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Abstract. It will be shown that, for a convex polynomial P, the P(φ)2 quantum
field theory without cutoff has a classical field limit as Planck's constant h tends
to zero. This extends work of Hepp [1], who considered theories with a space
cutoff.

0. Introduction

The purpose of this paper is to show that, for suitable interactions P, the two-
dimensional P(Φ)2 models have a limit, as Planck's constant h tends to zero,
which describes a classical field theory. The framework in which this result is
proved was first formulated by Hepp [1], who proved a similar result for models
with a space cutoff. In the present case, without any cutoff, the technical details
are much harder, in particular because the physical Hubert space Ξph of the inter-
acting theory turns out to depend on h.

The central idea is to define a vector Ψ(h,uQ,vQ}^Ξph(h\ which depends on
initial conditions u°, v° for the classical field theory (see Theorem 1), and then to
prove that the expectation value at any time ί, of a bounded function of the time
zero field tends as h tends to zero, to the same function of the classical field at
time t with the initial conditions u°, v°. The method, which is also the underlying
method in Hepp's paper, is to make a change of variable in the physical Hubert
space, a space of fields, to centre around the classical field, instead of around the
zero field. This change takes Ψ to the vacuum vector, and transforms the Hamilton-
ian into a time dependent Hamiltonian (see Lemma 2). To make this formalism
rigorous, a space cutoff *? is introduced, and then the problem is to define and
control the time dependent Hamiltonian uniformly in h and t. The definition
of the time dependent Hamiltonian is by the method of time dependent quadratic
forms [9] and the control is by cluster expansion techniques [8], the latter requiring
an analytic continuation in an appropriate, but quite unphysical, parameter to
a Euclidean region.

It should be noted, that just as there are classical field states, the vectors
Ψ(h, w°, v°\ so also are there classical particle states in the P(φ)2 models [12].
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1. Statement of Theorem

N

Let P(x)= Σ λnx
n be a polynomial which is bounded below and convex. In

« = 3

particular, N is even, λN > 0, and P and the second derivative of P are everywhere
non-negative.

Let μh be the Gaussian measure on ^'(U2) with covariance h( — Λ -\- m2)"1,
where A is the Laplacian on 1R2, m0 is the bare mass, and h is Planck's constant.

The cutoff Schwinger functions for the interaction determined by P are given
by

^(/^...J^Z-^i/J.^ (1)

where

Eckmann [2] has shown that, for h sufficiently small, the limit lim SΛ can
Λ^R2

be constructed using cluster expansion techniques and defines a family of Schwinger
functions for a Wightman theory with unique vacuum. Let Ξph denote the physical
Hubert space of this theory, and let Hph be the Hamiltonian. Note that Ξph =
Ξph(h) does depend on h. Eckmann's Theorem is the special case of the results to
be proved below when the classical field vanishes.

The classical field equation corresponding to the interaction P is
^2 Λ O

>"o» + ί"(») = 0, (2)

which is equivalent to the Hamilton equations

du dυ d2u ~ ,, ,

¥= ϋ ' τr^-m»u-p (u) (3)

In this paper it is impossible to take units with h — 1, so (2) implies that m0 has
units of inverse length, rather than of mass.

A proof of the following existence theorem is given in [3, 4 Sect. X.I 3].

Theorem 1. Let w°, ι?°eC*(IR1) be real valued. Then, for P as above, there are
unique real valued functions u(t, x), υ(t, x)eC°°([R2) satisfying the equations (3) with
the initial conditions w(0, x) = w°(x), ι?(0, x) = t;°(x). Write u(t) = u(t, •), v(t) = υ(t9 •)•
Then u(t\ υ(t)EC^(^\ and supp u(i) c {x :d(x, supp u°) ^ t}.

Throughout this paper we take a fixed time T and fixed initial conditions
M°, ί;°eC^(R). Without further mention, all space cutoffs f will be chosen to
satisfy supp u(t) c [-/,/] for 0 g ί ̂  Γ.

Let φ° and π be the canonical time zero fields on Ξph, as defined by the C*
algebra approach to P(φ)2 [5, 6].

The main result of this paper, Theorem 5, shows that, for h sufficiently small,
there is a vector Ψ(h, ι/°, v°)eΞ h(h)9 which, for any t with 0 <; t g T and for any
/e^CIR1), has expectation value for eιφ°(f} approximating the corresponding classi-
cal value eiu(t)(f\ and that the expectation value for eίh~ 1/2<*0-tt<f»tf> is approximated
by an h independent matrix element in a Gaussian field theory.
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Here

An explicit expression for Ψ(h, w°, v°) is

ψ(h, w°, ϋ°) = exp ί(φ°(v°) - π(u°))/h Ω, (4)

where Ω is the vacuum vector in Ξ h .
In order to simplify the h dependence in Eq. (1), let μ be the Gaussian measure

on^'OR2) with covariance (-J + m2)"1, and let C :L2(dμh)-^ L2(dμ) be the
unitary map defined by C1C* = l,Cφ(f)C* = h 1 / 2 φ ( f ) . Since C is unitary, it
follows that,

(5)

and that

The factor h(1/2}n in (5) demonstrates that, if Ξ is the Hubert space of the field
theory with Schwinger functions equal to Λ~ ( 1 / 2 )"5K 2, then C induces a unitary

map C:Ξph^>Ξ, such that CΩ = Ω, Cφ(f)C* = h1/2φ(f). The existence of Ξph

is equivalent to that of Ξ, but note that the equivalence breaks down at h = 0,
and that Theorem 5 shows that it is Ξph to which the usual physical interpretation
applies, while Ξ is a mathematical convenience, giving a precise expression of the
deviation of quantum fields from classical fields in the limit h -> 0.

Introduce a space cutoff £. Let HQ be the free Hamiltonian corresponding to
the Euclidean measure μ.

Let H, =H0 + h~1 f :P(hi/2φ°):dlx.
-<?

The following time dependent Hamiltonians are also needed

ff (s) - #0 + h-1 ] { :P(hl/2φ° + u(s)) : - P(κ(s))

Since w(s)eCJ)([R1), it is a standard result that H£ and /f,(s) define self-adjoint
semi-bounded operators on Fock space ^ = L2(dμ) [7]. Let E, = Ef(h) be the
lower bound of #,, and, more generally, if H is any semi-bounded operator,
let E(H) denote its lower bound.

Let β (S)= Σ Σ1^f"V1/2)Γ"1ί K^y
^ n = 3 r = 2 \ r / -£

so that ff/(s) = ̂  + 6^(s)

Let ti, = H,-E ,.

Choose α > 0. Then, because all the operators involved have a common core,
the following inequalities between quadratic forms are immediate consequences
of the definitions of the E(H).
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0 ̂  tf, ^ H, + Q,(s) + (E, - E(H, + (1 + α)β,(s)))

- αβ,(s))) (6)
kΛ

Define K^(s) — H^ + β,(s) + ε1 ? where εt is a constant, independent of h
and ,̂ which will be chosen in Lemma 6, and proved to bound (Ef — E(H^ +
(l+α)βχs))),sothatκχs)^0.

Let Jf + 1 cJ^c:^_ 1 be the scale of spaces associated with Hg. 3? ± i depend
on h and ί. It will be shown that there is an operator (7(ί, 0) on J ,̂ such that
ί-> U(t,Q)Ωj is the unique continuous function x(t) from R to Jf+ 1 such that

x(0) = Ω^ and the equation — (x(t))= -iK^(t)x(t) holds in 3^_^. Formally,

/ {, \
ί/(ί, 0) = T exp - i \ KΛs)ds where T is the "time ordering symbol".

V o /

Using this uniqueness result, we prove

Lemma 2. Set Ψ,(h, w°, v°) = c*eίh~1/2(φ°(v0)-π(u0))ΩΓ Then

Proof. Set x(ί) - eia(t}e~ih~ ί'2(*°w»-*wne-
iH<tCΨt(h9 w°, ϋ°) where

α(ί) = A" 1 J f (P(u) - ^uP'(u)}dlx ds + (£^ - εjί
o

Then, by explicit differentiation and use of the canonical commutation relations,
x(t) satisfies the hypotheses given above, and so equals U(t,ϋ)ΩΓ It is at this
point that it is necessary that supp u(t) c [ - /, /]. The analytic details are
dealt with by noting that i2,ejf+1, and that, by explicit calculation, eiφ°(f\

By the C* algebra approach to the limit t -> oo [5, 6], the left hand side of
Eq. (7) converges to

(Ψ(h, w°, A eίHphtlheίh~1/2(φ°~u(mf)e~ίHpht/hψ(h, w°, υ°))

if it converges at all. It will, in fact, be proved to converge uniformly in A.
Letting h -> 0 while holding / fixed leads to the classical field theory results

of Hepp [1]. In this paper these results will be extended by letting t ->• oo before
taking h -> 0. In order to do this, the powerful techniques of the cluster expansion
[8] are needed. The cluster expansion is defined in the "Euclidean time region",
that is, an analytic continuation is made in the time variable from real to imaginary
time. In the present case, the continuation is made, not in time, but in a completely

/ ί \
unphysical variable z. Formally, we set U(z9 ί, s)= Texp( - ίz$Kj(r)dr 1.

\ s /
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U(z9 ί, s) will be defined as a bounded operator on J^ for Im z ^ 0, and the cluster
expansion will be used in the region Re z = 0. Of course, U(t, s)=U(l,t, s).

In order to make the analytic continuation, the following extension of Vitali's
theorem will be used,

Lemma 3. Let Γ1 = {zeC :Im z < 0}, Γ2 = {zeC : |z| > 0, Imz^O}. For O ^ A
^ A0 suppose that a)fn(z, h) is a sequence of functions which are analytic in z on Γ1

and continuous and differ entiable in z on Γ2 .
Ίs>

b) On any compact subset of Γ2, \f (z, h)\ and \-r(z, h)\ are bounded uniformly in
handz. dz

c) fn(z9 h) converges for zeΓ \ with Re z = 0 to a function continuous in h.
Then, there exists a unique function /(z, h) which is analytic inzonΓ1, continuous

in z on Γ2, and continuous in hfor zeΓ2, such that fn(z,h) converges to /(z, h) for

Proof. 1. Fix h. By Vitali's theorem/(z, A) exists and is analytic in z on Γ1 . Thus
fn(z9 h) converges on a dense subset of Γ2. But, on any compact subset of Γ2,
the sequence is uniformly bounded, and also, because the derivatives are uniformly
bounded, is uniformly continuous. Thus/π(z, h) converges to a unique function
/(z, h) which is continuous in z. Further, the continuity in z is uniform in h.
2) Let (hn)™= 1 be a sequence between 0 and A0 converging to h. Then, we can apply
the same method to show that/(z, hn) -»/(z, h) for all zeΓ2 , because
a') /(z, hn) is analytic in z on Γ1 and continuous in z on Γ2 .
b') On any compact subset of Γ 2 9 \ f ( z 9 h n ) \ is bounded uniformly in h and n,
and the sequence/(z, hn) is equicontinuous in z. D
c') /(z, hn) converges for z^Γ1 with Re z = 0.

Theorem 4. Given a time T > 0 and a pair of classical initial conditions
w°, v°εC% (ίR1), there exists A0 > 0, such that, for 0 ̂  h ̂  A0 αnrf /or 0 ̂  ί ̂  T,
Ξph(fy can be defined by the cluster expansion, and U(z,t,Q) can be defined by
Theorem 7. Let F(^ A, ί,z) - (β,, [/(z"1, ί, 0)* ̂ 0(/) [7(z, ί,0)Ω^) αnrf /or any
sequence ln -+ oo, set fn(z, h) = F(£n,h9 ί, z). Thenfn(z, A) satisfies the hypotheses of
Lemma 3.

Theorem 4 is the central technical result of this paper. Hypotheses α and b
of Lemma 3 will be verified in Sect. 2, where U(z9 1, s) will be constructed, and
hypothesis c will be verified in Sect. 3.

An immediate consequence of Theorem 4 is the main physical result of this
paper:

Theorem 5. (i) lim(<F(A, M°, Λ eitH*hlh eiφQ(n e~itH^h Ψ(h, u°9 v°)) = eίu(t}(f}

(ii) lim(Ψ(h, u°, v°)9 eίtH*>h/hei
h~ 1

Here ΩQ is the free vacuum in 3F,
and

H°(s) = HO + H :(<P°)
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Note that, since T is chosen arbitrarily in Theorem 4, Theorem 5 holds for all time ί.

2. Time Ordered Quadratic Forms

The inequalities (6) show that K^(S)G^(J^+ ί , ffl _ 1) (the space of bounded opera-
tors from «^+1 to ̂ .J. Lemma 6, which will be proved in Sect. 3, shows that
|| Kf(s) || + 1 _ ! is bounded independently of/ and A. In addition, define

where

Δun~r(t, s, x) = (t - s)~ l (un~r(t, x) - un~r(s, x)).

Now

(E€ - E(H< + <*AK,))

, - E(H, + αΛiy ) + (E€ - E{H€ -

so Lemma 6 also shows that AK^<£(#e +1, Jf _J with | |ΛKj + l ϊ _ 1 bounded
independently of /, A, s, and ί.

By a similar bound, limzlK,(ί,s) exists in norm in .S?(jf+1,jf ..J, because

Lemma 6. Given a bare mass m0 and a time T > 0, there exists α0 > 0 swcA that,
for 0 ̂  5 < ί ̂  T, /or 0 ̂  α ̂  α0 , for all bare masses m ̂  m0 , and /or 0 < A ̂  1,

ar^ constants £ ί y £ 2 , ε 3 , ε4 independent ofs, ί, a, m, A, and o//, sucA that

E, - E(H, + (1 + a)β,(5)) ̂  fil , £, - E(H, - E(H, - a)β,(5)) g β2 ,

^ - E(H, + aJX^ί, 5)) ̂  ε3 , £^ - £(jff^ - azlK^ί, 5)) ̂  ε4.

Now we make an abstraction of this situation. Lemma 6 shows that the hypo-
theses of Theorem 7, which are modelled closely on those of the theorems quoted
in the proof below, are satisfied. Thus Theorem 7 can be applied to the proof of
Theorem 4.

Theorem 7. Let H be a positive self-adjoint operator on a Hubert space 2F with
norm || ||, and let 2? +1 c j f c #? _l be the corresponding scale of spaces, so that

\\x\\ ±1 = \\(H+ l)± 1 / 2x| | . For O g ί ^ Γ, let H(t) be a self-adjoint operator on
2tf satisfying 0 :g C~ ^ H ̂  H(t) ^ CH, where C is positive constant independent oft.
Suppose further, that AH(t,s) = (t - sΓl(H(t) - H(s)) belongs to ^(^+1,J^_1)
for 0 ̂  s < t ̂  T, is strongly uniformly continuous in s and ί, and that
|| ΔH(t, s) || + 1 _1 ^D, where D is a constant independent ofs and t. Finally, suppose
that\imAH(t,s) exists uniformly in t for O^ί^T, belongs to &(Jf?+1,Jiίf_1)9

s-»ί

and is strongly uniformly continuous in t.
Then, for allzeC with Im z ̂  0, and for O^s^t^T,

(i) An operator U(z, t,s)e^(^f_i,je_1) exists with \\ U(z, t9s)\\_lι_1^l.
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(ii) For all ^6 Jf+ 1 , x(t) = U(z, t, s)ψe ff + 1 , is continuous in tin JV+19 and is the

unique solution inJ4?_1 to -rx(t) = — iz H(t)x(t) with x(s) = ψ.

(iii) l/(z, ί, s)e^(Jf + 1 , tf+1)mth || C/(z, ί, 5) || + 1§ + 1 £ C2eD(ί-s)

(iv) [7'(z, ί, s) = — l/(z, ί, s)e JSf (Jf + 1 , Jf _ J exisίs and satisfies \\ U'(z, ί, 5)

Proof. Parts (i) and (ii) are due to Kisyήski[9]. A brief reformulation of Kisyήski's
method is given here in a simple and accessible form in order to prove parts (iii)
and (iv).

Let /^(s) be the closure of H(s) considered as an operator in 3^_i. Then
H^s) is self-adjoint with domain 3Ίf+i because it is closed and symmetric, and
H(s) ± i have dense image in ffl _ 1 . The hypotheses of Theorem 7 have been chosen
so that the operators H1 (s) satisfy the hypotheses of Kato and Yosida's theorems
on time dependent operators with common domains, in particular Theorem
X.70 of [4], which is a replication of Theorem 1, Sect. X.14 of [10].

It follows that U(z9t,s) can be constructed on Jf _ 1 as a limit of piece wise
constant propagators. For k = 1,2, ... set

Uk(z, ί, 5) - exp( - iz(ί - s)Hι ((i - l)T/k)) if (i - l)Γ/fe ^ s ̂  t ̂  iT/k

and

C7k(z, ί, r) = Uk(z, ί, 5) Uk(z, 5, r) if 0 ̂  r ̂  s ̂  ί ̂  T.

Then, by the quoted tneorem, U(z, ί, 5) φ = lim Uk(z,t,s)φ exists for
fc->oo

and ίί\l/ej>ίf+19 then x(ί) = [7(z, ί, s)^ satisfies (ii) and || x(ί) || _ ^ ^ || ψ \\ _ 1 .
This proves (i) and (ii), except for uniqueness, which is proved by Kisyήski

([9] Theorem 2.4).
(iii) follows from the construction of [4], Theorem X. 70. In fact, in all essen-

tials, it is given as the lemma to that theorem, which shows further that,

|| l/k(z,M)| + l i + 1 ̂  C2(l +(D/fc))Vί-^. (8)

(iv) Given t ̂  s and fc, set = [fcί/T], t = [fcs/T]. Then, if j = /, U'k(z, ί, 5) =
-i(t-s)Uk(z9t9s)H1VT/k)iϊj>t,

U'k(z, t,s)=- i(t -j(T/k))H, (jT/k) Uk(z, ί, 5)

-i(T/k) 'Σ Ufatt

- s)Uk(z9 1, s)Hί

Using (i) and (8), it follows that

and that Uk(z,t,s) converges strongly on ^f+1, uniformly in z, ί, and 5, to

- i J ί/(z, ί, r)7/1 (r) t/(z, r, s)dr, so this equals ~rU(z, ί, 5), and (iv) is satisfied.
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3. The Euclidean Region

The Euclidean region is the set of z = — if for CeR, ζ > 0. This section proves that
/n(z, h) defined in Theorem 4 satisfies hypothesis c of Lemma 3. Lemma 6 will also
be proved here.

With the notation of Theorem 4,

F(ί9 h, t, - if) = (Ω,, T(e~Γ 'foK/W*)* β^°(/) T(έΓζίSli:'(s)ds)Ω,).

The Feynman-Kac formula and the definition of Ω, (see [7], section V. 4) show
that this is equal to the limit as S -> oo of

(Ω , e-SH'T(e~ζ~1J°(X'(5)+£')ds)*elW^ )

= Θ(Ω0

where

A is the subset [ - S- ζ~ 1 f, 5 + Cί] x [ - ^-/] of R2, gf is the function on 1R2

defined by

g(s, x) = 0 for s < - t/ζ and s > ζt

and

Note that the adjoint of E7(z, ί, 5) has the time ordering reversed.
The required results, (convergence in ί and uniform continuity in h of

F ( f 9 h , t , - iζ))9 now follow by standard methods of constructive quantum field
theory [8], on proving that the measure

dvA(φ) = z-^-^'W^

has a convergent cluster expansion :

Theorem 8. There exists ε > 0, independent of m0, such that, if 0 ̂  /z1 / 2 g εm2

then, for any Wick ordered polynomials A,B of the form J. φίxJ"1 :... :φ(x)H} ' :
w(x 1 ? ... ,x7.) rfx wiίA supp yl αnrf supp 5 separated by a strip of math d, there is
a constant MA B and a positive constant m independent of A, B, and h such that

Proof. By Theorem 1, sup \g(s9 x) < oo, and also there is a fixed interval [α, 6]
(s,x)εΛ
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[ - t,f\ such that supp u(s) c [α,b] for 0 ̂  s ̂  T. Define Λ0 = [ - ί/ζ, £f] x [α, &]•
Then supp g a ΛQ .

Now, following [8], and adopting the notation of that paper, we expand
n

SA(x) = J Π 9(xi)dvA into a sum of terms labelled by unions of lattice squares X
i = l

and lattice lines Γ, with the modification that in the present case, the bounded
set X0 outside which the expansion is made, is chosen to be XQ = A0 u (x1 , . . . , xn} .
Thus

SΛ(x) = Σ Kί Π φ(^}e-W(^e-^Λ^dφs(Γ}ds(Γ} x Zdχ(A ~ X)/Z(Λ) (9)
X,Γ i=l

where the notation is that of [8] Sect. 3, except that

and

= Σ i
M = 3 r = 2

By choice of X 0 , Z ^(/L ̂  X) is independent of g.
The central result of Eckmann's letter [2] is that the cluster expansion (9)

converges for g = 0. This follows straightforwardly from the techniques of [8],
given Lemma 9 part (i). The proof that (9) converges when g is non-zero also follows
from the proof of [8], using both parts of Lemma 9 and Holder's inequality to
replace corollary 9.6 of [8].

Lemma 9. For any w0>0, there are constants Kί and K2 such that, for all h
with Q^h^l and for all A

(i) (Eckmann) 1 ̂  $e-4V(Λ}dμ(φ) ^

(ii) ίe~
4h~1SΛ{:p(hί/2φ+β):~p(β)~h

Lemma 9 will be proved as part of Theorem 10, but first we reduce the proof
of Lemma 6 to a similar form.

^ίR1); = 1, 2, ... 9N - 2 with supp/. c [α, &]. Define

n=3r=2

Now follow [7] Lemma VI. 14 for the proof that E, - E(H^ + L) is bounded
above. Lemma 6 of this paper states that for suitable/ in the definition of L, this
upper bound is independent of / and A, while Simon [7] is only concerned about
independence from (. However, allowing for differences in notation, there are no
problems with the dependence on /z, and corresponding to inequality (VI. 21)
of [7], we obtain

- E(He + L) ^ - i£,+(1/2)α - ±Et_W2V> - E(H(a, b, λ0) + λ0L)/λ0 (10)
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where

b

λQ = 2/(l -e~mo) and H(α, b, λ) = #0 + λf/Γ x \P(hl'2φQ)dlx.
a

Now, there are constants α^ and jS^ (possibly depending on h) such that

so

The next step is to verify that — ̂ α^ (b — a) — β ̂  is bounded above
independently of h.

-X^-αKO (12)

because b > a and α^ > 0 ( [7] Theorem VI.2a).
A proof that jS^ is bounded below is also given by Simon ([7] Theorems

VI.10, VI.7, and VI.2), and reduces to

BΛ£CE(H(0,^2r(l -e-^r1))/* (13)

where C is a constant independent of h, t > 0 is arbitrary, and 1 < r < 2. (t and r
are also independent of h).

Combining inequalities (10) - (13) gives

£ T7fTJ i T \ <*" /"* J7/ ΓT f f \ + O-M^I n—Wθt\~j — E>\flj ~r Ju) ^ — ^LJ\ΓL\\), ί, zr\ι — e )

so the proof of Lemma 6 has been reduced to that of Theorem 10.

Theorem 10. Suppose given finite positive constants m0, p, and λ. Take any set
ofN - 1 bounded functions {fjv,... ,/N_2} in C™(R2) such that ||/|| ^ < p, ||/. || ̂  < p
i=l,29...,N-2,anddefineJor A c IR2,

l/(yl) - A' 1 Lί P(hί/2φ+f): - P(f) - h±/2 φP'(f)}d2x,

n

τι= 3 r=2

Then, there is a constant α0 > 0, depending only on m0 , p, and A, awd a constant

K = K(a0 , m0 , p, 1), swc/z that, for all a and A wzί/z 0 ̂  A ̂  λ and | a | ̂  a0 ,

Proof. The proof is in five steps.
(i) Choose ε with 0 < εw0 . Then there is a constant K3 such that

eκ*W. (14)

Proof. Let σ be the Gaussian measure on ^'(R2} with covariance C(ε) =
( - A + ml - ε2χΛ)~ 1 (χA is the characteristic function of A).
Then
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where

(15) can be proved quite easily, by calculating the generating functional of the
measure defined by the right hand side.

It follows that $e+(1/2)ε2ίΛ:φ2:d2χdμ(φ) = M~ 1. Now, by Jensen's inequality,

M ̂  exp(- fε2 J 1A : φ2 :d2xdσ(φ)) = exp( - \ ε2 $Λc(ε)(x)d2x)

where

c(β) (x) = lim(C(ε)(x, y) - C(0)(x, y)).

so

LΦXx)Λc - 82$ΛχΛ(x)C(s)(x,y)χΛ(y)C(V)(y,x)d2xd2y. (16)

But

0 ̂  - A + m2 - s2 ̂  - Δ + ml - ε2 χΛ

so it follows by the proof of proposition 7.3 of [8], that C(ε)e^c

δ(U4) for 0 ̂  δ < \.
Hence C(ε)Lj2

oc(IR4)9 so the proof of (i) is concluded by applying Holder's
inequality to (16).
(ii) By (i) and Holder's inequality

Λ:φ2:d2x)^

(iii) The proof of the Theorem is now completed by showing that there is a constant
K4 = K4 (α0 , m0 , p, λ) such that

Γ e - (2λU(Λ) + 2λaL(Λ) + (l/2)ε2J^:φ2:d2.χ) , ^ eK4\Λ\

The demonstration of this is based on the proof in [1 1] Sect. 2.3 that the expo-
nential of a semi-bounded Wick polynomial in φ is in Lp(dμ(φ)) for all p ^ 1.

Introduce a momentum cutoff K. Let φκ(x) be the cutoff field, and Cκ(x) =
J φ2 (x)dμ be the cutoff covariance.

For a,beU and b = (b 1 ? . . . , ̂ ^2)6 RN~2, define

p(α, 6) = P(α + &)

and

π = 3 r = 2

Then, by the method of [11] Sect. 2.3, it is sufficient to show that there is a
constant K5 = K5 (α0 , m0 , p, I), which is independent of x, κ;, and /z, such that for
a = h112 φκ(x),b=f(x),bί =f,(x) i=l,...,N-2,

(iv) 2λh~ 1 :p(a, b) : + 2λah~ 1 :q(a,b) : + \ ε2 : φ2

κ(x) : ̂  - K5(CK(x)

First we control the polynomials p and q.
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(v) For all a, ί>,b such that | f e | ^ p , |6. |^p i = 1, . . . ,JV — 2, there is a positive
constant α0 = α0(l, p, w0) and_a positive constant K6 = J£6(α0,m0,p, I) such
that for all α and λ with 0^/1^1 and | α | ̂  α0

N

2λp(a, b) + 2Aαφ, b) + f ε2 α2 ̂  K6 ^ | α \r.

Proof. As a function of α, p(a, b) is a convex polynomial with p(0, b) = 0, p'(0, fc) = 0,
P"(α, i) = P"(a + fe) ̂  0. Thus p(α, b) ̂  0.

For

aq(a,b))->λN uniformly in α, b,b, as α^oo so there exists
such that I a \ ̂  δ implies that

For I α I ̂  (5, 1 fc. I ̂  p, a~2q(a, b) is bounded, so there exists α0 ̂  1 such that

2/l|αφ,b)| ̂  |ε2α2 for 0 ̂  A ^ 1, |α| ̂  α0.

Thus, for

I α I ̂  (5, 2λp(a, b) + 2Aα^(α, b) + f ε2β2 ̂  |ε2α

Hence (v), with K6 = min{|ε2(AΓ(5N-2)- S /1N/4ΛΓ}.

Proof of (iv). Set 6 =/(*), Z^ ^(x),α =
Then, undoing the Wick ordering,

N n [d/2)r]

Σ ΣAW^ίKβM'/ί,- x /
w = 3 r = 2 j = l

where

and few r 7 is independent of h and bounded.
The 'term in { } is positive by (v), and the second term can be minimised as a

function of a to give the required result (iv). D
This completes the proof of Theorem 10.
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