once again the associated linear system is not simple. The application of the
Criterium in Sect. 3 shows that C{L) is spanned by r[v], r<Ξ&a β, (α,j8) = ((0,n1),
(0,n2)), ((nl90), (n2,0)), Vnl5 n2 with n^n^l. Since v1=fx + fp'v2=fx-fv these
densities will determine a subset of C κ G (0). However, there may exist other
conserved densities ρ ε C K G (0) which cannot be obtained by this procedure, such
as ρ = f*ft — f*f, unless the family of symbols is properly extended.

4.3. Dirac System

Let us finally consider the free Dirac equation in Hamiltonian form

ίut = (-m-Ό + μβ)u, μ + 0, (28)

where α, β are the usual Dirac 4 x 4 matrices. Now

Λ(k) = - i(μ k + μβ) Ξ - iffo(k) (29)

with Ho the free Hamiltonian. It is well known that the Foldy-Wouthuysen
transformation matrix (with y = βaί)

Ikl
M(k) = cosθ i + sinθγ k, β ^ i t a n ' 1 — (30)

diagonalizes ifo(k), and
2 21/2

Since ω(O)φO, and ω(k) is analytic but not linear anywhere, the Criterium
shows that r[v]eC(L), re@tΛtβ, requires |α| + |j8| = 2. More specifically, C(L) is
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spanned, modulo trivial densities, by the following densities:

where a, b are arbitrary 2 x 2 matrices with entries in C00. A simple computation,
using (30), brings the first term of (31) to the form

u* [ r 1 + s 1 Σ + r 2 ^ + s2 i3Σ,fί0] + [ u ] s (32)

where rt , ŝ  are C00 and arbitrary. Similarly for the rest of (31), by merely replacing
one of the u's in (32) by the charge conjugate spinor uc. This way we have obtained
a linearly generating set for the set CD of conserved densities under (28), modulo
trivial ones.

Appendix A

In this appendix we include a couple of examples which illustrate some special
situations.

(i) Suppose the linear evolution equation ut = l[u]. If Z(k) is not analytic, then
the possibility (c) in Proposition 2 may arise. For instance, let

ut(x,t) = ]/ -iDu(x9t)9(x9t)eWLxWL (A.I)

which would appear in the process of diagonalization of ftt = — ίfx. More
concretely, Z(fe) for (A.I) is

S
[Although iφC™, we will relax here our technical assumptions for the sake of
providing simple final expressions]. For r[u] to belong to C(l\ with reM1 l 5

Proposition 1 requires

(\k\1/2-\k\^2)r(k;k) = 0, fe<0Γ l j

Thus any r(fc' fc) such that r(fc;fc) = 0 for k^O will satisfy (A.3) and gives rise to a
conserved density under (A.I). So, the choice r(k' fe) = (k1 + fe) θ( — k! — k) (again not
sufficiently regular) leads to the following nontrivial conserved density for (A.I):

(r[u]) (x91) = (2π)" 1 J - ^ [n*(x - y9 t)ux(x + y,ή- u*(x - y, t)u(x + y9 ί)] . (A.4)

Moreover, the density u*u is not conserved. This shows that the cases (a) and (b) of
Proposition 2 may not exhaust all possible situations.

(ii) The following example shows that the condition Zα ̂ (0 0) = 0 may be
determinant in some cases for the existence of conserved densities. Let

9D2 + D-6 9D2-9D \ . . / A CN

-9D2-9D - 9 ^ + D + 3 U(X'° ^
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The transformation

brings the simple system (A.5) to the diagonal form

'"(V ol}'^
Now lx(k) = ik — 6,12(k) = ik + 3. From Corollary 1 and Proposition 2 it follows that
C(L\ modulo trivial densities, is the linear span of r[v], re0Haίβ, a2 + β2

= 2(<x1+β1). This last restriction merely reflects the condition /α/?(0;0) = 0, since
the remaining part of (iii) in the Criterium is automatically satisfied in this
example. For instance v\v\neC(L\ Vn^l. In terms of u, vxv\ becomes the
following conserved density under (A.5):

β = [(Wi+" 2 )J 3 + (u1-2u2)\-(u1+u2)x]
2 + (u2

2-2u1u2)(u1+u2)x + u1u
2

2. (A.8)

Appendix B

Let us consider the most general linear differential evolution system with N = 2,
m = l , namely

ft=Σ*jDJf+ΣβjDjβ
(B.I)

with ap βj9 yp δjE<£. It is straightforward to prove, by differentiation, that both /, g
satisfy the same PDE:

(B.2)

In the general case uf = ̂ 4[u], u e ^ , xeIRm, and A with polynomial entries, it
turns out again that each u satisfies the same PDE:

o>,)=o, j=i iv ( R 3 )

ΩA = D»-NΣaJί-iD)Dί9
7 = 0

where a. are polynomials. The reason for this remarkable property is the fact that
the differential matrix A annihilates its characteristic polynomial

Σ a/j ( B 4 )
o

whence, by applying the identity
J V - l

AN- Σ djAj = 0 (B.5)
o

to u, (B.3) follows at once.
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N-ί

Conversely, given a linear differential operator Ω( — ϊDt, — iD) = Df —
o

0
0

I

1
0

a i

0 ...
1 ...

a2 ...

0
0

aN_

'dj( — iΌ)DJ

v it is always possible to find a linear differential evolution system

uf = /l[u] such that Ω = ΩA. It suffices to take

A =

The choice is of course not unique.
The case JV = 2 is the most important for the physical applications. In Sect. 4.2

we have seen that the associated linear system is generically simple, and therefore
within the range of applicability of the general method exposed in Sect. 3.

Acknowledgements. The authors acknowledge some enlightening discussions with G. Garcia Alcaine, F.
Guil, and L. Martinez, as well as the financial support of the Instituto de Estudios Nucleares, J.E.N.

References

1. Abellanas, L., Galindo, A.: Lett. Math. Phys. 2, 399 (1978)
2. Abellanas, L., Galindo, A.: J. Math. Phys. (N.Y.) 20, 1239 (1979)
3. Abellanas, L., Galindo, A.: Submitted to the J. Math. Phys.
4. Gel'fand, I.M., Dikii, L.A.: Russian Math. Surv. 30: 5, 77 (1975)
5. Taylor, M.: Pseudodifferential operators. In: Lecture Notes in Mathematics, Vol. 416. Berlin,

Heidelberg, New York: Springer 1974
6. Chevalley, C.: Theory of Lie groups. Princeton: Princeton University Press 1946
7. Tsujishita, T.: Lett. Math. Phys. 3, 445 (1979)

Communicated by H. Araki

Received November 7, 1979






