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On Edwards' Model for Polymer Chains:
II. The Self-Consistent Potential
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Abstract. We obtain an existence and uniqueness theorem for the self-
consistent potential in Edwards' model for polymer chains, and confirm the
asymptotic analysis proposed by him on the basis of WKB arguments.

Introduction

The present paper is a reprise of the original work of Edwards' [1] on his continuum
model for long polymer chains, the object being to place the results stated there
on a firm basis. In [1] Edwards proposes as an approximation to the polymer
model a Markov process. This process is a drift process characterised by a spheri-
cally symmetric non-negative potential function which is to satisfy a non-linear
equation whose structure is motivated by the polymer model (self-consistency
condition). We prove existence and uniqueness of this self-consistent potential,
and confirm that its asymptotic behaviour is that proposed by Edwards. The
proof relies on the fact that the self-consistent potential must satisfy a certain non-
linear differential equation. This equation is studied in Sect. 1, its relation to the
polymer problem being given in Sect. 2. In Sect. 3 we prove a limit theorem for
drift processes from which Edwards' main conclusion concerning the predictions
of the Markovian model for the length of polymer chains follows.

In this paper no attempt is made to prove that the Markovian model is a
sufficiently good approximation to the original polymer chain model that the
limit theorem proved in Sect. 3 for the Markovian model applies to the original.
Indeed the existence theorem for the polymer model we have obtained in [2]
does not provide a sufficient basis for making such an attempt. The theorem proved
in [2] asserts that the polymer measure is well-defined on paths parametrised
by the time interval [0,1] for sufficiently small coupling constant. For a fixed
coupling constant g this is equivalent to the assertion that the measure is well-
defined on paths parametrised by ίε[0, T] for T = T(g) sufficiently small. This
restriction must be removed if the limiting behaviour of paths as t -> oo is to be
considered. We remark, however, that some problems of this kind have been
solved by application of the Donsker-Varadhan theory of the asymptotics of
functionals of Markov processes [3].
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1. A Boundary Value Problem

In this section we solve a boundary value problem on (— oo, + GO) for a certain
1-parameter family of differential equations. These equations may be characterised
by some simple formal properties: consider an ordinary differential equation of
the form

L{u) = uM{u\ (1)

with L and M linear differential operators with constant coefficients of orders 3
and 1 respectively. We suppose that L has real spectrum, and that (1) admits an
integrating factor of the form u exp [βt\. Then by means of

(a) a scale change in u
(b) an affine transformation in t

(1) may be put into one of the following canonical forms:

(i) u"'-u' = uu\ (2)

(ϋ) P[f\u = u{uf-u\ (3)

with

and λ ^ 0. For λ > 0 the transformation

V[t) —: A Ŵ A ίy, ^3J

gives an alternative form for (ii) which, in the limit A-> + oo, goes over into (i).
Thus it is natural to regard (2, 3) as a single 1-parameter family of differential
equations, parametrised by λε[0, + oo].

The integrating factors for (2, 3) are w, u exp [ - 3ί], and the integrated forms

U--uu" +

 U- +

 U- = c (6)
3 UU + 2 + 2 W

w3 „ M'2 3UM' /9 A\ , r Λ π

T - M U " + — + - ^ - - - - - u2 = cexp[3ί]. (7)

In (6,7) c is a constant of integration.
By a positive solution of (2) or (3) we mean a solution u(t) defined for all tεU9

and strictly positive. The purpose of this section is to prove.

Theorem 1. (a) Any positive solution of (2) is a constant. For such a solution c
in (6) is positive, and the value ofc uniquely defines the solution.

(b) (3) has positive solutions for any λε[0, oo). For λ > 9/4 any two such solutions
differ only by a translation in t. For λε[0,9/4] this uniqueness up to translation holds
for positive solutions satisfying the boundary condition

u(t) = 0 (exp [αί]), t -> - oo. (8)
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(with a = I — s,for some ε, 0 < ε < λί/2) in case λε(O, 9/4]

| l \ ί ->-oo (9)M(ί) = θ(jί|2expΓ|l\

if λ = 0. For λ > 9/4 any positive solution of (3) satisfies (8). For a positive solution
satisfying the above boundary condition the constant c in (7) is positive, and the
value ofc uniquely defines the solution.

Proof A single integration of (2) gives an equation

(10)" - — k
-u 2

which can be interpreted as the evolution equation of a conservative mechanical
system. The simple analysis of (10) confirms that, while non-constant solutions
of (2) defined for all time exist (they are periodic), such solutions are not positive,
and this is the only nontrivial assertion in (a). The proof of (b) is more difficult, and
will be broken up into several lemmas. The first of these shows why no boundary
condition is given as t -> + oo.

Lemma 1. A solution of (7) defined and positive on [T, oo)/or some T satisfies

lim u(t) exp [ - t] = (3 c)1 / 3. (11)
t-> + oo

Proof We write y = u exp [ — ί], and obtain

exp [ ί ] | τ - c I -yy"+V+\y' 2 + ($- ΐ)y2=° <12)
I 3 J 2 2 \2 8/

We are now to prove

lim y(t) = (3c)1/3. (13)
ί-> + oo

The proof is by contradiction. We suppose (13) does not hold, and examine several
possibilities for the behaviour of y(t) as t -• + oo, arriving at a contradiction in
each case.

Suppose first that y(t) is oscillatory i.e. that y(t) has infinitely many critical
points {ίw, n ̂  1}. Critical points of y(t) are isolated, so lim tn = + oo. If tε{tn, tn+1),
y{t) lies between the critical values y{tn\ y{tn+1\ so the fact that (13) does not hold
implies that we also do not have

lirn);(tn) = (3c)1/3.

Hence, for some ε > 0, there are infinitely many critical values y(tn) satisfying

\y{tn)-{3c)ίl3\^ε. (14)

For a critical point satisfying (14), and n sufficiently large, (12) gives

V//(ίB) = s g n | > ( g - ( 3 c ) 1 / 3 ] . (15)
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Suppose (14), (15) hold for n = m. If y(tj > (3c)1/3, (15) asserts that tm is a local
minimum, so tm+ί is a local maximum and j ;( ί m + 1 )> y(ίm)^ (3c)1/3 + ε. But
then (14), and so also (15), holds for n = m+ 1, which is impossible, since ίm+1

is a local maximum. A similar contradiction results if we suppose y(tm) < (3c)1/3.
Suppose next that y(t) is eventually monotone, so that y^ = Km y(ί) exists,

ε[0, oo]. Since y is positive, we may define φ = y1/2, and from (12) obtain

= h(t)(say). (17)

Since (13) is supposed to fail, y^ ̂ (3c) 1 / 3. Suppose (3c)1/3 <j; o o < oo, then for
some γ > 0, and all t ̂  t0 we have

h(t)^ yexp[ί]. (18)

(17) gives the integral equation

(19)

with A, B constants. Inserting (18) in (19) we find, for t ̂  t0, and Aγ, Bγ constants,

φ(t) ^ A, + B1 expU + 2y exp [ί]. (20)

(20) implies lim y(t) = lim φ(t)2 = oo, which contradicts y^ < oo.
ί-»oo ί ^ oo

A similar contradiction results if we suppose 0 ̂  y^ < (3c)1/3.
Suppose finally that y(t) is eventually increasing, with limj;(ί)= + oo. We

ί-*OO

write (12) in the form

and obtain for t ̂  t0, and some constant iC > 0,

y^*y, /^o. (22)

(22) implies y(t) ̂  z(ί) for t ̂  ί0, with z(ί) the solution of

z ^ X z 2 ; z ( g = y(ί0),z'(g = 0. (23)

But z(ί) -> oo in a finite time, so this comparison implies y(t) -• oo in a finite time,
which contradicts the assumption that y (t) is defined on [T, oo). D

Lemma 1 shows that for a positive solution of (3) the constant c in (17) is
non-negative. The possibility that c = 0 may be examined writing φ = uί/2.
(7) then gives the autonomous equation
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(24) has one equilibrium point if λ ̂  9/4, three if λ < 9/4; there are no limit cycles.
An unbounded orbit is readily shown to be incomplete, so that a solution of (24)
defined on IR and positive must have for its orbit an arc joining the two equilibrium
points in the half-plane ψ}±0,λ being necessarily less than 9/4. Such a solution
exists for λ < 9/4, but fails to satisfy the boundary condition of Theorem 1. Thus
for a positive solution of (3) satisfying the boundary condition of Theorem 1, c
in (7) is positive. We now choose a number c0 > 0. If u(t) is a solution of (3) for
which c in (7) is positive, there exists a unique translate u(t — t0) of this solution
satisfying (7) with c = c0 t0 is given by c = c0 exp [3ί 0]. So to complete the proof
of Theorem 1 it suffices to consider (7) with c = c0, and to show that this equation
(7)0 has a unique positive solution satisfying the boundary condition of the
theorem.

The next lemma shows why, for λ > 9/4, no boundary condition is given as
t -> — oo.

Lemma 2. Suppose λ > 9/4. Then, for a positive solution u{t) of (7)0,

u(t) exp - — \is bounded in t.

Proof. Write φ(ή = u(ή1/2 exp - ^ . Then

] c 0 ^ + ̂ . (25)

Choose β satisfying \ < β < λ. We will show φ{t) ̂  M, with M = [2co{λ -β)'1] m .
By Lemma 1 ψ(ή -> 0 as t -> + oo. Hence we either have \j/(t)^M for all ί, or for
some t = t0

ψ(to)>M,ψ'(to)<0. (26)

We will derive a contradiction from the second possibility, and this will complete
the proof.

Suppose then that (26) holds. Writing (25) in the form

β 1 * Γ3ίΊ (λ-β)f M 4 \
ψ" = —ψ H—ψ exp — H 1 φ =- I, (27)

4 6 L ^ J ^ " V Ψ J
we find that φ(t) is a decreasing function of t for t ^ ί0 (i.e. increases as t -» — oo),
and, for t^to,ψ (t) ^ ω (ί), with ω (ί) the solution of

i a Γ 3 ί Ίeω e x p L τ }ω/r - - ω + - ωό exp | — |, (28)

satisfying ω(ί0) = ω 0 J ω'(ί 0 ) = ω'o. Here ω 0 , ω'o may be chosen arbitrarily subject
to the inequalities

0 < ω0 < φ(t0), 0 > ω'o > ψ'(t0). (29)

Now the comparison Eq. (28) may be transformed by the change of variable
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ω = τ exp — — into the autonomous equation

,._»,+ »(»_,),_»,.. ,30)

Since β > \, this equation has precisely one equilibrium point, namely the origin,
and this point is a saddle point. A solution of (30)defined on (— oo, ί 0 ] necessarily
has the unstable manifold at the origin as its orbit otherwise it would be unbound-
ed, and an unbounded semiorbit of (30) is incomplete. But by a suitable choice of
ωQ, ω'o satisfying (29), we can be sure that the corresponding point (τ 0, τ'o) of the
phase plane of (30) does not lie on the unstable manifold at 0. Then the comparison
function ω(t) blows up in a finite time as t decreases, which contradicts the hypothe-
sis of the lemma that u (ί), and hence φ(t\ is defined for all t. D

To obtain the conclusion of Lemma 2 for 0 < λ ̂  9/4 we find it necessary to
impose the boundary condition (8).

Lemma 3. Suppose 0 < λ ̂  \. Then, for a positive solution u(t) o/(7)0 satisfying (8),

u(t) exp — — \is bounded in t.

Proof Write v(t) = u(t) exp - — . By Lemma 1 v(t)-+0 as ί-> + oo, so it

remains to show v(t) = 0(1) as t -> — oo. From (3) we obtain

τ l (31)

which implies that v satisfies an integral equation

v(t) = A + Bexp[A1/2ί] + Cexp[-λ~U2i] + JR(t, ξ)v(ξ)2dξ. (32)
o

The kernel R{t, ξ) in (32) is given by

sh(2-W2[t-ξ])

Given an estimate v(t) = 0 exp [ — εί]) as t -> — oo, with 0 < ε < λί/2, as implied
by (8), we find that the integral in (32) is 0 ( e x p [ - Γ(ε)ί]) as ί-> - oo, with
T(ε) = max (0, 2ε — | ) . Since ε < / l 1 / 2 ^ | , this means that the integral is o(exp
[ — λ1/2t]\ and the boundary condition (8) now forces C = 0. (32) then gives the
improved estimate v(t) = 0(exp[ — T(ε)ί]) as t -> — oo, and so by iteration v(t) =
0(exp [ - TN(£)i]) for any integer N ̂  1. But TN{ε) = max(0,2Nε - f [2N - 1]) = 0
for N sufficiently large, so v(t) = 0(1) as ί -^ - oo. Π

The proof of the uniqueness assertion of Theorem 1 will now be obtained as
a corollary of the following lemma.
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Lemma 4. Suppose a{t\ F(φ, t) are continuous functions defined for t real, and φ
real and positive, and that, for each ί, F(φ, t) is strictly increasing in φ. Let c+,c_
be real numbers. Then the boundary value problem

Φ(t) -> c_ as t -> - oo, φ(t) -> c+ as t -> + oo (34)

has at most one positive solution.

Proof. Suppose φi(t),φ2(t) are two positive solutions of (34). If these solutions
are distinct, we may suppose that p(t) = φί(ή- φ2(t) takes positive values. Since
p(t) -» 0 as t -• + oo or ί -> — oo, p(ή is bounded and has a positive maximum,
at ί0 (say). Then p(t0) = φx(t0) - Φ2(to) > 0, and p"(ί0) ^ 0, p'(ί0) = 0. But from
(34)

P"{to) + a(to)p'(to) = FiΦM ί0) - F(φ2(t0\ t0). (35)

The right side of (35) is strictly positive, since F(φ, t0) is strictly increasing in φ,
and the left side is ^ 0. This contradiction implies φ1 = φ2. D

Corollary. (7)0 has at most one positive solution u (t) satisfying (8) (or (9)).

Proof. Choose a smooth decreasing function hit) such that

h(t)= -t,t^-2

h(t) = 1, t ^ - 1

Note that /z(ί) ̂  1 for all ί, and that h"{t) is non-zero only for ίε[ - 2, — 1]. Write
M = max|Λ"(ί)|. Define fe(ί) = h(t - ί0), with ί0 to be chosen later, and set ^(ί) =

w(ί)1/2exp - — fc(i)"1. Φ(t)^O as ί-> + oo by Lemma 1, and ^(ί)-*0 as

I -+ _ oo by Lemma 2 in case λ > | , by Lemma 3 in case 0 < /I ̂  f, and by (9)
if A = 0. The differential equation satisfied by φ(t) is

with a(t) = 2k'k~\ and

F(^O = ^ V 3 e x p [ y ] - ^ / c - > - 3 + ̂ - ^ y . (36)

From (36) we compute

^ + ^ - ^ , (37)
4 k

M i n ^

with C a positive constant. Since \k"k~1\^M, and is non-zero only for ίε[ί0 - 2,
t0 - 1], it suffices to choose ί0 so

C exp [ί 0 - 2] > M
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to ensure that the right side of (37) is strictly positive for all t. Lemma 4 then applies,
and gives the uniqueness of \j/(t\ and hence of u(t). D

In order to establish the existence assertion of Theorem 1, we will construct
a 1-parameter family {u(t, β):βεU} of solutions of (7)0. For each β, u(t, β) will be
first defined on an interval — oo < t < to(β) as the solution of a certain integral
equation, and then extended as a solution of (7)0 to a maximal interval of existence.
For - oo < t <to(β\ u(t, β) will satisfy a bound 0 < u(t, β) < w*(ί) Here u*(ί)
is a smooth function of ί, defined for all ί, which we will specify later. It will be
chosen so that this bound on u(t, β) implies that u(t, β) satisfies as ί -^ — oo the
boundary condition of Theorem 1. Since the solution of (7)0 is also a solution of
the quasi-linear equation (3), it follows that a solution u{t,β\ which satisfies
0 < w(ί, β) < w*(ί) for all t in its domain of definition, is necessarily defined for all ί,
and thus provides the solution of our problem. Otherwise we may define an exit
time t1{β) = mm{t\u(tj)[u*{t)-u{uβ)~] = ϋ}. Write E = {β:t1{β) is defined}
and E1 = {βsE:u(t1(βlβ) = O}, E2 = {βεE:u(t1(β),β) = u*(t1(β))}> so that E =
E χ u E 2 , and our problem is to show E φU. We will show that Ex and E2 are
non-empty, and that for each β&Ex (respectively E2) the graph of u(t9 β) intersects
u = 0 (respectively u = u*(ή) at (ί1(yS), w(ί1(/?), /?)) transversely. Since u(t,β) will
depend smoothly on β, it will follow from this last assertion that Ex, E2 are open,
and so, since R is connected, that E φ R, thus completing the proof of Theorem 1.

It is convenient to write down the constructions of the last paragraph in terms of

[-f],whicv(t) = u(t) exp — — , which satisfies

exp[y] - vv" + if/2 + ±λv2 = c0. (38)

The integral equation defining υ(t, β) — u{t, β) exp — — has the form— —

v(t, β) = a(t) + β exp[ l 1 / 2 ί ] + ] R(t, ζ)\v(ξ, βf - b{ξ)]dζ, (39)
— 00

with R(t, ξ) given by (33). The functions α(ί), b(t) take different forms according
to the value of the parameter λ:

For λ = 0, a(t) = - [2c 0] 1 / 2 ί b(t) = 0.
For 0 < λ < 9/4, a(t) = [2coλ~ x ] 1 / 2 6(ί) = 0.

For λ ^9/4, set # = [1^/1], so that ΛΓ^l is an integer. Then construct
J V - l

d(t) = Σ dn exp [f πί], with d0 = [2ί
n = 0

Γ d2'
d"> -λd' = \ dd' + — lexpl ^ I + 0(exp[f Ni]),

N-ί

as ί -> — oo, and define ί?(ί) = ^ fcπ exp[f πί] by
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N

Finally set a(t) = £ an(t) exp[frcί], with
n = O

if 1 ^ n ^ JV, and JV ^ § λ 1 / 2

so that a'" - λά = ft" + ̂ Ί e χ p [ y l
That (39) has, for each βε[R, a solution defined on an interval of the form

( — oo, to(β)) may be proved by showing that, for suitably chosen to(β\ the right
side of (39) defines a contraction mapping on the Banach space B of continuous
functions on (— oo, t0) such that

H l a = S UP | N ί ) - α ( 0 ] e x p [ - § i V ί ] | < o o .
ίε(-oo,ίo)

The proof shows that the solution v{t, β) depends smoothly on β. Moreover it is
readily verified that v(t, β) is a solution of (38), and so may be extended as a solution
of (38) to a maximal interval of existence.

For λ>0 choose M > O ^ " 1 ] 1 / 2 , and define u*(t) by v*(t) =

Γ 3ίΊ [c Ύ12

u*(t) exp — — = M. For λ = 0 choose k > ^r ? and define a function h(t) by

h(ή = l + t\ \t\^k

h{t) = 2k\t\, \t\>k;

Then set v*{t) = h(t — ί2), with ί2 chosen so

|exp[f(ί2-fe)]>c0 + 2.

From (39) it is clear that, by redefining to(β) if necessary, we may arrange to have
0 < υ(t, β) < υ*(t) for - GO < t < to(β). The sets E1,E2 are then well-defined and
it remains to verify the transversality assertion, and to verify that E1,E2 are
non-empty.

The graph of any solution of (38) can only intersect v = 0 transversely—for
\v'\ = (2co)

1/2 φ 0 at such an intersection. Hence Eγ is open. For λ > 0 and βεE2,
the intersection of the graph of υ(t, β) with v = M at (ί1? M) is transverse—for
if it were not, we should have, for t = tx, v = M, v' = 0, υ" ̂  0, which contradicts
(38), since \λM2 > c0. For λ = 0 and ^ε£ 2, the transversality of the intersection
of the graph of v(t, β) with v = t;*(ί) aX(tί,υ*(t1)) results from a similar contradic-
tion; either \t1 — t2\> k, and nontransversality implies [v'(tί ) ] 2 = 4k2, t/'^) ^ 0,
or I ίχ — ί21 ^ k, and nontransversality implies t;;(ί1) = 2(ίχ — ί2), ^"(ίj ^ 2;
in either case a contradiction with (38) results, k and ί2 being chosen as specified
above. Thus E2 is also open.

For λ ^ | , the kernel #(ί, ξ) in (39) is positive for all ξ^t, and it follows from
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the variational equation

that

^ ^ exp [A1 / 2ί] > 0, (40)

for all t such that v(t, β) is defined and positive. It follows readily from (40) that
£ χ , E2 are non-empty. For λ < \, the same conclusion is obtained by simple estima-
tions based directly on (39). •

The proof of Theorem 1 is complete.
We denote by βc the unique value of β such that βc£E = EίuE2.
The solution of (39) by iteration gives an expansion for v(t9 β) as ί-> — oo

of the type considered by Liapunov [4], and so for the positive solution v{t9 βc\
once βc has been determined. It is also of interest to have more detailed information
about the behaviour of v(t9 βc) (or u(u βc)) as t -» + oo than is given by Lemma 1.
It is convenient to write

z = uexp[-ί](3c o )- 1 / 3 ; s = 2[3co]1 / 6 expΓ| l . (41)

z = z(s) then satisfies

z"' - z'\z + τs ~2] + τs~3 z = 0, (42)

with τ = 4λ — 1. (42) has a 1-parameter family of solutions z(s, y) defines for
s > so(γ) and satisfying z(s, y) -• 1 as s -» + oo. For each of these an asymptotic
expansion may be obtained as s -> + oo this determines the behaviour of u(t, βc)
as t -* + oo, once the value yc of y for which z(s, yc) = u(t, βc) exp [ - ί] (3c 0 )" 1 / 3

is known.
For λ = 1/4, τ = 0 and (42) becomes autonomous. For this special case this

leads to the explicit determination of z(s, yc)

_ F V ^ T - 2 , (43)

For another instance of the shooting argument used in this section to establish
existence of a solution of a nonlinear boundary value problem see Hastings
andMcLeod[5].

2. The Self-Consistent Equation

Flory [6] gave a remarkable and simple argument which determines the depend-
ence on N9 the number of links, of the expected distance R between the ends of
a long polymer chain immersed in a good solvent at a given temperature. For a
given distance R between the ends of the chain, the free energy F(R) is assumed to
be the sum of two positive terms, proportional to N2R~3 and N~XR2 respectively.
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The first of these represents the contribution to the free energy of the repulsive
interaction between any pair of links of the chain, separated along the chain, which
are sufficiently close to one another in space, and the second can be considered
as an elastic energy, representing the cohesion of the chain. Evidently F(R) has
a minimum at a value RofR proportional to N3/5. (For a fuller critical account of
the Flory argument see de Gennes [7].)

The Flory exponent 3/5 is in remarkably good agreement both with experiment,
and with the numerical analysis of appropriate statistical mechanical models
([7-9] and further references cited there). The first attempt to derive it from a
specific statistical mechanical model was made by Edwards [1]. Edwards considers
a continuum model given by a measure v on the space of continuous paths x(ί),
t ^ 0, in IR3, with x(0) = 0. Formally v is specified by the equation

-g]]δ(x(σ)-x(τ))dσdτ\ (1)

In (1) g > 0 is a coupling constant, and Z " ι the normalisation factor required to
make v a probability measure. This model should have the same relation to discrete
models of polymer chains that the Wiener process has to random walks in parti-
cular the parameter t of the continuum model corresponds to the number of
links N, and the problem is to determine whether £ v[ |x(ί) |] is asymptotically
proportional to ί3/5 as ί -> + oo. Note that the energy which appears in (1) has
the same dimensional structure as the first term of Flory's free energy; an energy
having the same dimensional structure as the second term of F(R) is also implicit
in (1), as may be seen explicitly from the relation between μ and the formal trans-
lation invariant measure ξ on path space

dμ_
dξ [ 1 oo J γ 2 ~1

-i[ I*'* dσ\The coupling constant g has dimension L3T~2. By choosing the standard Wiener
measure μ we have normalised the diffusion constant D, which should appear in
(2), to be 1, so linking the choice of length and time scales. It is convenient to fix
the length and time scales completely by setting also g = 1.

There are technical difficulties, only partially solved in [2], in the construc-
tion of v in accordance with (1), but we will not be concerned with them here since
we will follow Edwards in immediately replacing the intractable v by a measure p
determined by a positive spherically symmetric potential V(x)

^fμ (3)

with Z1 again denoting the appropriate normalisation factor. (3) is not to be
taken literally either, but, in contrast to the situation for (1), it is not difficult to
make sense of (3), under mild regularity conditions on V. We will be concerned
with a potential V which, as a function of the radial distance r = |x| is smooth on
(0, oo), vanishing at infinity, and which satisfies

(4)
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for some ε > 0. For such a V we may construct the self-adjoint operator

H = H0+V, (5)

with Ho = —\A, and a radial function Ω(x) > 0

Ω(x)-1 = βΓexp Γ - T F(x(σ))ΛτΊ j (6)

In (6) r = |x|, and T(r) denotes the time at which the path first hits the sphere
with center 0 and radius r. The right side of (3) is formally a multiplicative func-
tional, so that p should be a Markov process, and can be constructed from its
transition probabilities q(t, x, y). From (3) we compute formally.

- J V(x(σ))dσ)δ(x(s) - x)δ(x(s +1) - yX\

r / *
E expί- $J(x(σ))dσ)δ(x(s)-x

= F(xΓ 1 <x|exp(-ίH) |y>F(y), (8)

with

F(x) = ̂ ΓexpΓ - j V(x + x(σ))dσl | (9)j
In (7) s is arbitrary, and we have used the Markov property of the Wiener process
and the Feynman-Kac formula to pass to (8). Equation (8) may not be well-
defined—for (9) may give F(x) = 0. However, since the Wiener process starts
afresh at the stopping time T(r\ we have formally

F(x) = F(0)O(x), (10)

so that

\ \ (11)

The right side of (11) is well-defined, so (11) can be used to define q(t,x, y). Since
q(t, x, y) is a probability density in y for all x, ί, (11) requires

exp ( - tH) Ω = Ω, for all t > 0, (12)

and hence that

HΩ = 0. (13)

Note that we do not mean to imply by (12), (13) that ΩeL2(U3). exp( - tH) is a
self-adjoint operator on L 2 (1R3) whose kernel < x | exp ( — tH) | y > defines an integral
operator, which we also denote by exp( — tH), as in (12). (13) is a differential equa-
tion; taken together with the boundary condition ί2(0) = l, it characterises
Ω(x). From (11) we obtain the generator of the process

L = M~1HM (14)

= flo-a V, (15)
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with

a = V(lnΩ). (16)

In (14) M is the operator defined by multiplication by Ω, and (13) is used to obtain
(15).

The reader of Simon's book [10] will recognise in the last paragraph the theory
of the P(φ)1, or drift processes developed there, with one essential difference:
Simon wishes to be able to construct a process homogeneous in time, and there-
fore imposes conditions on V which guarantee ΩεL2(M3). Note also that the
construction gives only those drift processes in which the drift velocity a is deriv-
able from a potential; by a theorem of Kolmogorov [11], these are precisely the
drift processes which are time reversible.

Edward's idea is to choose a drift process p which, at least formally, is close
to the process v of (1). To motivate his choice it is best to rewrite the energy func-
tional which appears in (1) in terms of the local time density Γ(x) defined formally
by

00

T(x)= $δ{x-x{σ))dσ. (17)

Then

00 00 00 00

I I <5(x(σ) - x(τ))dσdτ = j j jdx«5(x - x(σ))<5(x - x{τ))dσdτ
0 0 0 0

] 2 . (18)

If in (18) the integrand is replaced by T(x)£[T(x)], we obtain

\dx T(x)£[T(x)] = jdx J dσδ(x - x(σ))£[Γ(x)]
o

σ))] (19)
0

which is the form of the energy functional in (3). Edwards therefore asks for a
potential function F(x) such that

£[Γ(x)] = F(x). (20)

At this point it is necessary to resolve the ambiguity concerning the meaning of
the expectation £[•] in these formal manipulations. It could be taken to be Ev—
but that would render (20) useless since we know nothing about v. Edwards there-
fore takes it to be Ep-so that p is to be a Markov process whose potential in the
sense of probabilistic potential theory (that is the left side of (20)) is equal to its
potential in the sense of the parametrisation given by (3). Thus V is a self-consistent
potential.

Mathematically the problem of determining a self-consistent potential in
the sense of (20) may not appear very natural because the link between the genera-
tor L of the process p and its potential F, which is made by (16) and (13), is some-
what indirect. In Appendix A we give a geometrical interpretation of the problem
which is mathematically appealing.
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Edwards assumes the existence of a unique solution of (20) having regular
asymptotic behaviour as r -> oo. That this assumption is correct is the main result
of this section.

Theorem 2. There exists a unique self-consistent potential Vs(r) (within the class
of potentials for which we have defined drift processes). This potential satisfies

F s ( r ) - 2 - 5 / 3 π - 2 / 3 r - 4 / 3 , α s r - > + oo. (21)

Remark ί. There is a discrepancy between the constant which appears in (21)
and the constant in the corresponding Eq. (3.19) of [1], which is resolved by the
observation that Edwards takes Ho = — \A as the generator of the Wiener process
in[R3.

For the proof of Theorem 2 we will need the following elementary lemma,
which is verified by computation.

Lemma 5. Let y~zιz2 be the product of two solutions of the linear differential
equation z" = 2V(r)z, with V a smooth function ofr on (0, oo). Then y satisfies the
linear equation

y"'-SVy'-4V'y = 0. (22)

The square k = [W(zί, z 2 )] 2 of the Wronskian ofzί,z2 depends only on y. In fact

k= -2yy" + y'2 + %Vy2. (23)

Conversely, any solution y of (22) for which k ^ 0 can be written as a product zγz2

of two solutions ofz" = 2V(r)z.

Proof of Theorem 2. (11) gives, for any admissible potential V,

] = J«(0,x,t)Λ
o

= G(r)Ω(r) (say). (24)

Note that G(r)^Go(r) = < 0 | H - 1 | x > = (2πr)~ Sand that, as r-* 0 + , G(r) ~ G0(r).
On (0, + oo) G(r) satisfies the differential equation HG = 0.

Write zι(r) = rG(r\z2(r) = rΩ(r\ so that z19z2 are both solutions on (0, oo)
of z" = 2V(r)z. By Lemma 5 their product y(r) satisfies (22). For a self-consistent
potential V (20) must hold i.e. y(r) = r2 V(r). We may therefore replace V by
r~2y in (22), and obtain a nonlinear equation which must be satisfied by y. The
change of variables

S = flogr; u(s) = 2Ίy(r) (25)

transforms this equation into (1.3), with λ — \. (4) is equivalent to the boundary
condition (1.8) of Theorem 1. According to Theorem 1, u(s) is now uniquely deter-
mined up to translation is s, and so y(r) up to a scale change in r. This ambiguity
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is removed by the boundary condition y{r)~ {2π)~1r, as r-»0 + (equivalently
we may determine k = (2π)~2 in (23), which fixes the constant c in the integrated
form (1.7) of (1.3)); there is thus only one potential which could be self-consistent,
and it remains only to show that it is in fact self-consistent. We therefore compare,
for this particular potential F s , the functions y(r) = zγ{r)z2(r) and U(r) = r2 Vs(r).
From the definition of Vs, U(r) satisfies (22) and has k = (2π)~2 > 0 in (23). From
the final assertion of Lemma 5 it follows that

U(r) = (az^r) + bz2(r))(cZl(r) + dz2(r)\

for some constants a,b,c,d with (ad-bc)2 = l. Since z 1 ( r ) ^ ( 2 π ) " 1 , z2(r)~r
and U(r) ~ (2π)" r r as r -» 0 +, one of a, c must be zero, say a = 0.

The asymptotic behaviour of Vs(r) as r -> + GO is determined by Lemma 1,
which gives (21). Moreover the detailed asymptotic analysis mentioned at the
end of Sect. 1 shows that the asymptotic behaviour of derivatives of Vs is correctly
given by formal differentiation of (21). For any V with such regular asymptotic
behaviour, the asymptotic behaviour oϊzί (r), z2(r) is given by the WKB formulae

z2(r) ~ (4π)" 1 [ 2 F ( r ) ] " 1 / 4 exp [A(r)l (26)

as r -> + oo. Here A(r) is a function determined by V{r); for the potential Vs under
consideration A(r) ~ A0r

1/3, as r-> + oo, with Ao a positive constant. From (21)
and (26) it follows that d = 09 and so that U(r) = zγ (r)z2 (r) i.e. Vs is self-consistent. D

Remark 2. If existence of a potential Vs satisfying the self-consistency condition
r2 Vs(r) = zi(r)z2(r) is assumed, and the asymptotic behaviour of Vs is assumed
to be sufficiently regular that the WKB formulae (26) are valid, then the asymptotic
behaviour (21) of Vs follows immediately; this is essentially the derivation of (21)
given in [1].

Sufficient conditions for the validity of (26) are given by Coddington and
Levinson [12].

3. The Asymptotics of Drift Processes

In this Sect, we consider the asymptotic behaviour as t -• + oo of the radial distance
r(t) = I x(ί) I for a drift process determined by a given potential V(r) as in Sect. 2.

tit) may be characterised as the solution of the stochastic equation

dr = dB + a(r\ (1)

with r(0) = 0. Here a(r) = — (lnΩ(r)) is the radial drift velocity, and B(t) = |x o (ί) |

the 3-dimensional Bessel process (the radial component of Brownian motion in
U3). B(t) in turn may be constructed from the 1-dimensional Brownian motion
b(t) as the solution of the stochastic differential equation

dB^db + r-'dt, (2)
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with B(0) = 0([13]). Thus r(t) satisfies

dr = db + c(r)dt, (3)

and r(0) = 0, with the effective drift velocity c(r) given by

c(r) = a(r) + r-1. (4)

(3) is to be understood as an integral equation

r(t) = b(t) + \c(r(s))ds. (5)
o

Note that, under our conditions on V, a(r) ̂  0 for all r. For the self-consistent
potential Vs, the asymptotic behaviour of the drift velocity is given by

α s ( r ) ~ 2 - 1 / 3 π - 1 / 3 r - 2 / 3 . (6)

We define the deterministic drift R(t) as the solution of

d^ = c(R); 11(0) = 0. (7)

If a(r)~Ar~*, r-> + oo, with A > 0, 0 < α < l , then as t-+ +ooR(ή~
\_A(1 + α ) ί ] ( 1 + α ) " 1 . Now b(t) is of order ί1/2 as t -• 4- oo, so we may expect that
r(t)~ R(t) as t-+ + oo. In particular this should be true for the self-consistent
process for which α = f then

0 J / 5 (8)
so r(t) ~ R{t) yields the Flory exponent | . The following theorem confirms these
expectations, and also determines the magnitude of the fluctuations of r(t) about
R(t).

Theorem 3. Suppose that the effective drift velocity c(r) is a positive, continuously
differentiablefunction ofr on (0, oo), and satisfies

c'{r)~ -Kr-2

9asr-+0+, (9)

c\r) - - C r " ( 1 + α ) , as r-> + oo, (10)

with C, K > 0, 0 < α < 1. Write

(11)

with R(t) the deterministic drift. Then Y(t) is asymptotically normal, with mean 0
and variance (1 + α)(l + 3α)~ ί.

Remark. The conditions (9,10) of Theorem 3 are readily verified for the self-
consistent process.

Proof. Denote by T{r) the function which is the inverse of R(ί)

τH!>
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Then the process Z(t) = T(r(ή) satisfies

Z(t) = t + )f(Z(s))db(s), (13)
o

with

1. (14)

The conditions on c{r) imply that/is continuously differentiable, and satisfies

f(t)~Fta/{ί+«\ast^oo, (15)

with F a positive constant, and

f'(t)εlf{n, dt\ 1 + α < p < 2. (16)

(16) implies that for any β with α(l + α)~1 < β < \ we have

1/(̂ -/(̂ )1 ^M^-ί/, (17)

for some M > 0, and all ί t, ί2 ^ 0. We will choose jS close to α(l + α)~ ί .

H(t) = E[Z(ί) 2] is increasing in ί, and satisfies

o

o
^ t 2 + MhH(tf. (18)

(18) implies H(ί) ̂  H o + H 1 ί
2, with H o , H t positive constants. (19)

Write Z(ί) = ί + W(t) + ε(t), (20)

with

W(t) = \f(s)db(s), (21)
0

ί (22)

is Gaussian with mean 0, and variance \f(s)2ds.
o

0

}}£[|Z(s)-s|2"]ds
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But

lt

2Y (by (19)),

so

£[ε(ί)2] = 0( ί 1 + " + 2 " 2 ) , as t -> + oo.

Now

so

= G(t) + η(t). (24)

Here G(t) = Rf(t) W(t)t~1/2 is Gaussian with mean 0, and variance

R'itfΓ Έ\_W{t)2] = r'U{t)Y2\f{s)2ds
o

-•(1 + α)(l + 3a)" 1 as ί ^ oo, (25)

by (15). With the help of (23) one checks that the remainder η(t) in (24)->0 in
measure as t -+ oo, and the convergence of Y(t) in law to the normal distribution
with mean 0, variance (1 + α)(l + 3α)~1 follows. D

Appendix A

A Geometrical Interpretation of the Self-Consistent Potential

Let M be a conformally flat Riemannian manifold diffeomorphic to Un. Such
a manifold has a distinguished class of coordinate systems (isothermal coordinates)
in which the metric takes the form

(ds)2 = explXxflίίdx1)2 + ... + (dxn)2}. (1)

Two isothermal coordinate systems are related by a conformal automorphism of
Un i.e. by a linear conformal transformation ([14]).

A scalar quantity q of dimension Lk is represented mathematically by a real
valued function q(x) relative to a given choice of coordinates on M, the representing
function q\x') in a second coordinate system then being given by

£ t a I (2)

ax
In other words q is a section of the line bundle ξ~kn~\ where ξ denotes the line
bundle of densities {n forms) on M. We will say that q is isothermally constant
iΐq(x) is constant in some, and therefore in every, isothermal coordinate system.

We fix now a distinguished point 0 of M, and suppose n > 2. The diffusion of
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M with sample paths starting at 0, and generator — ̂ Δ(Δ the Laplacian on M)
induces a measure τ on M given by τ(S) = expected time spent in 5, for any compact
S. τ is absolutely continuous with respect to the volume measure on M, and

we write its Radon-Nikodym derivative as —-.
dυ

Let q be an isothermally constant scalar quantity of dimension L"~4. Then
we may define a real valued function h on M by

h(x) = q(x)
dυ (n-4)/n

(3)
dx

Denote by R the scalar curvature of M, and consider the equation

dυ'

We claim that this equation is equivalent to the equation determining the self-
consistent potential ((2.20) for n = 3, and Appendix B for general n > 2).

To verify the claim fix an isothermal coordinate system and compute

R = - 2(n - l)exp[ - 2z] <Δz + fc^ JVz.Vzl. (5)

Δφ = exp[ - 2z]{Δφ + {n- 2)Wφ Vz}. (6)

From (6) it follows that we may obtain an identification of the diffusion on M
with generator —\Δ and the drift process with generator

L = -fzl-V(lnf2) V, (7)

up to a time change, if we make the identification

} (8)
The time change implied by the factor exp [ — 2z] in (6) gives

f(x) = exp[2z]T(x), (9)

as the relation between the local time densities of the diffusion and drift processes,
so

^ ]. (10)

The potential V(x) used to characterise the drift process is given by

V = \Ω~ιΔΩ, (11)

so, denoting by q0 the constant value of q(x\ we find (4) equivalent to the self-
consistent potential equation

(12)
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with

qJn-2)
g

Appendix B

Dependence on Dimension

It is of interest to consider how the preceding considerations are modified if we
replace paths in IR3 by paths in Mn. Indeed, since the condition (2.20) defining a
self-consistent potential involves only the radial component of the drift process,
it is possible to formulate its analog for any positive real number n; it suffices in

the constructions of Sect. 2 to replace the Laplacian in IR3,—=-H - ,
dr2 r dr

, d2 (n-ί)d

The case n = 4 is special for in this case the coupling constant g is dimension-
less, and we cannot set g = 1 by choice of length and time scales; thus g is to be
inserted as a factor multiplying the left side of (2.20). As in Sect. 2 we find that a
smooth potential V(r) satisfies the self-consistency condition only if y(r) = r2 V(r)
satisfies a certain non-linear differential equation; this equation is transformable
to the normal form (1.2). From Theorem 1 (a) it follows that y(r) must be constant,
so that V(r) is a Coulomb potential Cr~2. A direct calculation shows that this
potential does satisfy the self-consistency condition for coupling constant g if
C is the (unique) positive root of

Γ 1. (1)

The corresponding radial process is a Bessel process with dimension parameter

m = 2[(l + 2C)1 / 2 + l ] , (2)

so that

£ [ r ( ί ) 2 ] = m ί . (3)

For n ̂  4 we may normalise g = 1 by choice of units as before. The self-
consistency condition (2.20) on V(r) implies that y(r) = r2 V(r) must satisfy a
certain differential equation. The change of variables

5 = f ( 4 ~ π ) l o g r ; u(s) = 21 {n - 4)"2y(r) (4)

transforms this equation into (1.3) with

Theorem 1 now implies that u(s) is uniquely determined up to translation in 5,
so V(r) up to scale change in r. This ambiguity is resolved by determining the
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behaviour of V(r) as r -• + oo as in Remark 2 Sect. 2 this gives

~2/3 v — 2/3(n— 1) //-\

r r (6)

For n > 4 (6) imposes a boundary condition on w(s) as 5 -• — 00 which cannot be
met, so no self-consistent potential exists. For 0 < n < 4 (6) determines V(r) unique-
ly, and, as in Sect. 2, this potential may be shown to be self-consistent. The corres-
ponding drift process has a drift velocity a(r) ~ Ar~a as r -• 00, with α = ^(n — 1).
The asymptotic behaviour of r(t) is then given by Theorem 3 (which is actually
valid for — ̂ < α < 1).
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